Skip to main content

Dehydration Tolerance in Plants

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 639))

Abstract

Dehydration tolerance in plants is an important but understudied component of the complex phenotype of drought tolerance. Most plants have little capacity to tolerate dehydration; most die at leaf water potentials between −5 and −10 MPa. Some of the non-vascular plants and a small percentage (0.2%) of vascular plants, however, can survive dehydration to −100 MPa and beyond, and it is from studying such plants that we are starting to understand the components of dehydration tolerance in plants. In this chapter we define what dehydration tolerance is and how it can be assessed, important prerequisites to understanding the response of a plant to water loss. The metabolic and mechanical consequences of cellular dehydration in plants prelude a discussion on the role that gene expression responses play in tolerance mechanisms. We finally discuss the key biochemical aspects of tolerance focusing on the roles of carbohydrates, late embryogenesis abundant and heat shock proteins, reactive oxygen scavenging (ROS) pathways, and novel transcription factors. It is clear that we are making significant advances in our understanding of dehydration tolerance and the added stimulus of new model systems will speed our abilities to impact the search for new strategies to improve drought tolerance in major crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Proctor, M.C.F. and Pence, V.C. (2002) Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In Desiccation and Survival in Plants: Drying Without Dying (Black, M. and Pritchard, H., eds.). CABI Publishing, Oxford, pp. 207–237.

    Chapter  Google Scholar 

  2. Oliver, M.J. (2008) Biochemical and molecular mechanisms of desiccation tolerance in bryophytes. In Bryophyte Biology, 2nd ed. (Shaw, J and Goffinet, B., eds.). Cambridge Press, New York, pp. 269–298.

    Google Scholar 

  3. Alpert, P. and Oliver, M.J. (2002) Drying without dying. In Desiccation and Survival in Plants: Drying Without Dying (Black, M. and Pritchard, H., eds.). CABI Publishing, Oxford, pp. 3–43.

    Chapter  Google Scholar 

  4. Oliver, M.J., Tuba, Z., and Mishler, B.D. (2000) Evolution of desiccation tolerance in land plants. Plant Ecol 151, 85–100.

    Article  Google Scholar 

  5. Cunningham, G.L. and Burk, J.H. (1973) The effect of carbonate deposition layers (“Caliche”) on the water status of Larrea divericata. Amer Midland Nat 90, 474–480.

    Article  Google Scholar 

  6. Porembski, S. and Barthlott, W. (2000) Genetic and gneisic outcrops (inselbergs) as centers for diversity of desiccation-tolerant vascular plants. Plant Ecol 151, 19–28.

    Article  Google Scholar 

  7. Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., and Zhu J.-K. (2006) Methods and concepts in quantifying resistance to drought, salt, and freezing, abiotic stresses that affect plant water status. Plant J 45, 523–539.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, L., Nguyen, H.T., and Blum, A. (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50, 292–302.

    Article  Google Scholar 

  9. Borrell, A.K., Hammer, G.L., and Henzell, R.G. (2000) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40, 1037–1039.

    Article  Google Scholar 

  10. Nobel, P.S. (1983) Biophysical Plant Physiology and Ecology. W.H. Freeman and Company, San Francisco, USA.

    Google Scholar 

  11. Farrant, J.M. (2002) Mechanisms of desiccation tolerance in angiosperm resurrection plants. In Plant Desiccation Tolerance (Jenks, M.A. and Wood, A.J., eds.). Blackwell Publishing, Iowa, USA, pp. 51–90.

    Google Scholar 

  12. Pammenter, N.W. and Berjak, P. (2000) Aspects of recalcitrant seed physiology. R Bras Fisiol Veg 12 (Edição Especial), 56–69.

    Google Scholar 

  13. Walters, C. and Koster, K.L. (2007) Structural dynamics and desiccation damage in plant reproductive organs. In Plant Desiccation Tolerance (Jenks, M.A. and Wood, A.J., eds.). Blackwell Publishing, Iowa, USA, pp. 251–280.

    Chapter  Google Scholar 

  14. Balsamo, R.A., Vander Willigen, C., Boyko, W., and Farrant, J. (2005) Retention of mobile water during dehydration in the desiccation tolerant grass Eragrostis nindensis. Physiol Plant 124, 336–342.

    Article  CAS  Google Scholar 

  15. Leubner-Metzger, G. (2005) β-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J 41, 133–145.

    Article  PubMed  CAS  Google Scholar 

  16. Kermode, A. and Finch-Savage, W.E. (2002) Desiccation sensitivity in orthodox and recalcitrant seeds in relation to development. In Desiccation and Survival in Plants: Drying Without Dying (Black, M. and Pritchard, H., eds.). CABI Publishing, Oxford, pp. 149–184.

    Chapter  Google Scholar 

  17. Pammenter, N.W. and Berjak, P. (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9, 13–37.

    Google Scholar 

  18. Berjak, P., Farrant, J.M., and Pammenter, N.W. (2007) Seed desiccation tolerance mechanisms. In Plant Desiccation Tolerance (Jenks, M.A. and Wood, A.J., eds.). Blackwell Publishing, Iowa, USA, pp. 151–192.

    Google Scholar 

  19. Farrant, J.M., Cooper, K., Kruger, L.A., and Sherwin, H.W. (1999) The effect of drying rate on the survival of three desiccation-tolerant angiosperm species. Ann Bot 84, 371–379.

    Article  Google Scholar 

  20. Pammenter, N.W., Berjak, P., Wesley-Smith, J., and Vander Willigen, C. (2002) Experimental aspects of drying and recovery. In Desiccation and Survival in Plants: Drying Without Dying (Black, M. and Pritchard, H., eds.). CABI Publishing, Oxford, pp. 93–110.

    Chapter  Google Scholar 

  21. Leprince, O., Deltour, R., Thorpe, P.C., Atherton, N.M., and Hendry, G.A.F. (1990) The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.). New Phytol 116, 573–580.

    Article  CAS  Google Scholar 

  22. Leprince, O., Harren, F.J.M., Buitink, J., Alberda, M., and Hoekstra, F.A. (2000) Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles. Plant Physiol 122, 597–608.

    Article  PubMed  CAS  Google Scholar 

  23. Vertucci, C.W. and Farrant, J.M. (1995) Acquisition and loss of desiccation-tolerance. In Seed development and germination (Kigel, J. and Galili, G., eds.). Marcel Dekker Inc., New York, pp. 237–271.

    Google Scholar 

  24. Walters, C., Pammenter, N.W., Berjak, P., and Crane, J. (2001) Desiccation damage, accelerated aging, and respiration in desiccation tolerant and sensitive seeds. Seed Sci Res 11, 135–148.

    Google Scholar 

  25. Walters, C., Farrant, J.M., Pammenter, N.W., and Berjak, P. (2002) Desiccation stress and damage. In Desiccation and Survival in Plants: Drying Without Dying (Black, M. and Pritchard, H., eds.). CABI Publishing, Oxford, pp. 263–291.

    Chapter  Google Scholar 

  26. Kranner, I. and Birtic, S. (2005). A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45, 734–740.

    Article  PubMed  CAS  Google Scholar 

  27. Smirnoff, N. (1998) Plant resistance to environmental stress. Curr Opin Plant Biol 9, 214–219.

    CAS  Google Scholar 

  28. Apel, K., Hurt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373–399.

    Article  PubMed  CAS  Google Scholar 

  29. Iljin, W.S. (1957) Drought resistance in plants and physiological processes. Annu Rev Plant Physiol 8, 257–274.

    Article  CAS  Google Scholar 

  30. Meryman, H.T. (1974) Freezing injury and its prevention in living cells. Annu Rev Biophys Bioeng 3, 341–363.

    Article  PubMed  CAS  Google Scholar 

  31. Steponkus, P.L. (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35, 543–584.

    Article  CAS  Google Scholar 

  32. Steponkus, P.L. and Webb, M.S. (1992) Freeze-induced dehydration and membrane destabilization in plants. In Water and Life: Comparative Analysis of Water Relationships at the Organismic, Cellular and Molecular Level (Somero, G.N., et al., eds.). Springer Verlag, Berlin, Germany, pp. 338–362.

    Google Scholar 

  33. Gordon-Kamm, W.J. and Steponkus, P.L. (1984a) The behavior of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury. Protoplasma 123, 83–94.

    Article  Google Scholar 

  34. Wolfe, J. and Steponkus, P.L. (1983) Mechanical properties of the plasma membrane of isolated protoplasts-mechanism of hyperosmotic and extracellular freezing injury. Plant Physiol 71, 276–285.

    Article  PubMed  CAS  Google Scholar 

  35. Rand, R.P. and Parsegian, V.A. (1989) Hydration forces between phospholipid bilayers. Biochim Biophys Acta 988, 351–376.

    CAS  Google Scholar 

  36. Bryant, G. and Wolfe, J. (1992) Interfacial forces in cryobiology and anhydrobiology. Cryo-Lett 13, 23–36.

    Google Scholar 

  37. Bryant, G., Koster, K.L., and Wolfe, J. (2001) Membrane behaviour in seeds and other systems at low water content: the various effects of solutes. Seed Sci Res 11, 17–25.

    Article  CAS  Google Scholar 

  38. Wolfe, J. (1987) Lateral stresses in membranes at low water potential. Aust J Plant Physiol 14, 311–318.

    Article  Google Scholar 

  39. Wolfe, J. and Bryant, G. (1999) Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiol 39, 103–129.

    Article  CAS  Google Scholar 

  40. Koster, K.L. and Bryant, G. (2006) Dehydration in model membranes and protoplasts: contrasting effects at low, intermediate and high hydrations. In Cold Hardiness in Plants (Chen, T.H.H., et al., eds.). CABI, Wallingford, UK, pp. 219–234.

    Google Scholar 

  41. Ingram, J. and Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47, 377–403.

    Article  PubMed  CAS  Google Scholar 

  42. Shinozaki, K. and Yamaguchi-Shinozaki, K. (1999) Gene expression and signal transduction in water-stress response. Plant Physiol 115, 327–334.

    Article  Google Scholar 

  43. Rizhsky, L., Liang, H., Shuman,J., Shulaev, V., Davletova, S., and Mittler, R. (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134, 1683–1696.

    Article  PubMed  CAS  Google Scholar 

  44. Zhu, J.K. (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247–273.

    Article  PubMed  CAS  Google Scholar 

  45. Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., Frie dit Frey, N., and Leung, J. (2008) An update on abscisic acid signaling in plants and more… Mol Plant 1, 198–217.

    Article  PubMed  CAS  Google Scholar 

  46. Sunkar, R., and Zhu, J.-K. (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001–2019.

    Article  PubMed  CAS  Google Scholar 

  47. Sunkar, R., Chinnusamy, V., Zhu, J., and Zhu, J.-K. (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12, 301–309.

    Article  PubMed  CAS  Google Scholar 

  48. Phillips, J.R., Dalmay, T., and Bartels, D. (2007) The role of small RNAs in abiotic stress. FEBS Letters 581, 3592–3597.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K., and Jin, Y. (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Comm 354, 585–590.

    Article  PubMed  CAS  Google Scholar 

  50. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses using a full-length cDNA microarray. Plant Cell 13, 61–72.

    Article  PubMed  CAS  Google Scholar 

  51. Sunkar, R. and Bartels, D. (2002) Drought-and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25, 141–151.

    Article  Google Scholar 

  52. Bartels, D. and Sunkar, R. (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24, 23–58.

    Article  CAS  Google Scholar 

  53. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotech 17, 113–122.

    Article  PubMed  CAS  Google Scholar 

  54. Valliyodan, B., and Nguyen, H. T. (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9, 189–195.

    Article  PubMed  CAS  Google Scholar 

  55. Vinocur, B., and Altman, A. (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16, 123–132.

    Article  PubMed  CAS  Google Scholar 

  56. Parry, M.A.J., Flexas, J., and Medrano, H. (2005) Prospects for crop production under drought: research priorities and future directions. Ann Appl Biol 147, 211–226.

    Article  Google Scholar 

  57. Yu, H., Chen, X., Hong, Y.-Y., Wang, Y., Xu, P., Ke, S.-D., Liu, H.-Y., Zhu, J.-K., Olive, D.J., and Xiang, C.-B. (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20, 1134–1151.

    Article  PubMed  CAS  Google Scholar 

  58. Castiglioni, P., Warner, D., Bensen, R.J., Anstrom, D.C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., D'Ordine, R., Navarro., S., Back, S., Fernandes, M., Targolli, J., Dasgupta, S., Bonin, C., Leuthy, M.H., and Heard, J.E. (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147, 446–455.

    Article  PubMed  CAS  Google Scholar 

  59. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H.D., and Wu, R. (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110, 249–257.

    PubMed  CAS  Google Scholar 

  60. Bahieldina, A., Mahfouza, H.T., Eissaa, H.F., Salehc, O.M., Ramadana, A.M., Ahmedd, I.A., Dyere, W.E., El-Itribya, H.A., and Madkour, M.A. (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123, 421–427.

    Article  CAS  Google Scholar 

  61. Nelson, D.E., Repetti, P.P., Adams, T.R., Creelman, R.A., Wu, J., Warner, D.C., Anstrom, D.C., Bensen, R.J., Castiglioni, P.P., Donnarummo, M.G., Hinchey, B.S., Kumimoto, W.R., Maszle, D.R., Canales, R.D., Krolikowski, K.A., Dotson, S.B., Gutterson, N., Ratcliffe, O.J., and Heard, J.E. (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104, 16450–16455.

    Article  PubMed  CAS  Google Scholar 

  62. Bartels, D., Phillips, J., and Chandler, J. (2007) Desiccation tolerance: gene expression, pathways, and regulation of gene expression. In Plant Desiccation Tolerance (Jenks, M.A. and Wood, A.J., eds.). Blackwell Publishing, Iowa, USA, pp. 115–148.

    Chapter  Google Scholar 

  63. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J 31, 279–292.

    Article  PubMed  CAS  Google Scholar 

  64. Maurel, C., Verdoucq, L., Luu, D.-T., and Santoni, V. (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59, 595–624.

    Article  PubMed  CAS  Google Scholar 

  65. Close, T.J. (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97, 795–803.

    Article  CAS  Google Scholar 

  66. Hundertmark, M. and Hincha, D.K. (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9, 118.

    Article  PubMed  CAS  Google Scholar 

  67. Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., and Covarrubias, A.A. (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148, 6–24.

    Article  PubMed  CAS  Google Scholar 

  68. Wang, X.Q., Yang, P.F., Liu, Z., Liu, W.Z., Hu, Y., Chen, H., Kuang, T.Y., Pei, Z.M. Shen, S.H., and He, Y.K. (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol February 11, 2009; 10.1104/pp.108.131714.

    Google Scholar 

  69. Zeevaart, J.A.D. (1999) Abscisic acid metabolism and its regulation. In Biochemistry and Molecular Biology of Plant Hormones (Hooykaas, P.J.J., et al., eds.). Elsevier Science, Amsterdam, the Netherlands, pp. 189–207.

    Chapter  Google Scholar 

  70. Xiong, L. and Zhu, J.-K. (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133, 29–36.

    Article  PubMed  CAS  Google Scholar 

  71. Seo, M. and Koshiba, T. (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7, 41–48.

    Article  PubMed  CAS  Google Scholar 

  72. Finkelstein, R.R., Gampala, S.S.L., and Rock, C.D. (2002) ABA signaling in seeds and seedlings. Plant Cell 13, S15–S45.

    Google Scholar 

  73. Qin, X.Q. and Zeevaart, J.A.D. (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128, 544–551.

    Article  PubMed  CAS  Google Scholar 

  74. Iuchi, S., Kobayashi, M., Tajo, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27, 325–333.

    Article  PubMed  CAS  Google Scholar 

  75. Bray, E.A. (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Ann Bot 89, 803–811.

    Article  PubMed  CAS  Google Scholar 

  76. Wood, A.J., Duff, R.J., and Oliver, M.J. (1999) Expressed sequence Tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol 40, 361–368.

    PubMed  CAS  Google Scholar 

  77. Oliver, M.J., Dowd, S.E., Zaragoza, J. Mauget, S., and Payton, P.R. (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5, 1–49.

    Article  Google Scholar 

  78. Reynolds, T.L. and Bewley, J.D. (1993) Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum. Comparison of the effects of drying, rehydration and abscisic acid. J Expt Bot 44, 921–928.

    Article  CAS  Google Scholar 

  79. Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D., and Salamini, F. (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181, 27–34.

    Article  CAS  Google Scholar 

  80. Frank, W., Phillips, J., Salamini, F., and Bartels, D. (1998) Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain–leucine zipper proteins. Plant J 15, 413–421.

    Article  PubMed  CAS  Google Scholar 

  81. Phillips, J.R., Hilbricht, T., Salamini, F., and Bartels, D. (2002) A novel abscisic acid-and dehydration-responsive gene family from the resurrection plant Craterostigma plantagineum encodes a plastid-targeted protein with DNA-binding activity. Planta 215, 258–266.

    Article  PubMed  CAS  Google Scholar 

  82. Neale, A.D., Blomstedt, C.K., Bronson, P., Le, T.-N., Guthridge, K., Evans, J., Gaff, D.F., and Hamill, J.D. (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant Cell Environ 23, 265–277.

    Article  CAS  Google Scholar 

  83. O’Mahony, P. and Oliver, M.J. (1999) Characterization of a desiccation-responsive small GTP-binding protein (Rab2) from the desiccation-tolerant grass Sporobolus stapfianus. Plant Mol Biol 39, 809–821.

    Article  PubMed  Google Scholar 

  84. Collett, H., Shen, A., Gardner, M., Farrant, J.M., Denby, K.J., and Illing, N.A. (2004) Towards transcript profiling of desiccation tolerance in Xerophyta humilis: construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration. Physiol Plant 122, 39–53.

    Article  CAS  Google Scholar 

  85. Illing, N., Denby, K., Collett, H., Shen, A., and Farrant, J.M. (2005) The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45, 771–787.

    Article  PubMed  CAS  Google Scholar 

  86. Oliver, M.J. (1991) Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiol 97, 1501–1511.

    Article  PubMed  CAS  Google Scholar 

  87. Kuang, J., Gaff, D.F., Gianello, R.D., Blomstedt, C.K., Neale, A.D., and Hamill, J.D. (1995) Changes in vivo protein complements in drying leaves of the desiccation-tolerant grass Sporobolus stapfianus and the desiccation-sensitive grass Sporobolus pyramidalis. Aust J Plant Physiol 22, 1027–1034.

    Article  Google Scholar 

  88. Jiang, G., Wang, Z., Shang, H., Yang, W., Hu, Z., Phillips, J., Deng, X. (2007) Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta 225, 1405–1420.

    Article  PubMed  CAS  Google Scholar 

  89. Piatkowski, D., Schneider, K., Salamini, F., and Bartels, D., (1990) Characterization of five abscisic acid-responsive cDNA clones from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol 94, 1682–1688.

    Article  PubMed  CAS  Google Scholar 

  90. Proctor, M.C.F., Oliver, M.J., Wood, A.J., Alpert, P., Stark, L.R., Cleavitt, N., and Mishler, B.D. (2007) Desiccation tolerance in bryophytes: a review. The Bryologist 110, 595–621.

    Article  CAS  Google Scholar 

  91. Werner, O., Espin, R.M.R., Bopp, M., and Atzorn, R. (1991) Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186, 99–103.

    Article  CAS  Google Scholar 

  92. Cuming, A.C., Cho, S.H., Kamisugi, Y., Graham, H., and Quatrano, R.S. (2007). Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176, 275–287.

    Article  PubMed  CAS  Google Scholar 

  93. Bewley, J.D., Reynolds, T.L., and Oliver, M.J. (1993) Evolving strategies in the adaptation to desiccation. In Plant Responses to Cellular Dehydration During Environmental Stress. Current Topics in Plant Physiology: American Society of Plant Physiologists Series Vol. 10 (Close, T.J., and Bray, E.A. eds.). ASPB Publishers, Rockville, MD, pp. 193–201.

    Google Scholar 

  94. Hilbricht, T., Varotto, S., Sgaramella, V., Bartels, D., Salamini, F., and Furini, A. (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phyto 179, 877–887.

    Article  CAS  Google Scholar 

  95. Schwab, K.B. and Heber, U. (1984) Thylakoid membrane stability in drought-tolerant and drought-sensitive plants. Planta 161, 37–45.

    Article  CAS  Google Scholar 

  96. Kaiser, K., Gaff, D.F. and Outlaw, Jr., W.H. (1985) Sugar contents of leaves of desiccation-sensitive and desiccation-tolerant plants. Naturwissenschaften 72, 608–609.

    Article  Google Scholar 

  97. Koster, K.L. and Leopold, A.C. (1988) Sugars and desiccation tolerance in seeds. Plant Physiol 88, 829–832.

    Article  PubMed  CAS  Google Scholar 

  98. Hoekstra, F.A. and van Roekel, T. (1988) Desiccation tolerance of Papaver dubium L. pollen during its development in the anther: possible role of phospholipid composition and sucrose content. Plant Physiol 88, 626–632.

    Article  PubMed  CAS  Google Scholar 

  99. Bianchi, G., Gamba A., Murelli C., Salamini F., and Bartels, D. (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1, 355–359.

    Article  Google Scholar 

  100. Whittaker, A., Bochicchio, A., Vazzana, C., Lindsey, G., and Farrant, J. (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 52, 961–969.

    Article  PubMed  CAS  Google Scholar 

  101. Bewley, J.D., Halmer, P., Krochko, J.E., and Winner W.E. (1978) Metabolism of a drought-tolerant and a drought-sensitive moss: respiration, ATP synthesis and carbohydrate status. In Dry biological systems (Crowe, J.H. and Clegg, J.S., eds.). Academic Press, New York, pp. 185–203.

    Google Scholar 

  102. Wiemken, A. (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58, 209–217.

    Article  PubMed  CAS  Google Scholar 

  103. Clegg, J.S. (1986) The physical properties and metabolic status of Artemia cysts at low water contents: the water replacement hypothesis. In Membranes, Metabolism and Dry Organisms. (Leopold, A.C., ed.). Cornell University Press, Ithaca, NY, pp. 169–187.

    Google Scholar 

  104. Adams, R.P., Kendall, E., and Kartha, K.K. (1990) Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem Syst Ecol 18, 107–110.

    Article  CAS  Google Scholar 

  105. Iturriaga, G., Gaff, D.F., and Zentella, R. (2000) New desiccation-tolerant plants, including a grass, in the central highlands of Mexico, accumulate trehalose. Aust J Bot 48, 153–158.

    Article  Google Scholar 

  106. Lui, M.-S., Chien, C.-T, and Lin T.-P. (2008) Constitutive components and induced gene expression are involved in the desiccation tolerance of Selaginella tamariscina. Plant Cell Physiol 49, 653–663.

    Article  CAS  Google Scholar 

  107. Figueroa-Soto, C.G., Iturriaga, G., and Valenzuela-Soto, E.M. (2004) Actividad de trehalosa 6-fosfato sintasa en respuesta a hidratación y desecación en plantas de Selaginella lepidophylla. Rev Fitotéc Mex 27, 17–22.

    Google Scholar 

  108. Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F., and Bartels, D. (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87, 223–226.

    Article  CAS  Google Scholar 

  109. Drennan, P.M., Smith, M.T., Goldsworthy, D., and van Staden, J. (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142, 493–496.

    CAS  Google Scholar 

  110. Albini, F.M., Murelli, C., Patritti, G., Rovati, M., Zienna, P., Finzi, P.V. (1994) Low-molecular weight substances from the resurrection plant Sporobolus stapfianus. Phytochem 37, 137–142.

    Article  CAS  Google Scholar 

  111. Holmström, K.O., Mantyla, E., Welin, B., Mandal, A., and Palva, E.T. (1996) Drought tolerance in tobacco. Nature 379 (6567), 683–684.

    Article  Google Scholar 

  112. Jang, I.-C., Oh, S.-J., Seo, J.-S., Choi, W.-B, Song, S.I., Kim, C.H. Kim,Y.S., Seo, H.-S., Choi, Y.D., Nahm, B.H., and Kim, J.K. (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131, 516–524.

    Article  PubMed  CAS  Google Scholar 

  113. Smirnoff, N. (1993) Role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125, 27–58.

    Article  CAS  Google Scholar 

  114. Van den Ende, W. and Valluru, R. (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60, 9–18.

    Article  PubMed  CAS  Google Scholar 

  115. Koster, K.L., Lei, Y.P., Anderson, M., Martin, S., and Bryant, G. (2000) Effects of vitrified and non-vitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophys J 78, 1932–1946.

    Article  PubMed  CAS  Google Scholar 

  116. Lenné, T., Bryant, G., Holcomb, R., and Koster, K.L. (2007) How much solute is needed to inhibit the fluid-gel membrane phase transition at low hydration? Biochim Biophys Acta 1768, 1019–1022.

    Article  PubMed  CAS  Google Scholar 

  117. Crowe, J.H., Crowe, L.M., and Chapman, D. (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701–703.

    Article  PubMed  CAS  Google Scholar 

  118. Crowe, J.H. (2007) Trehalose as a “chemical chaperone”: fact and fantasy. In Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks (Csermely, P. and Vigh, L., eds.), Springer, New York, pp 143–158.

    Chapter  Google Scholar 

  119. Koster, K.L. (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96, 302–304.

    Article  PubMed  CAS  Google Scholar 

  120. Koster, K.L., Webb, M.S., Bryant, G., and Lynch, D.V. (1994) Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochim Biophys Acta 1193, 143–150.

    Article  PubMed  CAS  Google Scholar 

  121. Sun, W., Irving, T.C., and Leopold, A.C. (1994) The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiol Plant 90, 621–628.

    Article  CAS  Google Scholar 

  122. Buitink, J. and Leprince, O. (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiol 48, 215–228.

    Article  CAS  Google Scholar 

  123. Walters, C., Hill, L.M., and Wheeler, L.J. (2005) Dying while dry: kinetics and mechanisms of deterioration in desiccated organisms. Integr Comp Biol 45, 751–758.

    Article  PubMed  Google Scholar 

  124. Bartels, D., Singh M., and Salamini F. (1988) Onset of desiccation-tolerance during development of the barley embryo. Planta 175, 485–492.

    Article  CAS  Google Scholar 

  125. Tunnacliffe, A. and Wise, M.J. (2007) The continuing conundrum of the LEA proteins. Naturwiss 94, 791–812.

    Article  PubMed  CAS  Google Scholar 

  126. Wise, M.J., and Tunnacliffe. A (2004) POPP the question: What do LEA proteins do? Trends Plant Sci 9, 13–17.

    Article  PubMed  CAS  Google Scholar 

  127. Goyal, K., Walton, L.J., and Tunnacliffe, A. (2005) LEA proteins prevent protein aggregation due to water stress. Biochem. J 388, 151–157.

    Article  PubMed  CAS  Google Scholar 

  128. Mowla, S.B., Cuypers, A., Driscoll, S.P., Kiddle, G., Thomson, J., Foyer, C.H., and Theodoulou, F.L. (2006) Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J 48, 743–756.

    Article  PubMed  CAS  Google Scholar 

  129. Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M.-H., Grunwald, D., and Macherel, D. (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137, 157–167.

    Article  PubMed  CAS  Google Scholar 

  130. Tolleter, D., Jaquinod, M., Mangavel, C., Passirani, C., Saulnier, P., Manon, S., Teyssier, E., Payet, N., Avelange-Macherel, M.-H., and Macherel, D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19, 1580–1589.

    Article  PubMed  CAS  Google Scholar 

  131. Lui, X., Wanga, Z., Wanga, L., Wua, R., Phillips, J., and Deng, X. (2009) LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. Plant Sci 176, 90–98.

    Article  CAS  Google Scholar 

  132. Koag, M.-C., Fenton, R.D., Wilkens, S., and Close, T.J. (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131, 309–316.

    Article  PubMed  CAS  Google Scholar 

  133. Pouchkina-Stantcheva, N.N., McGee, B.M., Boschetti, C., Tolleter, D., Chakrabortee, S., Popova, A.V., Meersman, F., Macherel, D., Hincha, D.K., and Tunnacliffe, A. (2007) Functional divergence of former alleles in an ancient asexual invertebrate. Science 318, 268–271.

    Article  PubMed  CAS  Google Scholar 

  134. Chakrabortee, S., Boschetti, C., Walton, L.J., Sarkar, S., Rubinsztein, D.C., and Tunnacliffe, A. (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci USA 104, 18073–18078.

    Article  PubMed  CAS  Google Scholar 

  135. Wolkers, W.F., McCready, S., Brandt, W., Lindsey, G.G., and Hoekstra, F.A. (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544, 196–206.

    Article  PubMed  CAS  Google Scholar 

  136. Wood, A.J. and Oliver, M.J. (1999) Translational control in plant stress: the formation of messenger ribonucleoprotein particles (mRNPs) in response to desiccation of Tortula ruralis gametophytes. Plant J 18, 359–370.

    Article  CAS  Google Scholar 

  137. Oliver, M.J., Velten, J., and Mishler B.D. (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45, 788–799.

    Article  PubMed  Google Scholar 

  138. Iturriaga, G., Cushman, M.A.F., and Cushman, J.C. (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Biol 170, 1173–1184.

    CAS  Google Scholar 

  139. Velten, J., Oliver, M.J. (2001) Tr288: a rehydrin with a dehydrin twist. Plant Mol Biol 45, 713–722.

    Article  PubMed  CAS  Google Scholar 

  140. Wehmeyer, N. and Vierling, E. (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 25, 1347–1357.

    Google Scholar 

  141. Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. (2004) Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9, 244–252.

    Article  PubMed  CAS  Google Scholar 

  142. Sun, W., Bernard, C., van de Cotte., van Montague, M., and Verbruggen, N. (2001) At-HSP17.6A, encoding a small heat shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27, 407–415.

    Article  PubMed  CAS  Google Scholar 

  143. Allen, R. (1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107, 1049–1054.

    PubMed  CAS  Google Scholar 

  144. Kranner, I., Beckett, R.P, Wornik, S., Zorn, M., and Pfeifhofer, H.W. (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31, 13–24.

    Article  PubMed  CAS  Google Scholar 

  145. McKersie, B.D., Bowley, S.R., Harjanto, E., and Leprince, O. (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 124, 153–162.

    Google Scholar 

  146. Moore, J.P., Vicre-Gibouin, M., Farrant, J.M., and Driouich, A. (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant. 134, 237–245

    Article  PubMed  CAS  Google Scholar 

  147. Vicré, M., Lerouxel, O., Farrant, J., Lerouge, P., and Driouich, A. (2004) Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. Physiol Plant 120, 229–239.

    Article  PubMed  Google Scholar 

  148. Jones, L. and McQueen-Mason, S. (2004) A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett 559, 61–65.

    Article  PubMed  CAS  Google Scholar 

  149. Hilbricht, T., Salamini, F., and Bartels, D. (2002) CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27-45 gene from the resurrection plant Craterostigma plantagineum Hochst. Plant J 31, 293–303.

    Article  PubMed  CAS  Google Scholar 

  150. Deng, X., Phillips, J., Meijer, A.H., Salamini, F., and Bartels, D. (2002) Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 49, 601–610.

    Article  PubMed  CAS  Google Scholar 

  151. Villalobos, M.A., Bartels, D., and Iturriaga, G. (2004) Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol 135, 309–324.

    Article  PubMed  CAS  Google Scholar 

  152. Smith-Espinoza, C., Bartels, D., and Phillips, J. (2007) Analysis of a LEA gene promoter via Agrobacterium-mediated transformation of the desiccation tolerant plant Lindernia brevidens. Plant Cell Rep 26, 1681–1688.

    Article  PubMed  CAS  Google Scholar 

  153. Toth, S., Kiss, C., Scott, P., Kovacs, G., Sorvari, S., and Toldi, O. (2006) Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb. Plant Cell Rep 25, 442–449.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Oliver, M.J., Cushman, J.C., Koster, K.L. (2010). Dehydration Tolerance in Plants. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 639. Humana Press. https://doi.org/10.1007/978-1-60761-702-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-702-0_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-701-3

  • Online ISBN: 978-1-60761-702-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics