Skip to main content
Log in

Association Between Microglia, Inflammatory Factors, and Complement with Loss of Hippocampal Mossy Fiber Synapses Induced by Trimethyltin

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Complement-associated factors are implicated in pathogen presentation, neurodegeneration, and microglia resolution of tissue injury. To characterize complement activation with microglial clearance of degenerating mossy fiber boutons, hippocampal dentate granule neurons were ablated in CD-1 mice with trimethyltin (TMT; 2.2 mg/kg, i.p.). Neuronal apoptosis was accompanied by amoeboid microglia and elevations in tumor necrosis factor [Tnfa], interleukin 1β [Il1b], and Il6 mRNA and C1q protein. Inos mRNA levels were unaltered. Silver degeneration and synaptophysin staining indicated loss of synaptic innervation to CA3 pyramidal neurons. Reactive microglia with thickened bushy morphology showed co-localization of synaptophysin+ fragments. The initial response at 2 days post-TMT included transient elevations in Tnfa, Il1b, Il6, and Inos mRNA levels. A concurrent increase at 2 days was observed in arginase-1 [Arg1], Il10, transforming growth factor β1 [Tgfb1], and chitinase 3 like-3 [Ym1] mRNA levels. At 2 days, C1q protein was evident in the CA3 with elevated C1qa, C1qb, C3, Cr3a, and Cr3b mRNA levels. mRNA levels remained elevated at 5 days, returning to control by 14 days, corresponding to silver degeneration. mRNA levels for pentraxin3 (Ptx3) were elevated on day 2 and Ptx1 was not altered. Our data suggest an association between microglia reactivity, the induction of anti-inflammatory genes concurrent with pro-inflammatory genes and the expression of complement-associated factors with the degeneration of synapses following apoptotic neuronal loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ (1996) Localization and cell association of C1q in Alzheimer’s disease brain. Exp Neurol 138:22–32

    Article  CAS  PubMed  Google Scholar 

  • Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ (2008) The complement cascade: Yin–Yang in neuroinflammation–neuro-protection and -degeneration. J Neurochem 107:1169–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnum SR (1995) Complement biosynthesis in the central nervous system. Crit Rev Oral Biol Med 6:132–146

    Article  CAS  PubMed  Google Scholar 

  • Benoit ME, Tenner AJ (2011) Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression. J Neurosci 31:3459–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit ME, Hernandez MX, Dinh ML, Benavente F, Vasquez O, Tenner AJ (2013) C1q-induced LRP1B and GPR6 proteins expressed early in Alzheimer disease mouse models, are essential for the C1q-mediated protection against amyloid-beta neurotoxicity. J Biol Chem 288:654–665

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Zelano J, Stephan A, Thams S, Barres BA, Pekny M, Pekna M, Cullheim S (2012) Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3. Exp Neurol 237:8–17

    Article  PubMed  Google Scholar 

  • Bialas AR, Stevens B (2013) TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16:1773–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 85:145–157

    Article  CAS  PubMed  Google Scholar 

  • Bohlson SS, O’Conner SD, Hulsebus HJ, Ho M-M, Fraser DA (2014) Complement, C1q, and C1q-related molecules regulate macrophage polarization. Front Immunol 5:402. doi:10.3389/fimmu.2014.00402

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64:93–109

    Article  CAS  PubMed  Google Scholar 

  • Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Bruccoleri A, Brown H, Harry GJ (1998) Cellular localization and temporal elevation of tumor necrosis factor-alpha, interleukin-1 alpha, and transforming growth factor-beta 1 mRNA in hippocampal injury response induced by trimethyltin. J Neurochem 71:1577–1587

    Article  CAS  PubMed  Google Scholar 

  • Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koegisperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143

    Article  CAS  PubMed  Google Scholar 

  • Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5:981–986

    Article  CAS  PubMed  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4(4):399–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalmau I, Finsen B, Zimmer J, González B, Castellano B (1998) Development of microglia in the postnatal rat hippocampus. Hippocampus 8(5):458–474

    Article  CAS  PubMed  Google Scholar 

  • Depboylu C, Schäfer MK, Schwaeble WJ, Reinhart TA, Maeda H, Mitsuya H, Damadzic R, Rausch DM, Eiden LE, Weihe E (2005) Increase of C1q biosynthesis in brain microglia and macrophages during lentivirus infection in the rhesus macaque is sensitive to antiretroviral treatment with 6-chloro-2′,3′-dideoxyguanosine. Neurobiol Dis 20:12–26

    Article  CAS  PubMed  Google Scholar 

  • Erdei A, Isaak A, Torok K, Sandor N, Kremlitzka M, Prechl J, Bajtay Z (2009) Expression and role of CR1 and CR2 on B and T lymphocytes under physiological and autoimmune conditions. Mol Immunol 46:2767–2773

    Article  CAS  PubMed  Google Scholar 

  • Farber K, Cheung G, Mitchell D, Wallis R, Weihe E, Schwaeble W, Kettenmann H (2009) C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J Neurosci Res 87:644–652

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiske BK, Brunjes PC (2000) Microglial activation in the developing rat olfactory bulb. Neuroscience 96(4):807–815

    Article  CAS  PubMed  Google Scholar 

  • Fraser DA, Tenner AJ (2008) Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules. Curr Drug Targets 9:113–122

    Article  CAS  PubMed  Google Scholar 

  • Fraser DA, Pisalyaput K, Tenner AJ (2009) C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem 112:733–743

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk JA, Gohlke J, Kraft AD, McPherson CA, Collins JB, Harry GJ (2011) Voluntary exercise protects hippocampal neurons from trimethyltin injury: possible role of interleukin-6 to modulate tumor necrosis factor receptor-mediated neurotoxicity. Brain Behav Immun 25:1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harry GJ, Goodrum JF, Krigman MR, Morell P (1985) The use of Synapsin I as a biochemical marker for neuronal damage by trimethyltin. Brain Res 4(326):9–18

    Article  Google Scholar 

  • Harry GJ, Lefebvre d’Hellencourt C, McPherson CA, Funk JA, Aoyama M, Wine RN (2008) Tumor necrosis factor p55 and p75 receptors are involved in chemical-induced apoptosis of dentate granule neurons. J Neurochem 106:281–298

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ, Hooth MJ, Behl M, Travlos GS, Howard JL, Price CJ, McBride S, Mervis R, Mouton PR (2014) Developmental neurotoxicity of 3,3′,4,4′-tetrachloroazobenzene with thyroxine deficit: sensitivity of glia and dentate granule neurons in the absence of behavioral changes. Toxics 2(3):496–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrich-Noack P, Prehn JH, Krieglstein J (1996) TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose–response relationship and potential neuroprotective mechanisms. Stroke 27:1609–1614

    Article  CAS  PubMed  Google Scholar 

  • Henze DA, Urban NN, Barrionuevo G (2000) The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98:407–427

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Kim LJ, Mealey R, Marsh HC Jr, Zhang Y, Tenner AJ, Connolly ES Jr, Pinsky DJ (1999) Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science 285:595–599

    Article  CAS  PubMed  Google Scholar 

  • Jensen MB, Hegelund IV, Poulsen FR, Owens T, Zimmer J, Finsen B (1999) Microglial reactivity correlates to the density and the myelination of the anterogradely degenerating axons and terminals following perforant path denervation of the mouse fascia dentata. Neuroscience 93:507–518

    Article  CAS  PubMed  Google Scholar 

  • Johnson SA, Lampert-Etchells M, Pasinetti GM, Rozovsky I, Finch CE (1992) Complement mRNA in the mammalian brain: responses to Alzheimer’s disease and experimental brain lesioning. Neurobiol Aging 13:641–648

    Article  CAS  PubMed  Google Scholar 

  • Kanaan NM, Kordower JH, Collier TJ (2008) Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. Glia 56(11):1199–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Karperien A, Ahammer H, Jelinek HF (2013) Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci 7:3. doi:10.3389/fncel.2013.00003

    Article  PubMed  PubMed Central  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    Article  CAS  PubMed  Google Scholar 

  • Kouser L, Madhukaran SP, Shastri A, Saraon A, Ferluga J, Al-Mozaini M, Kishore U (2015) Emerging and novel functions of complement protein C1q. Front Immunol 6:317. doi:10.3389/fimmu.2015.00317

    Article  PubMed  PubMed Central  Google Scholar 

  • Lattanzi W, Corvino V, Di Maria V, Michetti F, Geloso MC (2013) Gene expression profiling as a tool to investigate the molecular machinery activated during hippocampal neurodegeneration induced by trimethyltin (TMT) administration. Int J Mol Sci 14:16817–16835

    Article  PubMed  PubMed Central  Google Scholar 

  • Liva SM, Kahn MA, Dopp JM, de Vellis J (1999) Signal transduction pathways induced by GM-CSF in microglia: significance in the control of proliferation. Glia 26:344–352

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lodge PA, Sriram S (1996) Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J Leukoc Biol 60:502–508

    CAS  PubMed  Google Scholar 

  • Lynch NJ, Willis CL, Nolan CC, Roscher S, Fowler MJ, Weihe E, Ray DE, Schwaeble WJ (2004) Microglial activation and increased synthesis of complement component C1q precedes blood–brain barrier dysfunction in rats. Mol Immunol 40:709–716

    Article  CAS  PubMed  Google Scholar 

  • Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  • McPherson CA, Merrick BA, Harry GJ (2014) In vivo molecular markers for pro-inflammatory cytokine M1 stage and resident microglia in trimethyltin-induced hippocampal injury. Neurotox Res 25:45–56

    Article  CAS  PubMed  Google Scholar 

  • Michailidou I, Wilems JG, Kooi EJ, van Eden C, Gold SM, Geurts JJ, Baas R, Huitinga I, Ramaglia V (2015) Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann Neurol 77:1007–1026

    Article  CAS  PubMed  Google Scholar 

  • Moran LB, Graeber MB (2004) The facial nerve axotomy model. Brain Res Brain Res Rev 44:154–178

    Article  PubMed  Google Scholar 

  • Ogden CA, Elkon KB (2006) Role of complement and other innate immune mechanisms in the removal of apoptotic cells. Curr Dir Autoimmun 9:120–142

    CAS  PubMed  Google Scholar 

  • Ogita K, Nishiyama N, Sugiyama C, Higuchi K, Yoneyama M, Yoneda Y (2005) Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: evaluation using adult mice treated with trimethyltin chloride as a model. J Neurosci Res 82:609–621

    Article  CAS  PubMed  Google Scholar 

  • Orlowski D, Slotys Z, Janeczko K (2003) Morphological development of microglia in the postnatal rat brain. A quantitative study. Int J Dev Neurosci 21:445–450

    Article  PubMed  Google Scholar 

  • Pasinetti GM, Johnson SA, Rozovsky I, Lampert-Etchells M, Morgan DG, Gordon MN, Morgan TE, Willoughby D, Finch CE (1992) Complement C1qB and C4 mRNAs responses to lesioning in rat brain. Exp Neurol 118:117–125

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2(5):e00047. doi:10.1042/AN20100024

    PubMed  Google Scholar 

  • Pisalyaput K, Tenner AJ (2008) Complement component C1q inhibits beta-amyloid- and serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms. J Neurochem 104:696–707

    CAS  PubMed  Google Scholar 

  • Planas AM, Soriano MA, Berruezo M, Justicia C, Estrada A, Pitarch S, Ferrer I (1996) Induction of Stat3, a signal transducer and transcription factor, in reactive microglia following transient focal cerebral ischaemia. Eur J Neurosci 8:2612–2618

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Ann Rev Immunol 27:119–145

    Article  CAS  Google Scholar 

  • Ransohoff RM, Stevens B (2011) Neuroscience. How many cell types does it take to wire a brain? Science 333:1391–1392

    Article  CAS  PubMed  Google Scholar 

  • Rao K, Lund RD (1993) Optic nerve degeneration induces the expression of MHC antigens in the rat visual system. J Comp Neurol 336:613–627

    Article  CAS  PubMed  Google Scholar 

  • Rasband WS (1997–2015) ImageJ. U.S. National Institutes of Health, Bethesda. http://imagej.nih.gov/ij/. Accessed 15 Jan 2016

  • Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogister B, Delree P, Leprince P, Martin D, Sadzot C, Malgrange B, Munaut C, Rigo JM, Lefebvre PP, Octave JN et al (1993) Transforming growth factor beta as a neuronoglial signal during peripheral nervous system response to injury. J Neurosci Res 34:32–43

    Article  CAS  PubMed  Google Scholar 

  • Rosen AM, Stevens B (2010) The role of the classical complement cascade in synapse loss during development and glaucoma. Adv Exp Med Biol 703:75–93

    Article  PubMed  Google Scholar 

  • Rozovsky I, Morgan TE, Willoughby DA, Dugichi-Djordjevich MM, Pasinetti GM, Johnson SA, Finch CE (1994) Selective expression of clusterin (SGP-2) and complement C1qB and C4 during responses to neurotoxins in vivo and in vitro. Neuroscience 62:741–758

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Stevens B (2013) Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol 23:1034–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer MK, Schwaeble WJ, Post C, Salvati P, Calabresi M, Sim RB, Petry F, Loos M, Weihe E (2000) Complement C1q is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J Immunol 164:5446–5452

    Article  CAS  PubMed  Google Scholar 

  • Sellar GC, Reid KBM (1990) Molecular cloning and alignment of the genes coding for the A, B, and C chains of human C1q of the serum complement system. Biochem J 274:481–490

    Article  Google Scholar 

  • Shi Q, Colodner KJ, Matousek SB, Merry K, Hong S, Kenison JE, Frost JL, Le KX, Li S, Dodart JC, Caldarone BJ, Stevens B, Lemere CA (2015) Complement C3-deficient mice fail to display age-related hippocampal decline. J Neurosci 35:13029–13042

    Article  CAS  PubMed  Google Scholar 

  • Sjoberg AP, Trouw LA, Blom AM (2009) Complement activation and inhibition: a delicate balance. Trends Immunol 30:83–90

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Svensson M, Aldskogius H (1993) Synaptic density of axotomized hypoglossal motorneurons following pharmacological blockade of the microglial cell proliferation. Exp Neurol 120:123–131

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Kawabata S, Komaki Y, Shibata S, Hikishima K, Toyama Y, Okano H, Nakamura M (2014) Inflammatory cascades mediate synapse elimination in spinal cord compression. J Neuroinflamm 11:40. doi:10.1186/1742-2094-11-40

    Article  Google Scholar 

  • Takizawa F, Tsuji S, Nagasawa S (1996) Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS Lett 397:269–272

    Article  CAS  PubMed  Google Scholar 

  • Tenner AJ, Frank MM (1987) A sensitive specific hemolytic assay for proenzyme C1. Complement 4:42–52

    CAS  PubMed  Google Scholar 

  • Terai K, Walker DG, McGeer EG, McGeer PL (1997) Neurons express proteins of the classical complement pathway in Alzheimer disease. Brain Res 769:385–390

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R (2007) Evidence for synaptic stripping by cortical microglia. Glia 55:360–368

    Article  PubMed  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069

    Article  CAS  PubMed  Google Scholar 

  • Trouw LA, Blom AM, Gasque P (2008) Role of complement and complement regulators in the removal of apoptotic cells. Mol Immunol 45:1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Valverde F (1998) Golgi atlas of the postnatal mouse brain. Springer, New York

    Book  Google Scholar 

  • van Kooten C, Fiore N, Trouw LA, Csomor E, Xu W, Castellano G, Daha MR, Gelderman KA (2008) Complement production and regulation by dendritic cells: molecular switches between tolerance and immunity. Mol Immnol 45:4064–4072

    Article  Google Scholar 

  • Veerhuis R, Nielsen HM, Tenner AJ (2011) Complement in the brain. Mol Immunol 48:1592–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  Google Scholar 

  • Webster SD, Park M, Fonseca MI, Tenner AJ (2000) Structural and functional evidence for microglial expression of C1qR(P), the C1q receptor that enhances phagocytosis. J Leukoc Biol 67:109–116

    CAS  PubMed  Google Scholar 

  • Weinstein JR, Quan Y, Hanson JF, Colonna L, Iorga M, Honda S, Shibuya K, Shibuya A, Elkon KB, Möller T (2015) IgM-dependent phagocytosis in microglia is mediated by complement receptor 3, not Fcα/μ receptor. J Immunol 195:5309–5317

    Article  CAS  PubMed  Google Scholar 

  • Wilms H, Hartmann D, Sievers J (1997) Ramification of microglia, monocytes and macrophages in vitro: influences of various epithelial and mesenchymal cells and their conditioned media. Cell Tissue Res 287:447–458

    Article  CAS  PubMed  Google Scholar 

  • Woodruff TM, Costantini KJ, Crane JW, Atkin JD, Monk PN, Taylor SM, Noakes PG (2008) The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J Immunol 181:8727–8734

    Article  CAS  PubMed  Google Scholar 

  • Yu JX, Bradt BM, Cooper NR (2002) Constitutive expression of proinflammatory complement components by subsets of neurons in the central nervous system. J Neuroimmunol 123:91–101

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Ludlow LE, Hasang W, Rogerson SJ, Jaworowski A (2012) Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages. Malar J 11:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Division of Intramural Research and the Division of National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services #1Z01ES101623 and ES021164. The authors graciously acknowledge the generous gift of C1q antibody from Dr. Andrea Tenner at the University of California-Irvine, and FD NeuroTechnologies for the CuAg staining. The views expressed in this article are those of the authors and they do not necessarily represent the views or policies of the US EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jean Harry.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures were performed in accordance with the ethical standards of the NIEHS/NIH.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraft, A.D., McPherson, C.A. & Harry, G.J. Association Between Microglia, Inflammatory Factors, and Complement with Loss of Hippocampal Mossy Fiber Synapses Induced by Trimethyltin. Neurotox Res 30, 53–66 (2016). https://doi.org/10.1007/s12640-016-9606-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9606-8

Keywords

Navigation