Skip to main content

Advertisement

Log in

Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Carbon sequestration in livestock systems through silvopastoral practices can help reduce the net greenhouse gas emissions. In this study, we evaluated the above and belowground carbon storage potential of a silvopastoral system and compared to a conventional open pasture system in two sites of Chiapas, Mexico. We established a total of 20 carbon monitoring plots, 10 plots for each system. All the trees of ≥ 2.5 cm DBH were measured within the plots of 1000 m2. Allometric equations were used to calculate biomass carbon stocks. Grass biomass, ground litter, and soil samples were collected from four random locations within the plot. We also calculated tree diversity and other ecological indices of the silvopastoral systems. The aboveground biomass carbon stocks in dispersed tree silvopastoral systems varied between 11.53 ± 1.80 to 14.63 ± 5.50 Mg C ha−1. Soil organic carbon concentrations were higher in silvopastoral systems while soil bulk density was higher in open pasture systems, both affecting the soil organic carbon storage. A total of 29 tree species were registered in the dispersed tree silvopastoral systems. The Sorenson’s similarity index showed that the two study sites significantly differed in terms of their tree community compositions. Such differences were also observed in soil properties and carbon storage. We showed that there was a positive correlation between aboveground biomass and soil organic carbon concentrations. Further research is required to better understand the contributions of fine root and litter turnover on soil organic carbon storage in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdalla M, Hastings A, Chadwick DR et al (2018) Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric Ecosyst Environ 253:62–81. https://doi.org/10.1016/j.agee.2017.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkama R, Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604. https://doi.org/10.1126/science.aac8083

    Article  CAS  PubMed  Google Scholar 

  • Alkemade R, Reid RS, van den Berg M et al (2013) Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proc Natl Acad Sci 110:20900–20905

    Article  CAS  PubMed  Google Scholar 

  • Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308:11–22

    Article  CAS  Google Scholar 

  • Aryal DR, De Jong BH, Ochoa-Gaona S et al (2014) Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric Ecosyst Environ 195:220–230

    Article  Google Scholar 

  • Aryal DR, De Jong BHJ, Mendoza-Vega J et al (2017a) Soil organic carbon stocks and soil respiration in tropical secondary forests in southern Mexico. In: Field DJ, Morgan C, McBratney A (eds) Global soil security. Springer, New York, pp 153–165

    Chapter  Google Scholar 

  • Aryal DR, Pinto-Ruiz R, Gómez-Castro H, et al (2017b) Pérdida de carbono orgánico de suelo por la conversión de vegetación natural a pastizales, Mexico. In: Estado actual del conocimiento del ciclo de carbono y sus interacciones en México: Síntesis a 2017. Programa Mexicano del Carbono en colaboración con el Centro de Investigación Científica y de Educación Superior de Ensenada y la Universidad Autónoma de Baja California, Texcoco, Mexico, pp 438–443

  • Aryal DR, Gómez-Castro H, Del Carmen-García N et al (2018) Carbon storage potential in forest areas within a livestock system of Villaflores, Chiapas, Mexico. Rev Mex Cienc For 9:150–180

    Google Scholar 

  • Avila M (1992) Agroforestry systems—concepts and classification. Technical paper 3. In: The AFNETA alley farming training manual—volume 2: source book for alley farming research, 1st edn. International Institute of Tropical Agriculture, Ibadan, Nigeria

  • Báez-Vargas AM, Esparza-Olguín L, Martínez-Romero E et al (2017) Effect of management on tree diversity in secondary vegetation in the Biosphere Reserve of Calakmul, Campeche, Mexico. Rev Biol Trop 65:41–53

    Article  PubMed  Google Scholar 

  • Barlow J, Lennox GD, Ferreira J et al (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144–147

    Article  CAS  PubMed  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  PubMed  Google Scholar 

  • Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186:125–132

    Article  Google Scholar 

  • Calle Z, Murgueitio E, Chará J et al (2013) A strategy for scaling-up intensive silvopastoral systems in Colombia. J Sustain For 32:677–693

    Article  Google Scholar 

  • Cao J, Gong Y, Yeh E et al (2017) Impact of grassland contract policy on soil organic carbon losses from alpine grassland on the Qinghai-Tibetan Plateau. Soil Use Manag 33:663–671

    Article  Google Scholar 

  • Cárdenas A, Moliner A, Hontoria C, Ibrahim M (2018) Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agrofor Syst. https://doi.org/10.1007/s10457-018-0234-6

    Article  Google Scholar 

  • Cardinael R, Chevallier T, Barthès BG et al (2015) Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—a case study in a Mediterranean context. Geoderma 259:288–299

    Article  CAS  Google Scholar 

  • Cardinael R, Chevallier T, Cambou A et al (2017) Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agric Ecosyst Environ 236:243–255

    Article  Google Scholar 

  • Casals P, Romero J, Rusch GM, Ibrahim M (2014) Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures. Plant Soil 374:643–659. https://doi.org/10.1007/s11104-013-1884-9

    Article  CAS  Google Scholar 

  • Casanova-Lugo F, Ramírez-Avilés L, Parsons D et al (2016) Environmental services from tropical agroforestry systems. Rev Chapingo Ser Cienc For Ambiente 22:269–284

    Google Scholar 

  • Casanova-Lugo F, Petit-Aldana J, Solorio-Sánchez F et al (2018) Carbon stocks in biomass and soils of woody species fodder banks in the dry tropics of Mexico. Soil Use Manag. https://doi.org/10.1111/sum.12456

    Article  Google Scholar 

  • Cayuela L, Golicher DJ, Benayas J et al (2006) Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J Appl Ecol 43:1172–1181

    Article  Google Scholar 

  • Chacón-León M, Harvey CA (2013) Reservas de biomasa de árboles dispersos en potreros y mitigación al cambio climático. Agron Mesoam 24:17–26

    Article  Google Scholar 

  • Chao K-J, Chen Y-S, Song G-ZM et al (2017) Carbon concentration declines with decay class in tropical forest woody debris. For Ecol Manag 391:75–85

    Article  Google Scholar 

  • Cubillos AM, Vallejo VE, Arbeli Z et al (2016) Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. Eur J Soil Biol 72:42–50

    Article  CAS  Google Scholar 

  • Dagang ABK, Nair PKR (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agrofor Syst 59:149–155. https://doi.org/10.1023/A:1026394019808

    Article  Google Scholar 

  • De Jong B, Anaya C, Masera O et al (2010) Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For Ecol Manag 260:1689–1701

    Article  Google Scholar 

  • Dube F, Thevathasan NV, Zagal E et al (2011) Carbon sequestration potential of silvopastoral and other land use systems in the chilean patagonia. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Springer, Dordrecht, pp 101–127

    Chapter  Google Scholar 

  • Ehret M, Graß R, Wachendorf M (2015) The effect of shade and shade material on white clover/perennial ryegrass mixtures for temperate agroforestry systems. Agrofor Syst 89:557–570

    Article  Google Scholar 

  • Erb K-H, Kastner T, Luyssaert S et al (2013) Bias in the attribution of forest carbon sinks. Nat Clim Change 3:854

    Article  CAS  Google Scholar 

  • FAO (2017) FAOSTAT: food and agriculture data. In: Food Agric. Organ. UN. http://www.fao.org/faostat/en/#home. Accessed 8 Feb 2017

  • Franzluebbers A, Stuedemann J, Schomberg H, Wilkinson S (2000) Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biol Biochem 32:469–478

    Article  CAS  Google Scholar 

  • Gaitán L, Läderach P, Graefe S et al (2016) Climate-smart livestock systems: an assessment of carbon stocks and GHG emissions in nicaragua. PLoS ONE 11:1–12. https://doi.org/10.1371/journal.pone.0167949

    Article  CAS  Google Scholar 

  • García-Oliva F, Casar I, Morales P, Maass JM (1994) Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest. Oecologia 99:392–396

    Article  PubMed  Google Scholar 

  • Giardina F, Konings AG, Kennedy D et al (2018) Tall Amazonian forests are less sensitive to precipitation variability. Nat Geosci 25:1–7. https://doi.org/10.1038/s41561-018-0133-5

    Article  CAS  Google Scholar 

  • Grande D, de Leon F, Nahed J, Pérez-Gil F (2010) Importance and function of scattered trees in pastures in the Sierra Region of Tabasco, Mexico. Res J Biol Sci 5:75–87

    Article  Google Scholar 

  • Haile SG, Nair PK, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  PubMed  Google Scholar 

  • Havlík P, Valin H, Herrero M et al (2014) Climate change mitigation through livestock system transitions. Proc Natl Acad Sci 111:3709–3714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herrero M, Havlík P, Valin H et al (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci 110:20888–20893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoosbeek MR, Remme RP, Rusch GM (2018) Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor Syst 92:263–273. https://doi.org/10.1007/s10457-016-0049-2

    Article  Google Scholar 

  • Houghton R (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Clim Syst 4:597–603. https://doi.org/10.1016/j.cosust.2012.06.006

    Article  Google Scholar 

  • Howlett DS, Mosquera-Losada MR, Nair P et al (2011) Soil carbon storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40:825–832

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Chacón M, Cuartas C et al (2006) Almacenamiento de carbono en el suelo y la biomasa arbórea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforestería en las Americas 45:27–36

    Google Scholar 

  • Jones DA, O’Hara KL (2016) The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiol 36:1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Jose S, Bardhan S (2012) Agroforestry for biomass production and carbon sequestration: an overview. Agrofor Syst 86:105–111

    Article  Google Scholar 

  • Kolb M, Galicia L (2018) Scenarios and story lines: drivers of land use change in southern Mexico. Environ Dev Sustain 20:681–702

    Article  Google Scholar 

  • Laganiere J, Angers DA, Pare D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453

    Article  Google Scholar 

  • Lal R, Negassa W, Lorenz K (2015) Carbon sequestration in soil. Curr Opin Environ Sustain 15:79–86

    Article  Google Scholar 

  • Lawler JJ, Lewis DJ, Nelson E et al (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci 111:7492–7497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  CAS  Google Scholar 

  • Lee J, Hopmans JW, Rolston DE et al (2009) Determining soil carbon stock changes: simple bulk density corrections fail. Agric Ecosyst Environ 134:251–256

    Article  CAS  Google Scholar 

  • López-Santiago JG, Casanova-Lugo F, Villanueva-López G et al (2018) Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agrofor Syst. https://doi.org/10.1007/s10457-018-0259-x

    Article  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454

    Article  CAS  Google Scholar 

  • Martens DA, Reedy TE, Lewis DT (2003) Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Glob Change Biol 10:65–78. https://doi.org/10.1046/j.1529-8817.2003.00722.x

    Article  Google Scholar 

  • McGroddy ME, Lerner AM, Burbano DV et al (2015) Carbon stocks in silvopastoral systems: a study from four communities in southeastern Ecuador. Biotropica 47:407–415

    Article  Google Scholar 

  • Mokany K, Raison R, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois For Trop 316:3–16

    Article  Google Scholar 

  • Murgueitio E, Calle Z, Uribe F et al (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261:1654–1663

    Article  Google Scholar 

  • Murgueitio E, Barahona R, Chará J et al (2015) The intensive silvopastoral systems in Latin America sustainable alternative to face climatic change in animal husbandry. Rev Cuba Cienc Agríc 49:541–554

    Google Scholar 

  • Nahed-Toral J, Valdivieso-Pérez A, Aguilar-Jiménez R et al (2013) Silvopastoral systems with traditional management in southeastern Mexico: a prototype of livestock agroforestry for cleaner production. J Clean Prod 57:266–279

    Article  Google Scholar 

  • Nair PR (1985) Classification of agroforestry systems. Agrofor Syst 3:97–128

    Article  Google Scholar 

  • Nair PKR (2012) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:243–253. https://doi.org/10.1007/s10457-011-9434-z

    Article  Google Scholar 

  • Nair RPK, Mohan Kumar B, Nair Vimala D (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23. https://doi.org/10.1002/jpln.200800030

    Article  CAS  Google Scholar 

  • Navarrete D, Sitch S, Aragão LE, Pedroni L (2016) Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices. Glob Change Biol 22:3503–3517

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ 104:359–377

    Article  CAS  Google Scholar 

  • Opio C, Gerber PJ, Mottet A, et al (2013) Greenhouse gas emissions from ruminant supply chains—a global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome

  • Orihuela-Belmonte DE, De Jong BHJ, Mendoza-Vega J et al (2013) Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric Ecosyst Environ 171:72–84

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Perry ME, Schacht WH, Ruark GA, Brandle JR (2009) Tree canopy effect on grass and grass/legume mixtures in eastern Nebraska. Agrofor Syst 77:23–35

    Article  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro FM, Nair PR (2018) Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities. For Syst 27:1–16. https://doi.org/10.5424/fs/2018271-12267

    Article  Google Scholar 

  • Pompa-García M, Sigala-Rodríguez JA, Jurado E, Flores J (2017) Tissue carbon concentration of 175 Mexican forest species. IForest-Biogeosciences For 10:754–758

    Article  Google Scholar 

  • Ramírez-Marcial N, González-Espinosa M, Williams-Linera G (2001) Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. For Ecol Manag 154:311–326

    Article  Google Scholar 

  • Reis GL, Lana ÂMQ, Maurício RM et al (2010) Influence of trees on soil nutrient pools in a silvopastoral system in the Brazilian Savannah. Plant Soil 329:185–193

    Article  CAS  Google Scholar 

  • Roa-Fuentes LL, Martínez-Garza C, Etchevers J, Campo J (2015) Recovery of soil C and N in a tropical pasture: passive and active restoration. Land Degrad Dev 26:201–210

    Article  Google Scholar 

  • Rusch G, Zapata P, Casanoves F et al (2014) Determinants of grassland primary production in seasonally-dry silvopastoral systems in Central America. Agrofor Syst 88:517–526

    Article  Google Scholar 

  • Saldaña C, Alejandra R, López Aguilar R, et al (2015) Impacto ambiental y limitantes de la sustentabilidad de la actividad agrícola en la región Frailesca. In: Pasado, presente y futuro de las regiones en México y su estudio, 1st edn. Asociación Mexicana de Ciencias para el Desarrollo Regional, A. C., México

  • Schmidt MW, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • SIAP-SAGARPA (2016) Producción Ganadera. In: Serv. Inf. Agroaliment. Pesq. http://www.gob.mx/siap/acciones-y-programas/produccion-pecuaria

  • Soto-Pinto L, Anzueto M, Mendoza J et al (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51

    Article  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar TD, et al (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome

  • Throop H, Archer S, Monger HC, Waltman S (2012) When bulk density methods matter: implications for estimating soil organic carbon pools in rocky soils. J Arid Environ 77:66–71

    Article  Google Scholar 

  • Titeux N, Henle K, Mihoub J et al (2016) Biodiversity scenarios neglect future land-use changes. Glob Change Biol 22:2505–2515

    Article  Google Scholar 

  • Torralba M, Fagerholm N, Burgess PJ et al (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150–161

    Article  Google Scholar 

  • Torres-Rivera JA, Espinoza-Domínguez W, Reddiar-Krishnamurthy L, Vázquez-Alarcón A (2011) Secuestro de carbono en potreros arbolados, potreros sin árboles y bosque caducifolio de Huatusco, Veracruz. Trop Subtrop Agroecosystems 13:543–549

    Google Scholar 

  • Vargas R, Allen MF, Allen EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob Change Biol 14:109–124

    Google Scholar 

  • Velázquez A, Mas JF, Gallegos JRD et al (2002) Patrones y tasas de cambio de uso del suelo en México. Gac Ecológica 62:21–37

    Google Scholar 

  • Villanueva-López G, Martínez-Zurimendi P, Casanova-Lugo F et al (2015) Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico. Agrofor Syst 89:1083–1096

    Article  Google Scholar 

  • Villanueva-López G, Martínez-Zurimendi P, Ramírez-Avilés L et al (2016) Live fences reduce the diurnal and seasonal fluctuations of soil CO2 emissions in livestock systems. Agron Sustain Dev 36:1–8

    Article  CAS  Google Scholar 

  • Villanueva-Partida C, Casanova-Lugo F, Villanueva-López G et al (2016) Influence of the density of scattered trees in pastures on the structure and species composition of tree and grass cover in southern Tabasco, Mexico. Agric Ecosyst Environ 232:1–8

    Article  Google Scholar 

  • Villanueva-Partida CR, Casanova-Lugo F, González-Valdivia NA et al (2017) Traditional uses of dispersed trees in the pastures of the mountainous region of Tabasco, Mexico. Agrofor Syst. https://doi.org/10.1007/s10457-017-0125-2

    Article  Google Scholar 

  • Wedderburn M, Carter J (1999) Litter decomposition by four functional tree types for use in silvopastoral systems. Soil Biol Biochem 31:455–461

    Article  CAS  Google Scholar 

  • Wendt J, Hauser S (2013) An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. Eur J Soil Sci 64:58–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for financing the project 381–2015 “Estrategias de mitigación de impactos ambientales del sector agropecuario en Chiapas”. We thank René Pinto, Roldan Ruiz and Alejandro Orantes for their collaboration in field and laboratory works. We acknowledge the landowners of Villaflores and Suchiapa who allowed us to conduct this study on their ranches. The authors thank two anonymous reviewers for their valuable comments and suggestions which greatly improved the document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deb R. Aryal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, D.R., Gómez-González, R.R., Hernández-Nuriasmú, R. et al. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforest Syst 93, 213–227 (2019). https://doi.org/10.1007/s10457-018-0310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-018-0310-y

Keywords

Navigation