Skip to main content

Trimethyltin as a Model to Explore Mechanisms of Selective Neuronal Death, Glial Reactivity, and Repair

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 24 Accesses

Abstract

Animal models recapitulating aspects of human disease have been extensively employed to experimentally explore underlying cellular, organ, or systemic pathological mechanisms. The power of any model lies in understanding the specificity of the pathology and the underlying initiating mechanism of action including the fact that organ dysfunction is not a cell autonomous event but involves cell-cell interactions. Compounds like kainic acid and glutamate that induce excitotoxicity and ischemia/hypoxia resulting from a loss of oxygen represent defined mechanisms of neurotoxicity; however, with human exposures to environmental compounds or pharmacological agents or in disease processes, the mechanisms of toxicity are not as well defined. This opens up a role for other less defined models. One such exposure model for neurotoxicity is the tri-organotin compound, trimethyltin. Interesting aspects of this compound are the similarity of the pattern of neuropathology across species, the relatively similar exposure levels for damage, the absence of infiltrating blood-borne cells, and the cascade of effects characterizing the injury and repair process. This chapter will provide details on the utility of the trimethyltin model to examine neuronal specificity of the pathology, the associated heterogeneity of the microglia response, the recruitment of repair and cell replacement processes. In addition, the available data regarding events that coincide with the initiation of the injury response and the possible utility of the model for developing systemic biomarkers of nervous system damage will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

BrdU:

Bromodeoxyuridine

GFAP:

Glial fibrillary acidic protein

IL:

Interleukin

P2X2:

Purinergic ionotropic receptor 2

ROS:

Reactive oxygen species

SGZ:

Subgranular zone

SVZ:

Subventricular zone

TMT:

Trimethyltin

TNF:

Tumor necrosis factor

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  • Andersson, H., Luthman, J., Lindqvist, E., & Olson, L. (1995). Time-course of trimethyltin effects on the monoaminergic systems of the rat brain. Neurotoxicology, 16(2), 201–210.

    CAS  PubMed  Google Scholar 

  • Andersson, H., Wetmore, C., Lindqvist, E., Luthman, J., & Olson, L. (1997). Trimethyltin exposure in the rat induces delayed changes in brain-derived neurotrophic factor, fos and heat shock protein 70. Neurotoxicology, 18(1), 147–159.

    CAS  PubMed  Google Scholar 

  • Baciak, L., Gasparova, Z., Liptaj, T., & Juranek, I. (2017). In vivo magnetic resonance approach to trimethyltin induced neurodegeneration in rats. Brain Research, 1673, 111–116. https://doi.org/10.1016/j.brainres.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  • Balaban, C. D., O’Callaghan, J. P., & Billingsley, M. L. (1988). Trimethyltin-induced neuronal damage in the rat brain: Comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neuronotypic and gliotypic proteins. Neuroscience, 26(1), 337–361. https://doi.org/10.1016/0306-4522(88)90150-9

    Article  CAS  PubMed  Google Scholar 

  • Bouldin, T. W., Goines, N. D., Bagnell, R. C., & Krigman, M. R. (1981). Pathogenesis of trimethyltin neuronal toxicity. Ultrastructural and cytochemical observations. The American Journal of Pathology, 104(3), 237–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouldin, T. W., Goines, N. D., & Krigman, M. R. (1984). Trimethyltin retinopathy. Relationship of subcellular response to neuronal subspecialization. Journal of Neuropathology and Experimental Neurology, 43(2), 162–174.

    Article  CAS  Google Scholar 

  • Brabeck, C., Michetti, F., Geloso, M. C., Corvino, V., Goezalan, F., Meyermann, R., & Schluesener, H. J. (2002). Expression of EMAP-II by activated monocytes/microglial cells in different regions of the rat hippocampus after trimethyltin-induced brain damage. Experimental Neurology, 177(1), 341–346. https://doi.org/10.1006/exnr.2002.7985

    Article  CAS  PubMed  Google Scholar 

  • Bridou, R., Rodriguez-Gonzalez, P., Stoichev, T., Amouroux, D., Monperrus, M., Navarro, P., Tessier, E., & Guyoneaud, R. (2018). Methylation and dealkykation of tin compounds by sulfate- and nitrate-reducing bacteria. Chemosphere, 208, 871–879. https://doi.org/10.1016/j.chemosphere.2018.06.030

    Article  CAS  PubMed  Google Scholar 

  • Brown, A. W., Cavanagh, J. B., Verschoyle, R. D., Gysbers, M. F., Jones, H. B., & Aldridge, W. N. (1984). Evolution of the intracellular changes in neurons caused by trimethyltin. Neuropathology and Applied Neurobiology, 10(4), 267–283. https://doi.org/10.1111/j.1365-2990.1984.tb00359.x

    Article  CAS  PubMed  Google Scholar 

  • Bruccoleri, A., & Harry, G. J. (2000). Chemical-induced hippocampal neurodegeneration and elevations in TNFalpha, TNFbeta, IL-1alpha, IP-10, and MCP-1 mRNA in osteopetrotic (op/op) mice. Journal of Neuroscience Research, 62(1), 146–155. https://doi.org/10.1002/1097-4547(20001001)62:1<146::AID-JNR15>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  • Bruccoleri, A., Brown, H., & Harry, G. J. (1998). Cellular localization and temporal elevation of tumor necrosis factor-alpha, interleukin-1 alpha, and transforming growth factor-beta 1 mRNA in hippocampal injury response induced by trimethyltin. Journal of Neurochemistry, 71(4), 1577–1587. https://doi.org/10.1046/j.1471-4159.1998.71041577.x

    Article  CAS  PubMed  Google Scholar 

  • Cannon, R. L., Hoover, D. B., & Woodruff, M. L. (1991). Trimethyltin increases choline acetyltransferase in rat hippocampus. Neurotoxicology and Teratology, 13(2), 241–244. https://doi.org/10.1016/0892-0362(91)90017-q

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh, J. B., Nolan, C. C., & Brown, A. W. (1990). Glial cell intrusions actively remove detritus due to toxic chemicals from within nerve cells. Neurotoxicology, 11(1), 1–12.

    CAS  PubMed  Google Scholar 

  • Ceccariglia, S., D’Altocolle, A., Del Fa, A., Pizzolante, F., Caccia, E., Michetti, F., & Gangitano, C. (2011). Cathepsin D plays a crucial role in the trimethyltin-induced hippocampal neurodegeneration process. Neuroscience, 174, 160–170. https://doi.org/10.1016/j.neuroscience.2010.11.024

    Article  CAS  PubMed  Google Scholar 

  • Ceccariglia, S., Alvino, A., Del Fà, A., Parolini, O., Michetti, F., & Gangitano, C. (2019). Autophagy is activated in vivo during trimethyltin-induced apoptotic neurodegeneration: A study in the rat hippocampus. International Journal of Molecular Sciences, 21(1), 175. https://doi.org/10.3390/ijms21010175

    Article  CAS  PubMed Central  Google Scholar 

  • Chang, L. W. (1984). Trimethyltin induced hippocampal lesions at various neonatal ages. Bulletin of Environmental Contamination and Toxicology, 33(3), 295–301. https://doi.org/10.1007/BF01625546

    Article  CAS  PubMed  Google Scholar 

  • Chang, L. W., & Dyer, R. S. (1985). Septotemporal gradients of trimethyltin-induced hippocampal lesions. Neurobehavioral Toxicology and Teratology, 7(1), 43–49.

    CAS  PubMed  Google Scholar 

  • Cook, L. L., Stine, K. E., & Reiter, L. W. (1984). Tin distribution in adult rat tissues after exposure to trimethyltin and triethyltin. Toxicology and Applied Pharmacology, 76(2), 344–348. https://doi.org/10.1016/0041-008x(84)90015-2

    Article  CAS  PubMed  Google Scholar 

  • Corvino, V., Geloso, M. C., Cavallo, V., Guadagni, E., Passalacqua, R., Florenzano, F., Giannetti, S., Molinari, M., & Michetti, F. (2005). Enhanced neurogenesis during trimethyltin-induced neurodegeneration in the hippocampus of the adult rat. Brain Research Bulletin, 65(6), 471–477. https://doi.org/10.1016/j.brainresbull.2005.02.031

    Article  CAS  PubMed  Google Scholar 

  • Corvino, V., Marchese, E., Michetti, F., & Geloso, M. C. (2013). Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochemical Research, 38(2), 240–253. https://doi.org/10.1007/s11064-012-0932-9

    Article  CAS  PubMed  Google Scholar 

  • Cristòfol, R. M., Gassó, S., Vílchez, D., Pertusa, M., Rodríguez-Farré, E., & Sanfeliu, C. (2004). Neurotoxic effects of trimethyltin and triethyltin on human fetal neuron and astrocyte cultures: A comparative study with rat neuronal cultures and human cell lines. Toxicology Letters, 152(1), 35–46. https://doi.org/10.1016/j.toxlet.2004.03.023

    Article  CAS  PubMed  Google Scholar 

  • Crofton, K. M., Dean, K. F., Ménache, M. G., & Janssen, R. (1990). Trimethyltin effects on auditory function and cochlear morphology. Toxicology and Applied Pharmacology, 105(1), 123–132. https://doi.org/10.1016/0041-008x(90)90364-z

    Article  CAS  PubMed  Google Scholar 

  • Dencoff, J. E., Rosenberg, G. A., & Harry, G. J. (1997). Trimethyltin induces gelatinase B and urokinase in rat brain. Neuroscience Letters, 228(3), 147–150. https://doi.org/10.1016/s0304-3940(97)00380-7

    Article  CAS  PubMed  Google Scholar 

  • Doctor, S. V., Sultatos, L. G., & Murphy, S. D. (1983). Distribution of trimethyltin in various tissues of the male mouse. Toxicology Letters, 17(1–2), 43–48. https://doi.org/10.1016/0378-4274(83)90033-4

    Article  CAS  PubMed  Google Scholar 

  • Dragić, M., Zarić, M., Mitrović, N., Nedeljković, N., & Grković, I. (2019). Two distinct hippocampal astrocyte morphotypes reveal subfield-different fate during neurodegeneration induced by trimethyltin intoxication. Neuroscience, 423, 38–54. https://doi.org/10.1016/j.neuroscience.2019.10.022

    Article  CAS  PubMed  Google Scholar 

  • Dragić, M., Milićević, K., Adžić, M., Stevanović, I., Ninković, M., Grković, I., Andjus, P., & Nedeljković, N. (2021). Trimethyltin increases intracellular Ca2+ Via L-type voltage-gated calcium channels and promotes inflammatory phenotype in rat astrocytes in vitro. Molecular Neurobiology, 58(4), 1792–1805. https://doi.org/10.1007/s12035-020-02273-x

    Article  CAS  PubMed  Google Scholar 

  • El-Fawal, H. A., & O’Callaghan, J. P. (2008). Autoantibodies to neurotypic and gliotypic proteins as biomarkers of neurotoxicity: Assessment of trimethyltin (TMT). Neurotoxicology, 29(1), 109–115. https://doi.org/10.1016/j.neuro.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  • Eskes, C., Juillerat-Jeanneret, L., Leuba, G., Honegger, P., & Monnet-Tschudi, F. (2003). Involvement of microglia-neuron interactions in the tumor necrosis factor-alpha release, microglial activation, and neurodegeneration induced by trimethyltin. Journal of Neuroscience Research, 71(4), 583–590. https://doi.org/10.1002/jnr.10508

    Article  CAS  PubMed  Google Scholar 

  • Ferraz da Silva, I., Freitas-Lima, L. C., Graceli, J. B., & Rodrigues, L. (2018). Organotins in neuronal damage, brain function, and behavior: A short review. Frontiers in Endocrinology, 8, 366. https://doi.org/10.3389/fendo.2017.00366

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiedorowicz, A., Figiel, I., Zaremba, M., Dzwonek, K., Schliebs, R., & Oderfeld-Nowak, B. (2008). Trimethyltin-evoked apoptosis of murine hippocampal granule neurons is accompanied by the expression of interleukin-1beta and interleukin-1 receptor antagonist in cells of ameboid phenotype, the majority of which are NG2-positive. Brain Research Bulletin, 77(1), 19–26. https://doi.org/10.1016/j.brainresbull.2008.02.029

    Article  CAS  PubMed  Google Scholar 

  • Figiel, I., & Dzwonek, K. (2007). TNFalpha and TNF receptor 1 expression in the mixed neuronal-glial cultures of hippocampal dentate gyrus exposed to glutamate or trimethyltin. Brain Research, 1131(1), 17–28. https://doi.org/10.1016/j.brainres.2006.10.095

    Article  CAS  PubMed  Google Scholar 

  • Funk, J. A., Gohlke, J., Kraft, A. D., McPherson, C. A., Collins, J. B., & Jean Harry, G. (2011). Voluntary exercise protects hippocampal neurons from trimethyltin injury: Possible role of interleukin-6 to modulate tumor necrosis factor receptor-mediated neurotoxicity. Brain, Behavior, and Immunity, 25(6), 1063–1077. https://doi.org/10.1016/j.bbi.2011.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparova, Z., Janega, P., Stara, V., & Ujhazy, E. (2012). Early and late stage of neurodegeneration induced by trimethyltin in hippocampus and cortex of male Wistar rats. Neuro Endocrinology Letters, 33(7), 689–696.

    CAS  PubMed  Google Scholar 

  • Geloso, M. C., Corvino, V., Cavallo, V., Toesca, A., Guadagni, E., Passalacqua, R., & Michetti, F. (2004). Expression of astrocytic nestin in the rat hippocampus during trimethyltin-induced neurodegeneration. Neuroscience Letters, 357(2), 103–106. https://doi.org/10.1016/j.neulet.2003.11.076

    Article  CAS  PubMed  Google Scholar 

  • Geloso, M. C., Corvino, V., & Michetti, F. (2011). Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochemistry International, 58(7), 729–738. https://doi.org/10.1016/j.neuint.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  • Gunasekar, P. G., Mickova, V., Kotyzova, D., Li, L., Borowitz, J. L., Eybl, V., & Isom, G. E. (2001). Role of astrocytes in trimethyltin neurotoxicity. Journal of Biochemical and Molecular Toxicology, 15(5), 256–262. https://doi.org/10.1002/jbt.10004

    Article  CAS  PubMed  Google Scholar 

  • Guo, L. H., Mittelbronn, M., Brabeck, C., Mueller, C. A., & Schluesener, H. J. (2004). Expression of interleukin-16 by microglial cells in inflammatory, autoimmune, and degenerative lesions of the rat brain. Journal of Neuroimmunology, 146(1–2), 39–45. https://doi.org/10.1016/j.jneuroim.2003.09.017

    Article  CAS  PubMed  Google Scholar 

  • Haga, S., Haga, C., Aizawa, T., & Ikeda, K. (2002). Neuronal degeneration and glial cell-responses following trimethyltin intoxication in the rat. Acta Neuropathologica, 103(6), 575–582. https://doi.org/10.1007/s00401-001-0505-5

    Article  CAS  PubMed  Google Scholar 

  • Harry, G. J., Goodrum, J. F., Krigman, M. R., & Morell, P. (1985). The use of Synapsin I as a biochemical marker for neuronal damage by trimethyltin. Brain Research, 326(1), 9–18. https://doi.org/10.1016/0006-8993(85)91379-4

    Article  CAS  PubMed  Google Scholar 

  • Harry, G. J., & Lefebvre d’Hellencourt, C. (2003) Dentate gyrus: alterations that occur with hippocampal injury. Neurotoxicology, 24, 343–356.

    Google Scholar 

  • Harry, G. J., Bruccoleri, A., & Lefebvre d’Hellencourt, C. (2003). Differential modulation of hippocampal chemical-induced injury response by ebselen, pentoxifylline, and TNFalpha-, IL-1alpha-, and IL-6-neutralizing antibodies. Journal of Neuroscience Research, 73(4), 526–536. https://doi.org/10.1002/jnr.10653

    Article  CAS  Google Scholar 

  • Harry, G. J., McPherson, C. A., Wine, R. N., Atkinson, K., & Lefebvre d’Hellencourt, C. (2004). Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotoxicity Research, 5(8), 623–627. https://doi.org/10.1007/BF03033182

    Article  PubMed  PubMed Central  Google Scholar 

  • Harry, G. J., Wine, R. N., Lefebvre d’Hellencourt, C., Funk, J. A., McPherson, C. A., & Aoyama, M. (2008). TNFp55 receptor and TNFp75 receptor are involved in chemical-induced dentate granule cell death. Journal of Neurochemistry, 106, 281–298.

    Article  CAS  Google Scholar 

  • Hasan, Z., Zimmer, L., & Woolley, D. (1984). Time course of the effects of trimethyltin on limbic evoked potentials and distribution of tin in blood and brain in the rat. Neurotoxicology, 5(2), 217–244.

    CAS  PubMed  Google Scholar 

  • Huong, N. Q., Nakamura, Y., Kuramoto, N., Yoneyama, M., Nagashima, R., Shiba, T., Yamaguchi, T., Hasebe, S., & Ogita, K. (2011). Indomethacin ameliorates trimethyltin-induced neuronal damage in vivo by attenuating oxidative stress in the dentate gyrus of mice. Biological & Pharmaceutical Bulletin, 34(12), 1856–1863. https://doi.org/10.1248/bpb.34.1856

    Article  Google Scholar 

  • Imam, S. Z., He, Z., Cuevas, E., Rosas-Hernandez, H., Lantz, S. M., Sarkar, S., Raymick, J., Robinson, B., Hanig, J. P., Herr, D., MacMillan, D., Smith, A., Liachenko, S., Ferguson, S., O’Callaghan, J., Miller, D., Somps, C., Pardo, I. D., Slikker, W., Jr., … Paule, M. G. (2018). Changes in the metabolome and microRNA levels in biological fluids might represent biomarkers of neurotoxicity: A trimethyltin study. Experimental Biology and Medicine (Maywood, N.J.), 243(3), 228–236. https://doi.org/10.1177/1535370217739859

    Article  CAS  Google Scholar 

  • Johnson, G. A., Calabrese, E., Little, P. B., Hedlund, L., Qi, Y., & Badea, A. (2014). Quantitative mapping of trimethyltin injury in the rat brain using magnetic resonance histology. Neurotoxicology, 42, 12–23. https://doi.org/10.1016/j.neuro.2014.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaltdinova, E., Pershina, E., Mikheeva, I., Bugaev-Makarovskiy, N., & Arkhipov, V. (2021). Different activation of IL-10 in the hippocampus and prefrontal cortex during neurodegeneration caused by trimethyltin chloride. Journal of Molecular Neuroscience: MN, 71(3), 613–617.

    Article  CAS  Google Scholar 

  • Kassed, C. A., Butler, T. L., Patton, G. W., Demesquita, D. D., Navidomskis, M. T., Mémet, S., Israël, A., & Pennypacker, K. R. (2004). Injury-induced NF-kappaB activation in the hippocampus: Implications for neuronal survival. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 18(6), 723–724. https://doi.org/10.1096/fj.03-0773fje

    Article  CAS  Google Scholar 

  • Kawada, K., Yoneyama, M., Nagashima, R., & Ogita, K. (2008). In vivo acute treatment with trimethyltin chloride causes neuronal degeneration in the murine olfactory bulb and anterior olfactory nucleus by different cascades in each region. Journal of Neuroscience Research, 86(7), 1635–1646. https://doi.org/10.1002/jnr.21612

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. K., Tran, H. Y., Shin, E. J., Lee, C., Chung, Y. H., Jeong, J. H., Bach, J. H., Kim, W. K., Park, D. H., Saito, K., Nabeshima, T., & Kim, H. C. (2013). IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cellular Signalling, 25(6), 1348–1360. https://doi.org/10.1016/j.cellsig.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Yang, M., Son, Y., Jang, H., Kim, D., Kim, J. C., Kim, S. H., Kang, M. J., Im, H. I., Shin, T., & Moon, C. (2014). Glial activation with concurrent up-regulation of inflammatory mediators in trimethyltin-induced neurotoxicity in mice. Acta Histochemica, 116(8), 1490–1500. https://doi.org/10.1016/j.acthis.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  • Koczyk, D., & Oderfeld-Nowak, B. (2000). Long-term microglial and astroglial activation in the hippocampus of trimethyltin-intoxicated rat: Stimulation of NGF and TrkA immunoreactivities in astroglia but not in microglia. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 18(6), 591–606. https://doi.org/10.1016/s0736-5748(99)00111-2

    Article  CAS  Google Scholar 

  • Kraft, A. D., McPherson, C. A., & Harry, G. J. (2016). Association between microglia, inflammatory factors, and complement with loss of hippocampal mossy fiber synapses induced by trimethyltin. Neurotoxicity Research, 30(1), 53–66. https://doi.org/10.1007/s12640-016-9606-8

    Article  CAS  PubMed  Google Scholar 

  • Kreyberg, S., Torvik, A., Bjørneboe, A., Wiik-Larsen, W., & Jacobsen, D. (1992). Trimethyltin poisoning: Report of a case with postmortem examination. Clinical Neuropathology, 11(5), 256–259.

    CAS  PubMed  Google Scholar 

  • Kurkowska-Jastrzebska, I., Zaremba, M., CzÅ‚onkowska, A., & Oderfeld-Nowak, B. (2010). Down-regulation of microglia and NG2-positive cells reaction in trimethyltin-injured hippocampus of rats treated with myelin basic protein-reactive T cells: Possible contribution to the neuroprotective effect of T cells. Journal of Neuroscience Research, 88(1), 24–32. https://doi.org/10.1002/jnr.22187

    Article  CAS  PubMed  Google Scholar 

  • Latini, L., Geloso, M. C., Corvino, V., Giannetti, S., Florenzano, F., Viscomi, M. T., Michetti, F., & Molinari, M. (2010). Trimethyltin intoxication up-regulates nitric oxide synthase in neurons and purinergic ionotropic receptor 2 in astrocytes in the hippocampus. Journal of Neuroscience Research, 88(3), 500–509. https://doi.org/10.1002/jnr.22238

    Article  CAS  PubMed  Google Scholar 

  • Lattanzi, W., Corvino, V., Di Maria, V., Michetti, F., & Geloso, M. C. (2013). Gene expression profiling as a tool to investigate the molecular machinery activated during hippocampal neurodegeneration induced by trimethyltin (TMT) administration. International Journal of Molecular Sciences, 14(8), 16817–16835. https://doi.org/10.3390/ijms140816817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S., Yang, M., Kim, J., Kim, J., Son, Y., Kwon, S., Kim, S. H., Kim, J. C., Kang, S. S., Wang, H., Shin, T., & Moon, C. (2014). Nestin expression and glial response in the hippocampus of mice after trimethyltin treatment. Acta Histochemica, 116(8), 1276–1288.

    Article  CAS  Google Scholar 

  • Lee, S., Yang, M., Kim, J., Kang, S., Kim, J., Kim, J. C., Jung, C., Shin, T., Kim, S. H., & Moon, C. (2016). Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Research Bulletin, 125, 187–199.

    Article  CAS  Google Scholar 

  • Lefebvre d’Hellencourt, C., & Harry, G. J. (2005). Molecular profiles of mRNA levels in laser capture microdissected murine hippocampal regions differentially responsive to TMT-induced cell death. Journal of Neurochemistry, 93(1), 206–220. https://doi.org/10.1111/j.1471-4159.2004.03017.x

    Article  CAS  PubMed  Google Scholar 

  • Little, A. R., Benkovic, S. A., Miller, D. B., & O’Callaghan, J. P. (2002). Chemically induced neuronal damage and gliosis: Enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines(1). Neuroscience, 115(1), 307–320. https://doi.org/10.1016/s0306-4522(02)00359-7

    Article  CAS  PubMed  Google Scholar 

  • Little, A. R., Miller, D. B., Li, S., Kashon, M. L., & O’Callaghan, J. P. (2012). Trimethyltin-induced neurotoxicity: Gene expression pathway analysis, q-RT-PCR and immunoblotting reveal early effects associated with hippocampal damage and gliosis. Neurotoxicology and Teratology, 34(1), 72–82. https://doi.org/10.1016/j.ntt.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., & Fechter, L. D. (1996). Elevation of intracellular calcium levels in outer hair cells by trimethyltin. Toxicology In Vitro: An International Journal Published in Association with BIBRA, 10(5), 567–576. https://doi.org/10.1016/s0887-2333(96)00036-7

    Article  CAS  Google Scholar 

  • Long, J., Wang, Q., He, H., Sui, X., Lin, G., Wang, S., Yang, J., You, P., Luo, Y., & Wang, Y. (2019). NLRP3 inflammasome activation is involved in trimethyltin-induced neuroinflammation. Brain Research, 1718, 186–193.

    Article  CAS  Google Scholar 

  • Madadi, S., Katebi, M., Eftekharzadeh, M., Mehdipour, A., Pourheydar, B., & Mehdizadeh, M. (2019). Partial improvement of spatial memory damages by bone marrow mesenchymal stem cells transplantation following trimethyltin chloride administration in the rat CA1. Basic and Clinical Neuroscience, 10(6), 567–577. https://doi.org/10.32598/BCN.9.10.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier, W. E., Brown, H. W., Tilson, H. A., Luster, M. I., & Harry, G. J. (1995). Trimethyltin increases interleukin (IL)-1 alpha, IL-6 and tumor necrosis factor alpha mRNA levels in rat hippocampus. Journal of Neuroimmunology, 59(1–2), 65–75. https://doi.org/10.1016/0165-5728(95)00026-x

    Article  CAS  PubMed  Google Scholar 

  • Marei, H. E., Elnegiry, A. A., Zaghloul, A., Althani, A., Afifi, N., Abd-Elmaksoud, A., Farag, A., Lashen, S., Rezk, S., Shouman, Z., Cenciarelli, C., & Hasan, A. (2017). Nanotubes impregnated human olfactory bulb neural stem cells promote neuronal differentiation in trimethyltin-induced neurodegeneration rat model. Journal of Cellular Physiology, 232(12), 3586–3597. https://doi.org/10.1002/jcp.25826

    Article  CAS  PubMed  Google Scholar 

  • McCann, M. J., O’Callaghan, J. P., Martin, P. M., Bertram, T., & Streit, W. J. (1996). Differential activation of microglia and astrocytes following trimethyl tin-induced neurodegeneration. Neuroscience, 72(1), 273–281. https://doi.org/10.1016/0306-4522(95)00526-9

    Article  CAS  PubMed  Google Scholar 

  • McPherson, C. A., Aoyama, M., & Harry, G. J. (2011). Interleukin (IL)-1 and IL-6 regulation of neural progenitor cell proliferation with hippocampal injury: Differential regulatory pathways in the subgranular zone (SGZ) of the adolescent and mature mouse brain. Brain, Behavior, and Immunity, 25(5), 850–862. https://doi.org/10.1016/j.bbi.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  • McPherson, C. A., Merrick, B. A., & Harry, G. J. (2014). In vivo molecular markers for pro-inflammatory cytokine M1 stage and resident microglia in trimethyltin-induced hippocampal injury. Neurotoxicity Research, 25(1), 45–56. https://doi.org/10.1007/s12640-013-9422-3

    Article  CAS  PubMed  Google Scholar 

  • Nagashima, R., Sugiyama, C., Gotoh, Y., Yoneyama, M., Kuramoto, N., Taira, T., Ariga, H., & Ogita, K. (2008). Altered expression of DJ-1 in the hippocampal cells following in vivo and in vitro neuronal damage induced by trimethyltin. Neuroscience Letters, 440(3), 232–236. https://doi.org/10.1016/j.neulet.2008.05.100

    Article  CAS  PubMed  Google Scholar 

  • Nagashima, R., Sano, S., Huong, N. Q., Shiba, T., & Ogita, K. (2010). Enhanced expression of glutathione S-transferase in the hippocampus following acute treatment with trimethyltin in vivo. Journal of Pharmacological Sciences, 113(3), 267–270. https://doi.org/10.1254/jphs.09158sc

    Article  CAS  PubMed  Google Scholar 

  • Nilsberth, C., Kostyszyn, B., & Luthman, J. (2002). Changes in APP, PS1 and other factors related to Alzheimer’s disease pathophysiology after trimethyltin-induced brain lesion in the rat. Neurotoxicity Research, 4(7–8), 625–636. https://doi.org/10.1080/1029842021000045471

    Article  CAS  PubMed  Google Scholar 

  • Oderfeld-Nowak, B., & Zaremba, M. (1998). GM1 ganglioside potentiates trimethyltin-induced expression of interleukin-1 beta and the nerve growth factor in reactive astrocytes in the rat hippocampus: An immunocytochemical study. Neurochemical Research, 23(3), 443–453. https://doi.org/10.1023/a:1022482106152

    Article  CAS  PubMed  Google Scholar 

  • Ogata, K., Sumida, K., Miyata, K., Kushida, M., Kuwamura, M., & Yamate, J. (2015). Circulating miR-9* and miR-384-5p as potential indicators for trimethyltin-induced neurotoxicity. Toxicologic Pathology, 43(2), 198–208. https://doi.org/10.1177/0192623314530533

    Article  CAS  PubMed  Google Scholar 

  • Ogita, K., Nitta, Y., Watanabe, M., Nakatani, Y., Nishiyama, N., Sugiyama, C., & Yoneda, Y. (2004). In vivo activation of c-Jun N-terminal kinase signaling cascade prior to granule cell death induced by trimethyltin in the dentate gyrus of mice. Neuropharmacology, 47(4), 619–630. https://doi.org/10.1016/j.neuropharm.2004.06.012

    Article  CAS  PubMed  Google Scholar 

  • Ogita, K., Nishiyama, N., Sugiyama, C., Higuchi, K., Yoneyama, M., & Yoneda, Y. (2005). Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: Evaluation using adult mice treated with trimethyltin chloride as a model. Journal of Neuroscience Research, 82(5), 609–621. https://doi.org/10.1002/jnr.20678

    Article  CAS  PubMed  Google Scholar 

  • Patanow, C. M., Day, J. R., & Billingsley, M. L. (1997). Alterations in hippocampal expression of SNAP-25, GAP-43, stannin and glial fibrillary acidic protein following mechanical and trimethyltin-induced injury in the rat. Neuroscience, 76(1), 187–202. https://doi.org/10.1016/s0306-4522(96)00335-1

    Article  CAS  PubMed  Google Scholar 

  • Pompili, E., Nori, S. L., Geloso, M. C., Guadagni, E., Corvino, V., Michetti, F., & Fumagalli, L. (2004). Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Molecular Brain Research, 122(1), 93–98. https://doi.org/10.1016/j.molbrainres.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  • Pompili, E., Fabrizi, C., Nori, S. L., Panetta, B., Geloso, M. C., Corvino, V., Michetti, F., & Fumagalli, L. (2011). Protease-activated receptor-1 expression in rat microglia after trimethyltin treatment. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 59(3), 302–311. https://doi.org/10.1369/0022155410397996

    Article  CAS  Google Scholar 

  • Pompili, E., Fabrizi, C., Fumagalli, L., & Fornai, F. (2020). Autophagy in trimethyltin-induced neurodegeneration. Journal of Neural Transmission (Vienna, Austria: 1996), 127(7), 987–998. https://doi.org/10.1007/s00702-020-02210-1

    Article  CAS  Google Scholar 

  • Powers, M. F., & Beavis, A. D. (1991). Triorganotins inhibit the mitochondrial inner membrane anion channel. The Journal of Biological Chemistry, 266(26), 17250–17256.

    Article  CAS  Google Scholar 

  • Qu, M., Zhou, Z., Chen, C., Li, M., Pei, L., Chu, F., Yang, J., Wang, Y., Li, L., Liu, C., Zhang, L., Zhang, G., Yu, Z., & Wang, D. (2011). Lycopene protects against trimethyltin-induced neurotoxicity in primary cultured rat hippocampal neurons by inhibiting the mitochondrial apoptotic pathway. Neurochemistry International, 59(8), 1095–1103. https://doi.org/10.1016/j.neuint.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  • Reuhl, K. R., & Cranmer, J. M. (1984). Developmental neuropathology of organotin compounds. Neurotoxicology, 5(2), 187–204.

    CAS  PubMed  Google Scholar 

  • Reuhl, K. R., Smallridge, E. A., Chang, L. W., & Mackenzie, B. A. (1983). Developmental effects of trimethyltin intoxication in the neonatal mouse. I. Light microscopic studies. Neurotoxicology, 4(1), 19–28.

    CAS  PubMed  Google Scholar 

  • Reuhl, K. R., Gilbert, S. G., Mackenzie, B. A., Mallett, J. E., & Rice, D. C. (1985). Acute trimethyltin intoxication in the monkey (Macaca fascicularis). Toxicology and Applied Pharmacology, 79(3), 436–452. https://doi.org/10.1016/0041-008x(85)90141-3

    Article  CAS  PubMed  Google Scholar 

  • Rey, C., Reinecke, H. J., & Besser, R. (1984). Methyltin intoxication in six men; Toxicologic and clinical aspects. Veterinary and Human Toxicology, 26(2), 121–122.

    CAS  PubMed  Google Scholar 

  • Roberts, R. A., Aschner, M., Calligaro, D., Guilarte, T. R., Hanig, J. P., Herr, D. W., Hudzik, T. J., Jeromin, A., Kallman, M. J., Liachenko, S., Lynch, J. J., Miller, D. B., Moser, V. C., O’Callaghan, J. P., Slikker, W., Jr., & Paule, M. G. (2015). Translational biomarkers of neurotoxicity: A health and environmental sciences institute perspective on the way forward. Toxicological Sciences: An Official Journal of the Society of Toxicology, 148(2), 332–340. https://doi.org/10.1093/toxsci/kfv188

    Article  CAS  Google Scholar 

  • Röhl, C., Grell, M., & Maser, E. (2009). The organotin compounds trimethyltin (TMT) and triethyltin (TET) but not tributyltin (TBT) induce activation of microglia co-cultivated with astrocytes. Toxicology In Vitro: An International Journal Published in Association with BIBRA, 23(8), 1541–1547. https://doi.org/10.1016/j.tiv.2009.04.013

    Article  CAS  Google Scholar 

  • Sandström, J., Kratschmar, D. V., Broyer, A., Poirot, O., Marbet, P., Chantong, B., Zufferey, F., Dos Santos, T., Boccard, J., Chrast, R., Odermatt, A., & Monnet-Tschudi, F. (2019). In vitro models to study insulin and glucocorticoids modulation of trimethyltin (TMT)-induced neuroinflammation and neurodegeneration, and in vivo validation in db/db mice. Archives of Toxicology, 93(6), 1649–1664. https://doi.org/10.1007/s00204-019-02455-0

    Article  CAS  PubMed  Google Scholar 

  • Schebek, L., & Andreae, M. O. (1991). Determination of methyltin and butyltin compounds in environmental water and sediment samples. International Journal of Environmental Analytical Chemistry, 45(4), 257–273. https://doi.org/10.1080/03067319108027391

    Article  CAS  Google Scholar 

  • Schüppel, K., Brauer, K., Härtig, W., Grosche, J., Earley, B., Leonard, B. E., & Brückner, G. (2002). Perineuronal nets of extracellular matrix around hippocampal interneurons resist destruction by activated microglia in trimethyltin-treated rats. Brain Research, 958(2), 448–453. https://doi.org/10.1016/s0006-8993(02)03569-2

    Article  PubMed  Google Scholar 

  • Schvartz, D., González-Ruiz, V., Walter, N., Antinori, P., Jeanneret, F., Tonoli, D., Boccard, J., Zurich, M. G., Rudaz, S., Monnet-Tschudi, F., Sandström, J., & Sanchez, J. C. (2019). Protein pathway analysis to study development-dependent effects of acute and repeated trimethyltin (TMT) treatments in 3D rat brain cell cultures. Toxicology In Vitro: An International Journal Published in Association with BIBRA, 60, 281–292. https://doi.org/10.1016/j.tiv.2019.05.020

    Article  CAS  Google Scholar 

  • Shin, E. J., Nam, Y., Tu, T. H., Lim, Y. K., Wie, M. B., Kim, D. J., Jeong, J. H., & Kim, H. C. (2016). Protein kinase Cδ mediates trimethyltin-induced neurotoxicity in mice in vivo via inhibition of glutathione defense mechanism. Archives of Toxicology, 90(4), 937–953. https://doi.org/10.1007/s00204-015-1516-7

    Article  CAS  PubMed  Google Scholar 

  • Stara, V., Navarova, J., Ujhazy, E., & Gasparova, Z. (2016). Progressive increase of lysosomal enzyme activities in hippocampus associated with reduction of population spike in a rat model of neurodegeneration. Neuro Endocrinology Letters, 37(Suppl1), 111–117.

    CAS  PubMed  Google Scholar 

  • Surendran, G., & El-Fawal, H. A. N. (2008). Neuroimmune responses to toxic agents: Comparison of organometal electrophiles using detection of antibodies to neural cytoskeleton and myelin as biomarkers. Journal of Pharmacology and Toxicology, 3(3), 173–189.

    Article  CAS  Google Scholar 

  • Tang, X., Wu, X., Dubois, A. M., Sui, G., Wu, B., Lai, G., Gong, Z., Gao, H., Liu, S., Zhong, Z., Lin, Z., Olson, J., & Ren, X. (2013). Toxicity of trimethyltin and dimethyltin in rats and mice. Bulletin of Environmental Contamination and Toxicology, 90(5), 626–633. https://doi.org/10.1007/s00128-013-0975-x

    Article  CAS  PubMed  Google Scholar 

  • Toesca, A., Geloso, M. C., Mongiovì, A. M., Furno, A., Schiattarella, A., Michetti, F., & Corvino, V. (2016). Trimethyltin modulates reelin expression and endogenous neurogenesis in the hippocampus of developing rats. Neurochemical Research, 41(7), 1559–1569. https://doi.org/10.1007/s11064-016-1869-1

    Article  CAS  PubMed  Google Scholar 

  • Toews, A. D., Lagarde, J., Goines, N. D., & Bouldin, T. W. (1988). Early metabolic responses of retinal neurons to trimethyltin intoxication. Neurochemical Pathology, 8(2), 63–78. https://doi.org/10.1007/BF03160136

    Article  CAS  PubMed  Google Scholar 

  • Tran, H. Y., Shin, E. J., Saito, K., Nguyen, X. K., Chung, Y. H., Jeong, J. H., Bach, J. H., Park, D. H., Yamada, K., Nabeshima, T., Yoneda, Y., & Kim, H. C. (2012). Protective potential of IL-6 against trimethyltin-induced neurotoxicity in vivo. Free Radical Biology & Medicine, 52(7), 1159–1174. https://doi.org/10.1016/j.freeradbiomed.2011.12.008

    Article  CAS  Google Scholar 

  • Tu, T. T., Sharma, N., Shin, E. J., Tran, H. Q., Lee, Y. J., Jeong, J. H., Jeong, J. H., Nah, S. Y., Tran, H. P., Byun, J. K., Ko, S. K., & Kim, H. C. (2017). Ginsenoside Re protects trimethyltin-induced neurotoxicity via activation of IL-6-mediated phosphoinositol 3-kinase/Akt signaling in mice. Neurochemical Research, 42(11), 3125–3139. https://doi.org/10.1007/s11064-017-2349-y

    Article  CAS  PubMed  Google Scholar 

  • Viviani, B., Corsini, E., Galli, C. L., & Marinovich, M. (1998). Glia increase degeneration of hippocampal neurons through release of tumor necrosis factor-alpha. Toxicology and Applied Pharmacology, 150(2), 271–276. https://doi.org/10.1006/taap.1998.8406

    Article  CAS  PubMed  Google Scholar 

  • Weig, B. C., Richardson, J. R., Lowndes, H. E., & Reuhl, K. R. (2016). Trimethyltin intoxication induces the migration of ventricular/subventricular zone cells to the injured murine hippocampus. Neurotoxicology, 54, 72–80. https://doi.org/10.1016/j.neuro.2016.03.023

    Article  CAS  PubMed  Google Scholar 

  • Whittington, D. L., Woodruff, M. L., & Baisden, R. H. (1989). The time-course of trimethyltin-induced fiber and terminal degeneration in hippocampus. Neurotoxicology and Teratology, 11(1), 21–33. https://doi.org/10.1016/0892-0362(89)90081-0

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Y., Harry, G. J., & Pennypacker, K. R. (1999). Expression of AP-1 transcription factors in rat hippocampus and cerebellum after trimethyltin neurotoxicity. Neurotoxicology, 20(5), 761–766.

    CAS  PubMed  Google Scholar 

  • Yoshikawa, Y., Ago, T., Kuroda, J., Wakisaka, Y., Tachibana, M., Komori, M., Shibahara, T., Nakashima, H., Nakashima, K., & Kitazono, T. (2019). Nox4 promotes neural stem/precursor cell proliferation and neurogenesis in the hippocampus and restores memory function following trimethyltin-induced injury. Neuroscience, 398, 193–205. https://doi.org/10.1016/j.neuroscience.2018.11.046

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Ding, D., Sun, H., Salvi, R., & Roth, J. A. (2016). Trimethyltin-induced cochlear degeneration in rat. Journal of Otology, 11(3), 118–126. https://doi.org/10.1016/j.joto.2016.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Zawia, N. H., & Harry, G. J. (1993). Trimethyltin-induced c-fos expression: Adolescent vs neonatal rat hippocampus. Toxicology and Applied Pharmacology, 121(1), 99–102. https://doi.org/10.1006/taap.1993.1133

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jean Harry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harry, G.J. (2021). Trimethyltin as a Model to Explore Mechanisms of Selective Neuronal Death, Glial Reactivity, and Repair. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_233-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_233-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics