Skip to main content

Intra-arterial Radiopeptide Infusions with High Activity of 111In-Octreotide: From “Aretaieion Protocol” to the Temporal Intra-arterial Port Installation

  • Chapter
  • First Online:
Liver Intra-arterial PRRT with 111In-Octreotide
  • 235 Accesses

Abstract

Gastroenteropancreatic neuroendocrine tumors (NETs) are slow-growing malignancies, expressing somatostatin receptors on their cell membranes. These receptors can be targets for therapy with 111In-labeled somatostatin analogues. In 1996 Eric Krenning injected for the first time intravenously 111In-Octreotide (OctreoScan®, Mallinckrodt, Petten, the Netherlands) as a new treatment approach to confrontate particularly unresectable neuroendocrine tumors. In our Institution, we started treating this rare category of neoplasms exclusively injecting intra-arterially 111In-Octreotide, in high activities, focused our interest on liver metastases after catheterization of the hepatic artery (“Aretaieion Protocol”). The radiopeptide was infused in repeated doses ranging from 4.070 GBq (110 mCi) to 5.920 GBq (160 mCi) with a time interval between the sessions of 6–8 weeks. It was aimed to achieve a tumor-absorbed dose according to the dosimetry followed, over 70 Gy and tumoricidal results due to the effect of the Auger and Internal Conversion 111Indium’s Electron Emission. Follow-up at bi-monthly intervals was performed by means of ultrasonography (U/S) and every 6 months by contrast material-enhanced computed tomography (CT) and/or magnetic resonance imaging (MRI). This therapeutic procedure is described in detail in this chapter, based on the follow-up experience in more than 80 patients exceeding in total 800 intra-arterial catheterizations, in a time period of more than a decade. Advantages and limitations as a first-line treatment scheme for the management of this rare category of tumors are analyzed. In parallel with other authors tightly working in the field using 90Y- and/or 117Lu-labeled peptides, we predicted the dynamic of PRRT with 111In-Octreotide plus best supportive care (30 mg Octreotide LAR) as first-line therapy in progressive neuroendocrine tumors, 20 years before its final establishment as such in 2017, after Netter-1 study publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ki-67 is a nuclear antigen expressed in proliferating cells and is expressed during the GI, S, G2, and M phases of the cell cycle. Cells are then stained with a Ki-67 antibody, and the number of stained nuclei is then expressed as a percentage of total tumor cells. The name is derived from the city of origin (Kiel, Germany) and the “67” number of the original clone in the 96-well plate.

    The Mitotic Index, expressed as the number of cells per microscopic field is determined by counting the number of cells undergoing mitosis through a light microscope on hematoxylin and eosin (H and E) stained sections. Usually the number of mitotic figures is expressed as the total number in a defined number of high-power fields, i.e., 10 mitoses in 10 high power fields. Since the field of vision area can considerably vary between different microscopes, the exact area of the high-power fields should be defined in order to compare results from different studies.

  2. 2.

    Uptake on the OctreoScan was scored on planar images using a four-point scale; [grade 1: activity (uptake) equal to that in the normal liver, grade 2: activity (uptake) greater than that in the normal liver but less than that in the left kidney and spleen, grade 3: activity (uptake) equal to that in the left kidney, grade 4: activity (uptake) at least equal to the half of the sum of the activities in spleen and left kidney]. Purpose of this four-point scale is to assess candidacy for peptide receptor radionuclide therapy (PRRT), with a score mandatorily greater than 2, i.e., 3 and 4.

References

  1. Barakat MT, Meeran K, Bloom SR. Neuroendocrine tumors. Endocr Relat Cancer. 2004;11:1–18.

    Article  CAS  PubMed  Google Scholar 

  2. Leotlela PD, Jauch A, Holtgrave-Grez H, et al. Genetics of neuroendocrine tumors and carcinoid tumors. Endocr Relat Cancer. 2003;10:437–50.

    Article  CAS  PubMed  Google Scholar 

  3. Thakker RV. Multiple endocrine neoplasia. Syndromes of the twentieth century. J Clin Endocrinol Metab. 1998;83(8):2617–20.

    CAS  PubMed  Google Scholar 

  4. Thakker RV. Multiple endocrine neoplasia type 1. In: De Groot LJ, Jameson JL, editors. Endocrinology. 5th ed. Philadelphia: Elsevier Saunders Publs; 2006. p. 3509–31.

    Google Scholar 

  5. Gagel RF. Multiple endocrine neoplasia type 2. In: De Groot LJ, Jameson JL, editors. Endocrinology. 5th ed. Philadelphia: Elsevier Saunders Publs; 2006. p. 3533–50.

    Google Scholar 

  6. Lawrence B, Gustafsson BI, Chan A, et al. The epidemiology of gastro-entero-pancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40:1–18.

    Article  PubMed  Google Scholar 

  7. Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem. 1969;17:303–13.

    Article  CAS  PubMed  Google Scholar 

  8. Radu I. In memoriam of Professor A. G. E. Pearse (1916–2003). Roman J Morphol Embryol. 2005;46(3):257.

    Google Scholar 

  9. Chan MY, Ma KW, Chan A. Surgical management of neuroendocrine tumor-associated liver metastases: a review. Gland Surg. 2018;7(1):28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Musunuru S, Chen H, Rajpal S, et al. Metastatic neuroendocrine hepatic tumors: resection improves survival. Arch Surg. 2006;141(10):1000–4.

    Article  PubMed  Google Scholar 

  11. Reddy SK, Clary BM. Neuroendocrine liver metastases. Surg Clin N Am. 2010;90(4):853–61.

    Article  PubMed  Google Scholar 

  12. Mayo SC, de Jong MC, Pulitano C, et al. Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multi-institutional analysis. Ann Surg Oncol. 2010;17(12):3129–36.

    Article  PubMed  Google Scholar 

  13. Clary B. Treatment of isolated neuroendocrine liver metastases. J Gastrointest Surg. 2006;10(3):332–4.

    Article  PubMed  Google Scholar 

  14. Glazer ES, Tseng JF, Al-Refaie W, et al. Long-term survival after surgical management of neuroendocrine hepatic metastases. HPB. 2010;12(6):427–33.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Limouris GS, Chatziioannou A, Kontogeorgakos D, et al. Selective hepatic arterial infusion of In-111-DTPA-Phe1-octreotide in neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging. 2008;35:1827–37.

    Google Scholar 

  16. O’Toole D, Maire F, Ruszniewski P. Ablative therapies for liver metastases of digestive neuroendocrine tumors. Endocr Relat Cancer. 2003;10:463–8.

    Article  PubMed  Google Scholar 

  17. Gillams A, Cassoni A, Conway G, et al. Radiofrequency ablation of neuro-endocrine liver metastases; the Middlesex experience. Abdom Imaging. 2005;30:435–41.

    Article  CAS  PubMed  Google Scholar 

  18. Eriksson J, Stålberg P, Nilsson A, et al. Surgery and radiofrequency ablation for treatment of liver metastases from midgut and foregut carcinoids and endocrine pancreatic tumors. World J Surg. 2008;32:930–8.

    Article  PubMed  Google Scholar 

  19. Tombesi P, Di Vece F, Sartori S. Laser ablation for hepatic metastases from neuroendocrine tumors. Am J Roentgenol. 2015;204:W732. https://doi.org/10.2214/AJR.14.14242.

    Article  Google Scholar 

  20. Pacella CM, Nasoni S, Grimaldi F, et al. Laser ablation with or without chemoembolization for unresectable neuroendocrine liver metastases: a pilot study. Int J Endocr Oncol. 2016;3:97–107.

    Article  CAS  Google Scholar 

  21. Brown KT, Koh BY, Brody LA, et al. Particle embolization of hepatic neuroendocrine metastases for control of pain and hormonal symptoms. J Vasc Interv Radiol. 1999;10:397–403.

    Article  CAS  PubMed  Google Scholar 

  22. Kanabar R, Barriuso J, McNamara MG, et al. Liver embolization for patients with neuroendocrine neoplasms: systematic review. Neuroendocrinology. 2021;111(4):354–69. https://doi.org/10.1159/000507194.

    Article  CAS  PubMed  Google Scholar 

  23. Pericleous M, Caplin ME, Tsochatzis E, et al. Hepatic artery embolization in advanced neuroendocrine tumors: efficacy and long-term outcomes. Asia Pac J Clin Oncol. 2016;12(1):61–9.

    Article  PubMed  Google Scholar 

  24. Chen JX, Rose S, White SB, et al. Embolotherapy for neuroendocrine tumor liver metastases: prognostic factors for hepatic progression-free survival and overall survival. Cardiovasc Intervent Radiol. 2017;40(1):69–80.

    Article  PubMed  Google Scholar 

  25. Sun JH, Zhou TY, Zhang YL, et al. Efficacy of transcatheter arterial chemoembolization for liver metastases arising from pancreatic cancer. Oncotarget. 2017;8(24):39746–55.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Diculescu M, Atanasiu C, Arbanas T, et al. Chemoembolization in the treatment of metastatic ileocolic carcinoid. Rom J Gastroenterol. 2002;11:141–7.

    PubMed  Google Scholar 

  27. King J, Quinn R, Glenn DM, et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer. 2008;113:921–9.

    Article  PubMed  Google Scholar 

  28. Kennedy AS, Dezarn WA, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol. 2008;31:271–9.

    Article  PubMed  Google Scholar 

  29. Braat AJAT, Prince JF, van Rooij R, et al. Safety analysis of holmium-166 microsphere scout dose imaging during radioembolisation work-up: a cohort study. Eur Radiol. 2018;28(3):920–8.

    Article  PubMed  Google Scholar 

  30. Braat AJAT, Kwekkeboom DJ, Kam BLR, et al. Additional hepatic 166Ho-radioembolization in patients with neuroendocrine tumours treated with 177Lu-DOTATATE; a single center, interventional, non-randomized, non-comparative, open label, phase II study (HEPAR PLUS trial). BMC Gastroenterol. 2018;18(1):84. https://doi.org/10.1186/s12876-018-0817-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braat AJAT, Kappadath SC, Ahmadzadehfar H, et al. Radioembolization with 90Y resin microspheres of neuroendocrine liver metastases: international multicenter study on efficacy and toxicity. Cardiovasc Intervent Radiol. 2019;42(3):413–25.

    Article  CAS  PubMed  Google Scholar 

  32. Eriksson B, Annibale B, Bajetta E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: chemotherapy in patients with neuroendocrine tumors. Neuroendocrinology. 2009;90:214–9.

    Article  CAS  PubMed  Google Scholar 

  33. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:501–13.

    Article  CAS  PubMed  Google Scholar 

  34. Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28:69–76.

    Article  CAS  PubMed  Google Scholar 

  35. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Modlin IM, Pavel M, Kidd M, et al. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumors. Aliment Pharmacol Ther. 2010;31:169–88.

    CAS  PubMed  Google Scholar 

  37. Vitale G, Dicitore A, Sciammarella C, et al. Pasireotide in the treatment of neuroendocrine tumors: a review of the literature. Endocr Relat Cancer. 2018;25(6):R351–64.

    Article  CAS  PubMed  Google Scholar 

  38. Wolin E, Jarzab B, Eriksson B, et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des Devel Ther. 2015;9:5075–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Godara A, Siddiqui NS, Byrne MM, et al. The safety of lanreotide for neuroendocrine tumor. Expert Opin Drug Saf. 2019;18(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  40. Öberg K. Interferon in the management of neuroendocrine GEP tumors. Digestion. 2000;62(Suppl 1):92–7.

    Article  PubMed  Google Scholar 

  41. Grande E, Capdevila J, Castellano D, et al. Pazopanib in pretreated advanced neuroendocrine tumors: a phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann Oncol. 2015;26(9):1987–93.

    Article  CAS  PubMed  Google Scholar 

  42. Ahn HK, Choi JY, Kim KM, et al. Phase II study of pazopanib mono-therapy in metastatic gastroenteropancreatic neuroendocrine tumours. Br J Cancer. 2013;109:1414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kouvaraki MA, Ajani JA, Hoff P, et al. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J Clin Oncol. 2004;22:4762–71.

    Article  CAS  PubMed  Google Scholar 

  44. Moertel CG, Lefkopoulos M, Lipsitz S, et al. Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1992;326:519–23.

    Article  CAS  PubMed  Google Scholar 

  45. Bosman FT. World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC Press; 2010.

    Google Scholar 

  46. Rindi G, Klimstra DS, Abedi-Ardekani B, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31:1770–86.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sandström M, Garske U, Granberg D, et al. Individualized dosimetry in patients undergoing therapy with (177) Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37:212–25.

    Article  PubMed  Google Scholar 

  48. Sandström M, Garske-Román U, Granberg D, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54:33–41.

    Article  PubMed  CAS  Google Scholar 

  49. Kontogeorgakos D, Dimitriou P, Limouris GS, et al. Patient-specific dosimetry calculations using mathematic models of different atomic sizes during therapy with In-111-DTPA-D-Phe1 Octreotide infusions after catheterization of the hepatic artery. J Nucl Med. 2006;47(9):1476–82.

    CAS  PubMed  Google Scholar 

  50. Garske-Román U, Sandström M, Fröss Baron K, et al. Prospective observational study of 177Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumors (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45:970–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  52. Pazdur R. Endpoints for assessing drug activity in clinical trials. Oncologist. 2008;13:19–21.

    Article  PubMed  Google Scholar 

  53. Limouris GS, Karfis I, Chatziioannou A, et al. Super-selective hepatic arterial infusions as established technique (‘Aretaieion’ protocol) of 177 Lu DOTA-TATE inoperable neuroendocrine liver metastases of gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging. 2012;56:551–8.

    CAS  PubMed  Google Scholar 

  54. Davoodabadi A, Abdourrahimkashi E, Khamehchian T, et al. Effects of right hepatic artery ligation. Trauma. 2018;23(3):e63240. https://doi.org/10.5812/traumamon.63240.

    Article  Google Scholar 

  55. Couinaud C. Le foie; études anatomiques et chirurgicales. Paris: Masson; 1957.

    Google Scholar 

  56. Ertl HH, Feinendegen LE, Heiniger HJ. Iodine-125, a tracer in cell biology: physical properties and biological aspects. Phys Med Biol. 1970;15:447–56.

    Article  CAS  PubMed  Google Scholar 

  57. Hofer KG, Hughes WL. Radiotoxicity of intranuclear tritium, iodine-125 and iodine-131. Radiat Res. 1971;47:94–109.

    Article  CAS  PubMed  Google Scholar 

  58. Bradley EW, Chan PC, Adelstein SJ. The radiotoxicity of iodin-125 in mammalian cells. I. Effects on the survival curve of radioiodine incorporated into DNA. Radiat Res. 1975;64:555–63.

    Article  CAS  PubMed  Google Scholar 

  59. Feinendegen LE. Biological damage from the Auger effect, possible benefits. Radiat Environ Biophys. 1975;12:85–99.

    Article  CAS  PubMed  Google Scholar 

  60. Howell RW, Narra VR, Rao DV, et al. Radiobiological effects of intracellular polonium-210 alpha emissions: a comparison with Auger-emitters. Radiat Prot Dosim. 1990;31:325–8.

    Article  CAS  Google Scholar 

  61. Rao DV, Narra VR, Govelitz GF, et al. In vivo effects of 5.3 MeV alpha particles from Po-210 in mouse testes: comparison with internal Auger emitters. Radiat Prot Dosim. 1990;31:329–32.

    Article  CAS  Google Scholar 

  62. Sastry KSR, Rao DV. Dosimetry of low energy electrons. In: Rao DV, Chandra R, Graham M, editors. . New York: American Institute of Physics; 1984. p. 169–208.

    Google Scholar 

  63. Kassis AI. The amazing world of Auger electrons. Int J Radiat Biol. 2004;80:789–803.

    Article  CAS  PubMed  Google Scholar 

  64. Buchegger F, Adamer F, Schaffland AO, et al. Highly efficient DNA incorporation of intratumourally injected [125I] iododeoxyuridine under thymidine synthesis blocking in human glioblastoma xenografts. Int J Cancer. 2004;110:145–9.

    Article  CAS  PubMed  Google Scholar 

  65. Buchegger F, Perillo-Adamer F, Dupertuis YM, et al. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging. 2006;33:1352–63.

    Article  PubMed  Google Scholar 

  66. Nikjoo H, Girard P, Charlton DE, et al. Auger electrons—a nanoprobe for structural, molecular and cellular processes. Radiat Prot Dosim. 2006;122:72–9.

    Article  CAS  Google Scholar 

  67. Valkema R, De Jong M, Bakker WH, et al. Phase I study of peptide receptor radionuclide therapy with [111In-DTPA°]Octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32(2):110–22.

    Article  PubMed  Google Scholar 

  68. Buscombe JR, Caplin ME, Hilson JW. Long-term efficacy of high-activity 111In-pentetreotide therapy in patients with disseminated neuroendocrine tumors. J Nucl Med. 2003;44:1–6.

    CAS  PubMed  Google Scholar 

  69. Anthony LB, Woltering EA, Espanan GD, et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 2002;32(2):123–32.

    Article  PubMed  Google Scholar 

  70. Delpassand ES, Samarghandi A, Zamanian S. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with Somatostatin receptor–expressing neuroendocrine tumors: the first US phase 2 experience. Pancreas. 2014;43(4):518–25. Lippincott Williams & Wilkins.

    Article  CAS  PubMed  Google Scholar 

  71. Pool SE, Kam B, Breeman WAP. Increasing intrahepatic tumour uptake of 111In-DTPA-octreotide by loco regional administration. Eur J Nucl Med Mol Imaging. 2009;36:S427.

    Google Scholar 

  72. Kratochwil C, Giesel FL, López-Benítez R, et al. Intraindividual comparison of selective arterial versus venous 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuro-endocrine tumors. Clin Cancer Res. 2010;16(10):2899–905.

    Article  CAS  PubMed  Google Scholar 

  73. Frangos S, Buscombe JR. Why should we be concerned about a “g”? Eur J Nucl Med Mol Imaging. 2019;46:519. https://doi.org/10.1007/s00259-018-4204-z.

    Article  PubMed  Google Scholar 

  74. Kress O, Wagner HJ, Wied M, et al. Transarterial chemoembolization of advanced liver metastases of neuroendocrine tumours; a retrospective single-center analysis. Digestion. 2003;68:94–101.

    Article  CAS  PubMed  Google Scholar 

  75. Dodd GD, Soulen MC, Kane RA, et al. Minimally invasive treatment of malignant hepatic tumours; at the threshold of major breakthrough. Radiographics. 2000;20:9–27.

    Article  PubMed  Google Scholar 

  76. Limouris GS, Dimitropoulos N, Kontogeorgakos D, et al. Evaluation of the therapeutic response to In-111-DTPA octreotide-based targeted therapy in liver metastatic neuroendocrine tumors according to CT/MRI/US findings. Cancer Biother Radiopharm. 2005;20(2):215–7.

    CAS  PubMed  Google Scholar 

  77. Ueda K, Matsui O, Kawamori Y, et al. Hypervascular hepatocellular carcinoma; evaluation of the hemodynamics with dynamic CT during hepatic arteriography. Radiobiology. 1998;206:161–6.

    CAS  Google Scholar 

  78. Kanazawa S, Yasui K, Doke T, et al. Hepatic arteriography in patients with hepatocellular carcinoma: change in findings caused by balloon occlusion of tumor-draining hepatic veins. AJR Am J Roentgenol. 1995;165:1415–9.

    Article  CAS  PubMed  Google Scholar 

  79. Lautt WW, Greenway CV. Conceptual review of the hepatic vascular bed. Hepatology. 1987;7:952–63.

    Article  CAS  PubMed  Google Scholar 

  80. Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954;30:969–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Goseki N, Nokasa T, Endo M, et al. Nourishment of hepatocellular carcinoma through the portal blood flow with and without transcatheter arterial embolization. Cancer. 1995;76:736–42.

    Article  CAS  PubMed  Google Scholar 

  82. Krenning EP, de Jong M, Kooij PP, et al. Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann Oncol. 1999;10(Suppl 2):S23–9.

    Article  PubMed  Google Scholar 

  83. Rindi G, Klöppel G, Alhman H, et al. TNM staging of foregut neuroendocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rindi G, Klöppel G, Couvelard A, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451:757–62.

    Article  CAS  PubMed  Google Scholar 

  85. Jandl JH, Katz JH. The plasma-to-cell cycle of transferrin. J Clin Invest. 1963;42(3):314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ka Luk C. Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes. Biochemistry. 1971;10(15):2838–43.

    Article  CAS  PubMed  Google Scholar 

  87. Limouris GS, Lamprakos L, Kontogeorgakos D, et al. Co-infusion of DTPA during peptide receptor radionuclide therapy with In-111 DTPA Octreotide reduces the ionic indium-111/114m contaminants. Eur J Nucl Med. 2006;33(Suppl 2):775. [abstract].

    Google Scholar 

  88. Kwekkeboom DJ, Bakker WH, Kooij PP, et al. [177Lu-DOTAOTyr3]Octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med. 2001;28(9):1319–25.

    Article  CAS  PubMed  Google Scholar 

  89. de Jong M, Valkema R, van Gameren A, et al. Inhomogeneous localization of radioactivity in the human kidney after injection of (111In-DTPA) octreotide. Nucl Med. 2004;45:1168–71.

    Google Scholar 

  90. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23.

    Article  CAS  PubMed  Google Scholar 

  91. Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42:5–19.

    Article  CAS  PubMed  Google Scholar 

  92. Kesavan M, Claringbold PG, Turner JH. Hematological toxicity of combined 177Lu-octreotate radiopeptide chemotherapy of gastroentero-pancreatic neuroendocrine tumors in long-term follow-up. Neuroendocrinology. 2014;99:108–17.

    Article  CAS  PubMed  Google Scholar 

  93. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.

    Article  CAS  PubMed  Google Scholar 

  94. Sabet A, Khalaf F, Yong-Hing CJ, et al. Can peptide receptor radionuclide therapy be safely applied in florid bone metastases? A pilot analysis of late stage osseous involvement. Nuklearmedizin. 2014;53:54–9.

    Article  CAS  PubMed  Google Scholar 

  95. Forrer F, Waldherr C, Maecke HR. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors. Anticancer Res. 2006;26:703–7.

    CAS  PubMed  Google Scholar 

  96. Bushnell DL, O’Dorisio TM, O’Dorisio MS, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28(1):652–9.

    Google Scholar 

  97. Waldherr C, Pless M, Maecke HR, et al. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol. 2001;12:941–5.

    Article  CAS  PubMed  Google Scholar 

  98. Valkema R, Pauwels S, Kvols L, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2006;36(2):147–56.

    Article  PubMed  Google Scholar 

  99. Krenning EP, Kooij PPM, Bakker WH, et al. Radiotherapy with a radiolabeled somatostatin analogue, [In-DTPA-d-Phe]-octreotide. Annals of the New York Academy of Sciences. 1994;733(1 Molecular and):496–506.

    Google Scholar 

  100. Caplin ME, Mielcarek W, Buscombe JR, et al.Toxicity of high-activity 111In-octreotide therapy in patients with disseminated neuroendocrine tumors. Nuclear Medicine Communications. 2000;21(1):97–102.

    Google Scholar 

  101. Tiensuu Janson E, Eriksson B, Öberg K, et al. Treatment with high dose [111In-DTPA-D-PHE1]-octreotide in patients with neuroendocrine tumors. Evaluation of therapeutic and toxic effects. Acta Oncologica (Stockholm). 1999;38(3):373–77.

    Google Scholar 

  102. Nguyen C, Faraggi M, Anne-Laure Giraudet A-L, et al. Long-term efficacy of radionuclide therapy in patients with disseminated neuroendocrine tumors uncontrolled by conventional therapy. Journal of Nuclear Medicine. 2004;45(10)1660–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios S. Limouris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Limouris, G.S. (2021). Intra-arterial Radiopeptide Infusions with High Activity of 111In-Octreotide: From “Aretaieion Protocol” to the Temporal Intra-arterial Port Installation. In: Limouris, G.S. (eds) Liver Intra-arterial PRRT with 111In-Octreotide. Springer, Cham. https://doi.org/10.1007/978-3-030-70773-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70773-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70772-9

  • Online ISBN: 978-3-030-70773-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics