Skip to main content

Microclimate Management: From Traditional Agriculture to Livestock Systems in Tropical Environments

  • Chapter
  • First Online:
Environment and Climate-smart Food Production

Abstract

Microclimate plays a determining role in the development of biotic and abiotic interactions within agriculture and livestock systems and the physiological and productive performance of plants and animals. Given that management practices determine the degree of microclimate modification within production areas, different agriculture and livestock management strategies can contribute to reducing the effects of climate change, a phenomenon that puts food sustainability at risk. Climate-smart agriculture can develop agroforestry-based production systems that contribute to soil water retention, soil and air temperature reduction, nutrient fixation, weed control, soil stabilization, and protection against wind and runoff in the improved physiological performance of crops and, therefore, higher productivity. Moreover, the implementation of silvopastoral systems contributes to the efficient use of water and space and forage production in livestock systems, making them more productive, profitable, durable, and resistant to climate change. This chapter exemplifies climate-smart management schemes that can be applied in tropical production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adame-Castro, D. E., Aryal, D. R., Villanueva-López, G., López-Martínez, J. O., Chay-Canul, A. J., & Casanova-Lugo, F. (2020). Diurnal and seasonal variations on soil CO2 fluxes in tropical silvopastoral systems. Soil Use and Management, 36, 671–681. https://doi.org/10.1111/sum.12644.

    Article  Google Scholar 

  • Aguilar, J., Illsley, C., & Marielle, C. (2003). Los sistemas agrícolas de maíz y sus procesos técnicos. In G. Galicia, G. Esteva, & C. Marielle (Eds.), Sin maíz no hay país. Consejo Nacional para la Cultura y las Artes : Dirección General de Culturas Populares e Indígenas (pp. 83–122). México: Museo Nacional de Culturas Populares.

    Google Scholar 

  • Albores-Moreno, S., Alayón-Gamboa, J. A., Miranda-Romero, L. A., Jiménez-Ferrer, G., Ku-Vera, J. C., & Vargas-Villamil, L. (2018). Nutritional composition, in vitro degradation and potential fermentation of tree species grazed by ruminants in secondary vegetation (acahual) of deciduous forest. The Journal of Animal and Plant Sciences, 28(5), 1263–1175.

    CAS  Google Scholar 

  • Albores-Moreno, S., Alayón-Gamboa, J. A., Miranda-Romero, L. A., Alarcón-Zúñiga, B., Jiménez-Ferrer, G., Ku-Vera, J. C., & Piñeiro-Vázquez, A. T. (2019). Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants. Tropical Animal Health and Production, 51, 893–904.

    Article  CAS  PubMed  Google Scholar 

  • Albores-Moreno, S., Alayón-Gamboa, J. A., Morón-Ríos, A., Ortiz-Colin, P. N., Ventura-Cordero, J., González-Pech, P. G., Mendoza-Arroyo, G. E., Ku-Vera, J. C., Jiménez-Ferrer, G., & Piñeiro-Vázquez, A. T. (2020). Influence of the composition and diversity of tree fodder grazed on the selection and voluntary intake by cattle in a tropical forest. Agroforestry Systems, 94, 1651–1664.

    Article  Google Scholar 

  • Aldava-Navarro, J., Casanova-Lugo, F., Díaz-Echeverría, V. F., Escobedo-Cabrera, A., Estrada-Medina, H., Cetzal-Ix, W., & Basu, S. K. (2017). Influence of Leucaena leucocephala (Lam.) de Wit (Fabaceae) on the forage yield and forage quality of tropical grasses Brachiaria brizantha (Hochst. ex A. Rich.) Stapf and Panicum maximum Jacq. (Poaceae). International Journal of Agricultural Science, 8(2), 133–137.

    Google Scholar 

  • Anderson, S. H., Udawatta, R. P., Seobi, T., & Garrett, H. E. (2009). Soil water content and infiltration in agroforestry buffer strips. Agroforestry Systems, 75, 5–16.

    Article  Google Scholar 

  • Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., & Mueller, C. W. (2018). Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biology and Biochemistry, 122, 19–30.

    Article  CAS  Google Scholar 

  • Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R., & Morales-Ruiz, D. E. (2019). Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry Systems, 93, 213–227.

    Article  Google Scholar 

  • Balesdent, J., Derrien, D., Fontaine, S., Kirman, S., Klumpp, K., Loiseau, P., Marol, C., Nguyen, C., Péan, M., Personi, E., & Robin, C. (2011). Contribution de la rhizodéposition aux matières organiques du sol, quelques implications pour la modélisation de la dynamique du carbone. Etude et Gestion des Sols, 18, 201–216.

    Google Scholar 

  • Balvanera, P., Lott, E., Segura, G., Siebe, C. E., & Islas, A. (2002). Patterns of β-biodiversity in a Mexican tropical dry forest. Journal of Vegetation Science, 13, 145–158.

    Article  Google Scholar 

  • Barlow, J., Lennox, G. D., Ferreira, J., et al. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535, 144–147.

    Article  CAS  Google Scholar 

  • Bermejo, L. A., De Nascimento, L., Mata, J., Fernández-Lugo, S., Camacho, A., & Arévalo, J. R. (2012). Responses of plant functional groups in grazed and abandoned areas of a natural protected area. Basic and Applied Ecology, 13, 312–318.

    Article  Google Scholar 

  • Calle, Z., Murgueitio, E., & Chará, J. (2012). Intensive silvopastoral systems integrate forestry, sustainable cattle ranching and landscape restoration. Unasylva, 239, 11–20.

    Google Scholar 

  • Casanova-Lugo, F., Petit-Aldana, J., Solorio-Sánchez, F., Ramírez-Avilés, L., Ward, S. E., Villanueva-López, G., & Aryal, D. R. (2018). Carbon stocks in biomass and soils of woody species fodder banks in the dry tropics of Mexico. Soil Use and Management, 34(4), 1–10.

    Article  Google Scholar 

  • Castañeda-Ramírez, G. S., Rodríguez-Labastida, M., Ortíz-Ocampo, G., González-Pech, P. G., Ventura-Cordero, J., Borges-Argáez, R., Torres-Acosta, J. F. J., Sandoval-Castro, C. A., & Mathieu, C. (2018). An in vitro approach to evaluate the nutraceutical value of plant foliage against Hemonchus contortus. Parasitology Research, 117, 3979–3991.

    Article  PubMed  Google Scholar 

  • Chang, J., Ciais, P., Viovy, N., Vuichard, N., Sultan, B., & Soussana, J. F. (2015). The greenhouse gas balance of European grasslands. Global Change Biology, 21, 3748–3761.

    Article  PubMed  Google Scholar 

  • CONABIO. (2011). Base de datos del proyecto global recopilación, generación, actualización y análisis de información acerca de la diversidad genética de maíces y sus parientes silvestres en México. https://www.biodiversidad.gob.mx/diversidad/proyectoMaices. Accesed 30 Oct 2020.

  • FAO. (1996). Enseñanzas de la revolución verde: hacia una nueva revolución verde. In Cumbre Mundial Sobre Alimentación. http://www.fao.org/3/w2612s/w2612s06.htm

  • FAO. (2010). “Climate-smart” agriculture: Policies, practices and financing for food security, adaptation and mitigation. Rome.

    Google Scholar 

  • FAO. (2017). Agroforesteria para la restauración del paisaje. Rome: Organización de las Naciones Unidas para la Alimentación y la Agricultura.

    Google Scholar 

  • FAOSTAT. (2020a). Food and agriculture data. In Food and Agriculture Organization of the United Nations Statistical Division. http://www.fao.org/faostat/en/#home. Accessed 10 Nov 2020.

  • FAOSTAT. (2020b). Tracking progress on food and agriculture-related SDG indicators 2020.

    Google Scholar 

  • Flamenco-Sandoval, A., Martínez, R., & Masera, O. R. (2007). Assessing implications of land-use and land-cover change dynamics for conservation of a highly diverse tropical rain forest. Biological Conservation, 138(1–2), 131–145.

    Article  Google Scholar 

  • Flota-Burgos, G. J., Rosado-Aguilar, J. A., Rodríguez-Vivas, R. I., Borges-Argáez, R., Martínez-Ortíz de Montellano, C., & Gamboa-Angulo, M. (2020). Anthelmintic activity of extracts and active compounds from Diospyros anisandra on Ancylostoma caninum, Haemonchus placei, and Cyathostomins. Frontiers in Veterinary Science, 7, 565103. https://doi.org/10.3389/fvets.2020.5653013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fornara, D. A., Olave, R., & Higgins, A. (2020). Evidence of low response of soil carbon stocks to grassland intensification. Agriculture, Ecosystems and Environment, 287, 106705.

    Article  CAS  Google Scholar 

  • Gao, J., & Carmel, Y. (2020). Can the intermediate disturbance hypothesis explain grazing-diversity relations at global scale? Oikos, 129, 493–502.

    Article  Google Scholar 

  • Geyer, K. M., Kyker-Snowman, E., Grandy, A. S., & Frey, S. D. (2016). Microbial carbon use efficiency: Accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry, 127, 173–188.

    Article  CAS  Google Scholar 

  • Gómez, A. (2002). Efecto de diferentes intensidades de luz sobre el intercambio gaseoso y desarrollo del cacao criollo Guasare. Dissertation, Universidad de los Andes.

    Google Scholar 

  • González-Merino, A., & Ávila-Castañeda, J. F. (2014). El maíz en Estados Unidos y en México. Hegemonía en la producción de un cultivo. Argumentos, 27, 215–237.

    Google Scholar 

  • González-Valdivia, N. A., Ochoa-Gaona, S., Pozo, C., Ferguson, B. F., Rangel-Ruiz, L. J., Arriaga-Weiss, S. L., Ponce-Mendoza, A., & Kampichler, C. (2011). Indicadores ecológicos de hábitat y biodiversidad en un paisaje neotropical: perspectiva multitaxonómica. Revista de Biología Tropical, 59(3), 1433–1451.

    PubMed  Google Scholar 

  • González-Valdivia, N. A., Pozo, C., Ochoa-Gaona, S., Gordon-Ferguson, B., Cambranis, E., Lara, O., Pérez-Hernández, I., Ponce-Mendoza, A., & Kampichler, C. (2016). Frugivorous Nymphalidae (Lepidoptera: Papilionoidea) associated to an ecomosaic of agriculture and tropical rainforest in a landscape in Southeastern Mexico. Revista Mexicana de Biodiversidad, 87(2), 451–464.

    Article  Google Scholar 

  • Herrero, M., Havlík, P., Valin, H., et al. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences, 110, 20888–20893.

    Article  CAS  Google Scholar 

  • Hiwale, S. (2015a). Leucaena (Leucaena leucocephala). In S. Hiwale (Ed.), Sustainable horticulture in semiarid dry lands. New Delhi: Springer.

    Chapter  Google Scholar 

  • Hiwale, S. (2015b). Sustainable horticulture in semiarid dry lands. New Delhi: Springer.

    Book  Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Article  Google Scholar 

  • Hoy, C. W. (2015). Agroecosystem health, agroecosystem resilience, and food security. Journal of Environmental Studies and Sciences, 5, 623–635. https://doi.org/10.1007/s13412-015-0322-0.

    Article  Google Scholar 

  • Hu, T., Taghizadeh-Toosi, A., Olesen, J. E., Jensen, M. L., Sorensen, P. S., & Christensen, B. T. (2019). Converting temperate long-term arable land into semi-natural grassland: Decadal-scale changes in topsoil C, N, 13C and 15N contents. European Journal of Soil Science, 70, 350–360.

    Article  CAS  Google Scholar 

  • IFOAM. (2009). The principles of organic agriculture. The International Federation of Organic Agriculture Movements. Retrieved January 13, 2020, from: http://www.ifoam.org/about_ifoam/principles/index.html

  • IPCC (Intergovernmental Panel on Climate Change). (2014). Climate change 2014: Impacts, adaptation, and vulnerability. New York: Cambridge University Press.

    Google Scholar 

  • Jarma-Orozco, A., Cardona, C., & Araméndiz, H. (2012). Effect of climate change on the physiology of crop plants: A review. La Revista UDCA Actualidad & Divulgación Científica, 15, 63–76.

    Google Scholar 

  • Jiménez-Pérez, A., Cach-Pérez, M. J., Valdez-Hernández, M., & de la Rosa-Manzano, E. (2019). Effect of canopy management in the water status of cacao (Theobroma cacao) and the microclimate within the crop area. Botanical Sciences, 97, 701–710. https://doi.org/10.17129/botsci.2256.

    Article  Google Scholar 

  • Jones, M. B. (1985). Plant microclimate. In J. Coombs, D. O. Hall, S. P. Long, & J. M. O. Scurlock (Eds.), Techniques in bioproductivity and photosynthesis (pp. 26–40). Elsevier.

    Chapter  Google Scholar 

  • Jose, S., & Bardhan, S. (2012). Agroforestry for biomass production and carbon sequestration: An overview. Agroforestry Systems, 86, 105–111.

    Article  Google Scholar 

  • Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO global forest resources assessment 2015. Forest Ecology and Management, 352, 9–20.

    Article  Google Scholar 

  • Kopittke, P. M., Dalal, R. C., Finn, D., & Menzies, N. W. (2017). Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural production. Global Change Biology, 23, 2509–2519.

    Article  PubMed  Google Scholar 

  • Liang, W., Lü, Y., Zhang, W., et al. (2017). Grassland gross carbon dioxide uptake based on an improved model tree ensemble approach considering human interventions: Global estimation and covariation with climate. Global Change Biology, 23, 2720–2742.

    Article  PubMed  Google Scholar 

  • López-Santiago, J. G. (2018). Almacenamiento de carbono y flujos de CO 2 del suelo en sistemas ganaderos de Tabasco. Dissertation, El Colegio de la Frontera Sur.

    Google Scholar 

  • Lorenz, K., & Lal, R. (2018). Carbon sequestration in grassland soils. In K. Lorenz & R. Lal (Eds.), Carbon sequestration in agricultural ecosystems (pp. 175–201). Springer.

    Chapter  Google Scholar 

  • Mall, R. K., Gupta, A., & Sonkar, G. (2017). Effect of climate change on gricultural crops. In S. Kumar, A. Pandey, & R. Singh (Eds.), Current developments in biotechnology and bioengineering: Crop modification, nutrition, and food production (pp. 23–46). Elsevier.

    Chapter  Google Scholar 

  • Mariaca, R. (2011). La milpa. Ecofronteras, 43, 22–26.

    Google Scholar 

  • McSherry, M. E., & Ritchie, M. E. (2013). Effects of grazing on grassland soil carbon: A global review. Global Change Biology, 19, 1347–1357.

    Article  PubMed  Google Scholar 

  • Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., Kapos, V., & Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33, 491–505.

    Article  Google Scholar 

  • Mislan, K. A. S., & Helmuth, B. (2008). Microclimate. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of ecology (pp. 2389–2393). Elsevier.

    Chapter  Google Scholar 

  • Montagnini, F., Somarriba, E., Murgueitio, E., et al. (2015). Sistemas Agroforestales. Funciones Productivas, Socioeconómicas y Ambientales. Cali: CIPAV.

    Google Scholar 

  • Montejo-Martínez, D., Díaz-Echeverría, V. F., Villanueva-López, G., Aryal, D. R., Casanova-Lugo, F., Canul-Solís, J. R., & Escobedo-Mex, J. G. (2020). Fine root density and vertical distribution of Leucaena leucocephala and grasses in silvopastoral systems under two harvest intervals. Agroforestry Systems, 1–13. https://doi.org/10.1007/s10457-019-00457-6.

  • Morales, R. D. E., Aryl, D. R., Pinto, R. R., Guevara, H. F., Casanova-Lugo, F., & Villanueva-López, G. (2020). Carbon contents and fine root production in tropical silvopastoral systems. Land Degradation & Development, 2020, 1–19. https://doi.org/10.1002/ldr.3761.

    Article  Google Scholar 

  • Moreno-Calles, A. I., Casas, A., Blancas, J., Torres, I., Masera, O., Caballero, J., García-Barrios, L., Pérez-Negrón, E., & Rangel-Landa, S. (2010). Agroforestry systems and biodiversity conservation in arid zones: The case of the Tehuacán Valley, Central México. Agroforestry Systems, 80, 315–331.

    Article  Google Scholar 

  • Murgueitio, E., Calle, Z., Uribe, F., Calle, A., & Solorio, B. (2011). Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. Forest Ecology and Management, 261, 1654–1663.

    Article  Google Scholar 

  • Murgueitio, E., Flores, M., Calle, Z., et al. (2015). Productividad en sistemas silvopastoriles intensivos en América Latina. In F. Montagnini, E. Somarriba, E. Murgueitio, et al. (Eds.), Sistemas agroforestales. Funciones productivas, socioeconómicas y ambientales (pp. 59–104). Cali: CIPAV.

    Google Scholar 

  • Nahed-Toral, J., Sanchez-Muñoz, B., Mena, Y., Ruiz-Rojas, J., Aguilar-Jimenez, R., Castel, J., De Asis-Ruiz, F., Orantes-Zebadua, M., Manzur-Cruz, A., Cruz-Lopez, J., & Delgadillo-Puga, C. (2013a). Feasibility of converting agrosilvopastoral systems of dairy cattle to the organic production model in southeastern Mexico. Journal of Cleaner Production, 43, 136–145.

    Article  Google Scholar 

  • Nahed-Toral, J., Valdivieso-Pérez, A., Aguilar-Jiménez, R., Cámara-Cordova, J., & Grande-Cano, D. (2013b). Silvopastoral systems with traditional management in southeastern Mexico: A prototype of livestock agroforestry for cleaner production. Journal of Cleaner Production, 57, 266–279.

    Article  Google Scholar 

  • Naiman, R. J., Décamps, H., McClain, M. E., & Likens, G. E. (2005). Biotic functions of Riparia. In R. J. Naiman, H. Décamps, M. E. McClain, & G. E. Likens (Eds.), Riparia (pp. 125–158). Elsevier.

    Chapter  Google Scholar 

  • Nascimento, W. M., Cantliffe, D. J., & Huber, D. J. (2000). Thermotolerance in lettuce seeds: Association with ethylene and endo-β-mannanase. Journal of the American Society for Horticultural Science, 125, 518–524. https://doi.org/10.21273/jashs.125.4.518.

    Article  CAS  Google Scholar 

  • Nigh, R., & Diemont, S. A. W. (2013). The Maya milpa: Fire and the legacy of living soil. Frontiers in Ecology and the Environment, 11(1). https://doi.org/10.1890/120344.

  • Ochoa-Gaona, S., González-Espinosa, M., Meave, J. A., & Sorani-Dal, V. (2004). Effect of forest fragmentation on the woody flora of the highlands of Chiapas, Mexico. Biodiversity and Conservation, 13, 867–884.

    Article  Google Scholar 

  • Oliver, M. J., Cushman, J. C., & Koster, K. L. (2010). Dehydration tolerance in plants. In R. Sunkar (Ed.), Plant stress tolerance (pp. 3–24). Humana Press.

    Chapter  Google Scholar 

  • Paciullo, D. S. C., Pires, M. F. A., Aroeira, L. J. M., Morenz, M. J. F., Maurício, R. M., Gomide, C. A. M., & Silveira, S. R. (2014). Sward characteristics and performance of dairy cows in organic grass–legume pastures shaded by tropical trees. Animal, 8, 1264–1271.

    Article  CAS  PubMed  Google Scholar 

  • Pang, K., Van Sambeek, J. W., Navarrete-Tindall, N. E., Chung-Ho, L., Jose, S., & Garrett, H. E. (2019). Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agroforestry Systems, 93, 11–24.

    Article  Google Scholar 

  • Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Schimel, D. S., Hall, D. O., Coughenour, M. B., García, E., Gilmanov, T. G., Kamnalrut, A., Kinyamario, J. I., Kirchner, T., Kittel, T. G. F., Menaut, J. C., Sala, O. E., Scholes, R. J., & van Veen, J. A. (1995). Impact of climate change on grassland production and soil carbon worldwide. Global Change Biology, 1, 13–22.

    Article  Google Scholar 

  • Pérez-Hernández, R., Cach-Pérez, M. J., Aparicio-Fabre, R., et al. (2020). Physiological and microclimatic effects of different agricultural management practices with maize. Botanical Sciences, 99, 1–34. https://doi.org/10.17129/botsci.2640.

    Article  Google Scholar 

  • Pino, M., Terry, E., Leon, A., et al. (2000). Respuestas de las plantas de tomate a la modificación de algunas variables del microclima en un sistema protegido con sombra natural. Cultivos Tropicales, 21, 33–36.

    Google Scholar 

  • Portela Lima, I. L., Scariot, A., & Giroldo, A. B. (2017). Impacts of the implementation of silvopastoral systems on biodiversity of native plants in a traditional community in the Brazilian Savanna. Agroforestry Systems, 91, 1069–1078.

    Article  Google Scholar 

  • Poulton, P., Johnston, J., MacDonald, A., White, R., & Powlson, D. (2018). Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Global Change Biology, 24, 2563–2584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulido, M., Penning, L. H., Timm, L. C., Gabriels, D., & Cornelis, W. M. (2017). Visual examination of changes in soil structural quality due to land use. Soil and Tillage Research, 173, 83–91.

    Article  Google Scholar 

  • Qaderi, M. M., & Reid, M. (2009). Crop responses to elevated carbon dioxide and temperature. In S. N. Singh (Ed.), Climate change and crops (pp. 1–18). Berlin: Springer.

    Google Scholar 

  • Reddy, V. R., & Syme, G. J. (2014). Integrated assessment of scale impacts of watershed intervention. Amsterdam: Elsevier.

    Google Scholar 

  • Restrepo-Diaz, H., Melgar, J. C., & Lombardini, L. (2010). Ecophysiology of horticultural crops: An overview. The Agronomia Colombiana, 28, 71–79.

    Google Scholar 

  • Rivera-Huerta, A., Güereca, L. P., & Rubio, L. M. S. (2016). Environmental impact of beef production in Mexico through life cycle assessment. Resources, Conservation and Recycling, 109, 44–53.

    Article  Google Scholar 

  • Rodríguez, A., González, P., Flores, J., et al. (2016). Milpas de las comunidades mayas y dinámica de uso del suelo en la Península de Yucatán. Mérida.

    Google Scholar 

  • Rosenzweig, S. T., Carson, M. A., Baer, S. G., & Blair, J. M. (2016). Changes in soil properties, microbial biomass, and fluxes of C and N in soil following post-agricultural grassland restoration. Applied Soil Ecology, 100, 186–194.

    Article  Google Scholar 

  • Rusch, G. M., Zapata, P. C., Casanoves, F., Casals, P., Ibrahim, M., & DeClerck, F. (2014). Determinants of grassland primary production in seasonally-dry silvopastoral systems in Central America. Agroforestry Systems, 88, 517–526.

    Article  Google Scholar 

  • Schroth, G., Laderach, P., Dempewolf, J., Philpott, S., Haggar, J., Eakin, H., Castillejos, T., Garcia Moreno, J., Soto Pinto, L., Hernandez, R., Eitzinger, A., & Ramirez-Villegas, J. (2009). Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change, 14(7), 605–625.

    Article  Google Scholar 

  • Siebert, S., Webber, H., & Rezaei, E. (2017). Weather impacts on crop yields - searching for simple answers to a complex problem. Environmental Research Letters, 12, 1–3. https://doi.org/10.1088/1748-9326/aa7f15.

    Article  Google Scholar 

  • Smith, P., House JI, Bustamante, M., Sobocka, J., Harper, R., Pan, G., West, P. C., Clark, J. M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M. F., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bondeau, A., Jain, A. K., Meersmans, J., & Pugh, T. A. M. (2016). Global change pressures on soils from land use and management. Global Change Biology, 22, 1008–1028.

    Article  PubMed  Google Scholar 

  • Soto, P. L., Jiménez, F. G., & Lerner, M. T. (2008). Diseño de sistemas agroforestales para la producción y la conservación. San Cristobal De Las Casas Chiapas: Consejo Nacional de Ciencia y Tecnologia.

    Google Scholar 

  • Sunkar, R. (2010). Plant stress tolerance. New York: Humana Press.

    Book  Google Scholar 

  • Tardy, V., Spor, A., Mathieu, O., Leveque, J., Terrat, S., Plassart, P., Regnier, T., Bardgett, R. D., van der Putten, W. H., Roggero, P. P., Seddaiu, G., Bagella, S., Lemanceau, P., Ranjard, L., & Maron, P. A. (2015). Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biology and Biochemistry, 90, 204–213.

    Article  CAS  Google Scholar 

  • Timsina, J., & Humphreys, E. (2006). Applications of CERES-Rice and CERES-wheat in research, policy and climate change studies in Asia: A review. International Journal of Agricultural Research, 1, 202–225. https://doi.org/10.3923/ijar.2006.202.225.

    Article  Google Scholar 

  • Valladares, F., & Niinemets, Ü. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237–257.

    Article  Google Scholar 

  • Vasey, D. E. (2002). An ecological history of agriculture. Purdue University Press.

    Google Scholar 

  • Vashisht, B. B., Mulla, D. J., Jalota, S. K., et al. (2013). Productivity of rainfed wheat as affected by climate change scenario in northeastern Punjab, India. Regional Environmental Change, 13, 989–998. https://doi.org/10.1007/s10113-013-0412-z.

    Article  Google Scholar 

  • Villanueva-López, G., Martínez-Zurimendi, P., Casanova-Lugo, F., Ramírez-Avilés, L., & Montañez-Escalante, P. I. (2015). Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico. Agroforestry Systems, 89, 1083–1096.

    Article  Google Scholar 

  • Villanueva-López, G., Lara-Pérez, L. A., Oros-Ortega, I., Ramírez-Barajas, P. J., Casanova-Lugo, F., Ramos-Reyes, R., & Aryal, D. R. (2019). Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agriculture, Ecosystems and Environment, 286, 106658.

    Article  Google Scholar 

  • Wagner-Riddle, C., Congreves, K. A., Abalos, D., et al. (2017). Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nature Geoscience, 10, 279–286.

    Article  CAS  Google Scholar 

  • Wang, X., Deng, X., Pu, T., et al. (2017). Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 204, 12–22. https://doi.org/10.1016/j.fcr.2016.12.020.

    Article  Google Scholar 

  • Weerarathne, L. V. Y., Marambe, B., & Chauhan, B. S. (2017). Intercropping as an effective component of integrated weed management in tropical root and tuber crops: A review. Crop Protection, 95, 89–100. https://doi.org/10.1016/j.cropro.2016.08.010.

    Article  Google Scholar 

  • Wiesmeier, M., Urbanski, L., Hobley, E., et al. (2019). Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales. Geoderma, 333, 149–162.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Jesús Cach-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cach-Pérez, M.J., Villanueva López, G., Alayón Gamboa, J.A., Nahed Toral, J., Casanova Lugo, F. (2022). Microclimate Management: From Traditional Agriculture to Livestock Systems in Tropical Environments. In: Galanakis, C.M. (eds) Environment and Climate-smart Food Production . Springer, Cham. https://doi.org/10.1007/978-3-030-71571-7_1

Download citation

Publish with us

Policies and ethics