Skip to main content

Advertisement

Log in

In Vivo Molecular Markers for Pro-inflammatory Cytokine M1 Stage and Resident Microglia in Trimethyltin-Induced Hippocampal Injury

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Microglia polarization to the classical M1 activation state is characterized by elevated pro-inflammatory cytokines; however, a full profile has not been generated in the early stages of a sterile inflammatory response recruiting only resident microglia. We characterized the initial M1 state in a hippocampal injury model dependent upon tumor necrosis factor (TNF) receptor signaling for dentate granule cell death. Twenty-one-day-old CD1 male mice were injected with trimethyltin (TMT 2.3 mg/kg, i.p.) and the hippocampus was examined at an early stage (24-h post-dosing) of neuronal death. Glia activation was assessed using a custom quantitative nuclease protection assay. We report elevated mRNA levels for glia response such as ionizing calcium-binding adapter molecule-1 and glial fibrillary acidic protein (Gfap); Fas, hypoxia inducible factor alpha, complement component 1qb, TNF-related genes (Tnf, Tnfaip3, Tnfrsfla); interleukin-1 alpha, Cd44, chemokine (C–C motif) ligand (Ccl)2, Cc14, integrin alpha M, lipocalin (Lcn2), and secreted phosphoprotein 1 (Spp1). These changes occurred in the absence of changes in matrix metalloproteinase 9 and 12, neural cell adhesion molecule, metabotropic glutamate receptor (Grm)3, and Ly6/neurotoxin 1 (Lynx1), as well as, a decrease in neurotrophin 3, glutamate receptor subunit epsilon (Grin)-2b, and neurotrophic tyrosine kinase receptor, type 3. The M2 anti-inflammatory marker, transforming growth factor beta-1 (Tgfb1) was elevated. mRNAs associated with early stage of injury-induced neurogenesis including fibroblast growth factor 21 and Mki67 were elevated. In the “non-injured” temporal cortex receiving projections from the hippocampus, Lynx1, Grm3, and Grin2b were decreased and Gfap increased. Formalin fixed-paraffin-embedded tissue did not generate a comparable profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andjus PR, Bataveljic D, Vanhoutte G, Mitrecic D, Pizzolante F, Djogo N, Nicaise C, Kengne FG, Gangitano C, Michetti F, van der Linden A, Pochet R, Bacic G (2009) In vivo morphological changes in animal models of amyotrophic lateral sclerosis and Alzheimer’s-like disease: MRI approach. Anat Rec (Hoboken) 292:1882–1892

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol) 57:289–300

    Google Scholar 

  • Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    Article  CAS  PubMed  Google Scholar 

  • Bruccoleri A, Harry GJ (2000) Chemical-induced hippocampal neurodegeneration and elevations in TNFalpha, TNFbeta, IL-1alpha, IP-10, and MCP-1 mRNA in osteopetrotic (op/op) mice. J Neurosci Res 62:146–155

    Article  CAS  PubMed  Google Scholar 

  • Bruccoleri A, Brown H, Harry GJ (1998) Cellular localization and temporal elevation of tumor necrosis factor-alpha, interleukin-1 alpha, and transforming growth factor-beta 1 mRNA in hippocampal injury response induced by trimethyltin. J Neurochem 71:1577–1587

    Article  CAS  PubMed  Google Scholar 

  • Carson MA, Thrash JC, Lo D (2004) Analysis of microglial gene expression: identifying targets for CNS neurodegenerative and autoimmune disease. Am J Pharmacogenomics 4:321–330

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhor V, Le Charpentier T, Lebon S, Ore MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Savman K, Mallard C, Gressens P, Fleiss B (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chia WJ, Dawe GS, Ong WY (2011) Expression and localization of the iron-siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochem Int 59:591–599

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Kim HY, Cha JH, Choi JY, Lee MY (2007) Transient microglial and prolonged astroglial upregulation of osteopontin following transient forebrain ischemia in rats. Brain Res 1151:195–202

    Article  CAS  PubMed  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Colton CA, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord 9:174–191

    Article  CAS  Google Scholar 

  • De Simone R, Vissicchio F, Mingarelli C, De Nuccio C, Visentin S, Ajmone-Cat MA, Minghetti L (2013) Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta 1832:650–659

    Article  PubMed  Google Scholar 

  • Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727

    Article  PubMed  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  CAS  PubMed  Google Scholar 

  • Figiel I, Dzwonek K (2007) TNFalpha and TNF receptor 1 expression in the mixed neuronal-glial cultures of hippocampal dentate gyrus exposed to glutamate or trimethyltin. Brain Res 1131:17–28

    Article  CAS  PubMed  Google Scholar 

  • Funk JA, Gohlke J, Kraft AD, McPherson CA, Collins JB, Harry GJ (2011) Voluntary exercise protects hippocampal neurons from trimethyltin injury: possible role of interleukin-6 to modulate tumor necrosis factor receptor-mediated neurotoxicity. Brain Behav Immun 6:1063–1077

    Article  Google Scholar 

  • Gasparova Z, Janega P, Stara V, Ujhazy E (2012) Early and late stage of neurodegeneration induced by trimethyltin in hippocampus and cortex of male Wistar rats. Neuro Endocrinol Lett 33:689–696

    CAS  PubMed  Google Scholar 

  • Geloso MC, Vercelli A, Corvino V, Repici M, Boca M, Haglid K, Zelano G, Michetti F (2002) Cyclooxygenase-2 and caspase 3 expression in trimethyltin-induced apoptosis in the mouse hippocampus. Exp Neurol 175:152–160

    Article  CAS  PubMed  Google Scholar 

  • Graeber MB (2010) Changing face of microglia. Science 330:783–788

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ, d’Hellencourt CL (2003) Dentate gyrus: alterations that occur with hippocampal injury. Neurotoxicology 24:343–356

    Article  PubMed  Google Scholar 

  • Harry GJ, Tyler K, d’Hellencourt CL, Tilson HA, Maier WE (2002) Morphological alterations and elevations in tumor necrosis factor-alpha, interleukin (IL)-1alpha, and IL-6 in mixed glia cultures following exposure to trimethyltin: modulation by proinflammatory cytokine recombinant proteins and neutralizing antibodies. Toxicol Appl Pharmacol 180:205–218

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ, McPherson CA, Wine RN, Atkinson K, d’Hellencourt CL (2004) Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox Res 5:623–627

    Article  PubMed  PubMed Central  Google Scholar 

  • Harry GJ, d’Hellencourt CL, McPherson CA, Funk JA, Aoyama M, Wine RN (2008) Tumor necrosis factor p55 and p75 receptors are involved in chemical-induced apoptosis of dentate granule neurons. J Neurochem 106:281–298

    Article  CAS  PubMed  Google Scholar 

  • Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070

    Article  CAS  PubMed  Google Scholar 

  • Ibanez-Tallon I, Miwa JM, Wang HL, Adams NC, Crabtree GW, Sine SM, Heintz N (2002) Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1. Neuron 33:893–903

    Article  CAS  PubMed  Google Scholar 

  • Jahnke GD, Brunssen S, Maier WE, Harry GJ (2001) Neurotoxicant-induced elevation of adrenomedullin expression in hippocampus and glia cultures. J Neurosci Res 66:464–474

    Article  CAS  PubMed  Google Scholar 

  • Jang E, Lee S, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27:1176–1190

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Choi YS, Choi JS, Cha JH, Kim ON, Lee SB, Chung JW, Chun MH, Lee MY (2002) Osteopontin in kainic acid-induced microglial reactions in the rat brain. Mol Cells 13:429–435

    CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ (2013) Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol Aging 34:1397–1411

    Article  CAS  PubMed  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Park JY, Lee WH, Kim H, Park HC, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 29:234–249

    Article  CAS  PubMed  Google Scholar 

  • Lee DC, Ruiz CR, Lebson L, Selenica ML, Rizer J, Hunt JB Jr, Fojiani R, Reid P, Kammath S, Nash K, Dickey CA, Gordon M, Morgan D (2013) Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging 34:1610–1620

    Article  CAS  PubMed  Google Scholar 

  • Little AR, Benkovic SA, Miller DB, O’Callaghan JP (2002) Chemically induced neuronal damage and gliosis: enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines(1). Neuroscience 115:307–320

    Article  CAS  PubMed  Google Scholar 

  • Little AR, Miller DB, Li S, Kashon ML, O’Callaghan JP (2012) Trimethyltin-induced neurotoxicity: gene expression pathway analysis, q-RT-PCR and immunoblotting reveal early effects associated with hippocampal damage and gliosis. Neurotoxicol Teratol 34:72–82

    Article  CAS  PubMed  Google Scholar 

  • Maier WE, Brown HW, Tilson HA, Luster MI, Harry GJ (1995) Trimethyltin increases interleukin (IL)-1 alpha, IL-6 and tumor necrosis factor alpha mRNA levels in rat hippocampus. J Neuroimmunol 59:65–75

    Article  CAS  PubMed  Google Scholar 

  • McPherson CA, Aoyama M, Harry GJ (2011) Interleukin (IL)-1 and IL-6 regulation of neural progenitor cell proliferation with hippocampal injury: differential regulatory pathways in the subgranular zone (SGZ) of the adolescent and mature mouse brain. Brain Behav Immun 25:850–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-β. J Neuroimmunol 210:3–12

    Article  CAS  PubMed  Google Scholar 

  • Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, Ffrench-Constant C (2013) Me microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neurosci. doi:10.1038/nn.3469

  • Miwa JM, Ibanez-Tallon I, Crabtree GW, Sanchez R, Sali A, Role LW, Heintz N (1999) Lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23:105–114

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Imai H, Liu Y, Xu X, Sadamatsu M, Nakagami R, Shirakawa T, Nakano K, Kita Y, Yoshida K, Tsunashima K, Kato N (2008) FK506-protective effects against trimethyltin neurotoxicity in rats: hippocampal expression analyses reveal the involvement of periarterial osteopontin. Neuroscience 153:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Mucha M, Skrzypiec AE, Schiavon E, Attwood BK, Kucerova E, Pawlak R (2011) Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc Natl Acad Sci USA 108:18436–18441

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 4:433–442

    Article  PubMed  Google Scholar 

  • Ogita K, Nishiyama N, Sugiyama C, Higuchi K, Yoneyama M, Yoneda Y (2005) Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: evaluation using adult mice treated with trimethyltin chloride as a model. J Neurosci Res 82:609–621

    Article  CAS  PubMed  Google Scholar 

  • Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298

    Article  PubMed  Google Scholar 

  • Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 5:73–90

    PubMed  PubMed Central  Google Scholar 

  • Pathipati P, Muller S, Jiang X, Ferriero D (2013) Phenotype and secretory responses to oxidative stress in microglia. Dev Neurosci 35:241–245

    Article  CAS  PubMed  Google Scholar 

  • Pechhold S, Stouffer M, Walker G, Martel R, Seligmann B, Hang Y, Stein R, Harlan DM, Pechhold K (2009) Transcriptional analysis of intracytoplasmically stained, FACS-purified cells by high-throughput, quantitative nuclease protection. Nat Biotechnol 27:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Polman JA, Hunter RG, Speksnijder N, van den Oever JM, Korobko OB, McEwen BS, de Kloet ER, Datson NA (2012) Glucocorticoids modulate the mTOR pathway in the hippocampus: differential effects depending on stress history. Endocrinology 153:4317–4327

    Article  CAS  PubMed  Google Scholar 

  • Reuhl KR, Cranmer JM (1984) Developmental neuropathology of organotin compounds. Neurotoxicology 5:187–204

    CAS  PubMed  Google Scholar 

  • Rimsza LM, Leblanc ML, Unger JM, Miller TP, Grogan TM, Persky DO, Martel RR, Sabalos CM, Seligmann B, Braziel RM, Campo E, Rosenwald A, Connors JM, Sehn LH, Johnson N, Gascoyne RD (2008) Gene expression predicts overall survival in paraffin-embedded tissues of diffuse large B-cell lymphoma treated with R-CHOP. Blood 112:3425–3433

    Article  CAS  PubMed  Google Scholar 

  • Rimsza LM, Wright G, Schwartz M, Chan WC, Jaffe ES, Gascoyne RD, Campo E, Rosenwald A, Ott G, Cook JR, Tubbs RR, Braziel RM, Delabie J, Miller TP, Staudt LM (2011) Accurate classification of diffuse large B-cell lymphoma into germinal center and activated B-cell subtypes using a nuclease protection assay on formalin-fixed, paraffin-embedded tissues. Clin Cancer Res 17:3727–3732

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts RA, Sabalos CM, LeBlanc ML, Martel RR, Frutiger YM, Unger JM, Botros IW, Rounseville MP, Seligmann BE, Miller TP, Grogan TM, Rimsza LM (2007) Quantitative nuclease protection assay in paraffin-embedded tissue replicates prognostic microarray gene expression in diffuse large-B-cell lymphoma. Lab Invest 87:979–997

    Google Scholar 

  • Santamaria MH, Corral RS (2013) Osteopontin-dependent regulation of Th1 and Th17 cytokine responses in Trypanosoma cruzi-infected C57BL/6 mice. Cytokine 61:491–498

    Article  CAS  PubMed  Google Scholar 

  • Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solovjov DA, Pluskota E, Plow EF (2005) Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2. J Biol Chem 280:1336–1345

    Article  CAS  PubMed  Google Scholar 

  • Spradling KD, Lumley LA, Robison CL, Meyerhoff JL, Dillman JF (2011) Transcriptional responses of the nerve agent-sensitive brain regions amygdala, hippocampus, piriform cortex, septum, and thalamus following exposure to the organophosphonate anticholinesterase sarin. J Neuroinflammation 8:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175:342–349

    CAS  PubMed  Google Scholar 

  • Streit WJ (1990) An improved staining method for rat microglial cells using the lectin from (GSA I-B4). J Histochem Cytochem 38:1683–1686

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL (2005) Role of microglia in the central nervous system’s immune response. Neurol Res 27:685–691

    PubMed  Google Scholar 

  • Viviani B, Corsini E, Pesenti M, Galli CL, Marinovich M (2001) Trimethyltin-activated cyclooxygenase stimulates tumor necrosis factor-alpha release from glial cells through reactive oxygen species. Toxicol Appl Pharmacol 172:93–97

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhan Y, Xu L, Feuerstein GZ, Wang X (2001) Use of suppression subtractive hybridization for differential gene expression in stroke: discovery of CD44 gene expression and localization in permanent focal stroke in rats. Stroke 32:1020–1027

    Article  CAS  PubMed  Google Scholar 

  • Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA (2009) Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci USA 106:3913–3918

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Lu L, Prasad K, Richfield EK, Unger EL, Xu J, Jones BC (2011) Genetic-based, differential susceptibility to paraquat neurotoxicity in mice. Neurotoxicol Teratol 33:415–421

    Article  CAS  PubMed  Google Scholar 

  • Yuzaki M (2010) Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers. Eur J Neurosci 32:191–197

    Article  PubMed  Google Scholar 

  • Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41:232–241

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the NIEHS Microarray Core for their expert assistant with the initial microarray analysis used for selection of qNPA probes, Dr. Grace Kissling for statistical expertise, and Drs. Stephanie L. Smith-Roe and Chad Blystone of NIEHS for reviewing the final manuscript. This study was funded by the Division of Intramural Research and the Division National Toxicology Program, NIEHS/NIH (1Z01ES101623). The qNPA was conducted at HTG under an NTP contract with technical expertise from Dr John Luecke. The statements, opinions, or conclusions contained within this manuscript do not necessarily represent the statements, opinions, or conclusions of NIEHS, NIH, or the United States Government.

Conflict of interest

The authors declare no conflict of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Harry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McPherson, C.A., Merrick, B.A. & Harry, G.J. In Vivo Molecular Markers for Pro-inflammatory Cytokine M1 Stage and Resident Microglia in Trimethyltin-Induced Hippocampal Injury. Neurotox Res 25, 45–56 (2014). https://doi.org/10.1007/s12640-013-9422-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9422-3

Keywords

Navigation