Skip to main content
Log in

Biological damage from the Auger effect, possible benefits

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

Decay of radioactive isotopes by K-capture leads to the Auger effect and results in the loss of several orbital electrons and the emission of X-rays. Whereas radiation effects are produced from the emitted electrons, the consequences of the Auger effect are strictly localized to the site of the decaying nuclide.

The paper reviews the biological consequences of the decay of125I which produces the Auger effect. Nearly all data were obtained from DNA labeled with125I-5-iodo-2′-deoxyuridine (IUdR) in bacteria and mammalian cells. Parameters of effects were cell death, DNA strand breaks, and mutation induction. In order to recognize in a cell the contribution from the Auger effect and that of absorbed radiation, experimental data are analysed in terms of the specific energy for the nuclear volume which contains the isotope.

The data indicate that decay of125I is far more toxic than is expected on the basis of absorbed dose to the labeled nucleus. Moreover, it is emphasized that the toxicity of the125I decay is largely determined by events immediately localized to the site of decay.

Because the consequences of the Auger effect are strictly localized to the molecular site of the decay,125I and perhaps other nuclides decaying by K-capture promise to be interesting tools in cell biology and molecular biology. First data on the Auger effect as a tool are summarized.

It appears that recognizable biological damage is only observed when the Auger effect takes place in vitally important molecules, an example of which is DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auger, P.: L'effet photoélectrique composé. Ann. phys.10 (6), 183 (1926)

    Google Scholar 

  2. IAEA: Biological effects of transmutation and decay of incorporated radioisotopes. Vienna: Proc. Panel IAEA 1967

  3. Krisch, R. E., Zelle, M. R.: Biological effects of radioactive decay: The role of the transmutation effect. Advanc. Rad. Biol.3, 177–213. New York: Academic Press 1969

    Google Scholar 

  4. Dertinger, H., Jung, H.: Molekulare Strahlenbiologie. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  5. Hall, E. J.: Radiobiology for the radiologist. Hagerstown/Maryland: Harper & Row Publ. 1973

    Google Scholar 

  6. Cleaver, J. E., Thomas, G. H., Burki, H. J.: Biological damage from intranuclear tritium: DNA strand breaks and their repair. Science177, 996–998 (1972)

    Google Scholar 

  7. Corry, P. M., Cole, A.: Double strand rejoining in mammalian DNA. Nature New Biol.245, 100–101 (1973)

    Google Scholar 

  8. Bauchinger, M.: Strahleninduzierte Chromosomenaberrationen. In: Handbuch der Medizinischen Radiologie, Strahlenbiologie, Teil 3, S. 127–170. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  9. Veatch, N., Okada, S.: Radiation-induced breaks of DNA in cultured mammalian cells. Biophys. J.9, 330–386 (1969)

    Google Scholar 

  10. Hagen, U.: Strahlenwirkung auf Struktur und Funktion der Desoxyribonukleinsäure. Biophysik9, 279–289 (1973)

    Google Scholar 

  11. Weiss, J. J.: Chemical effects of ionizing radiation on nucleic acids and related compounds. Progr. Nucleic Acid Res.3, 103–144 (1964)

    Google Scholar 

  12. Effects of radioactive decay within the DNA molecule are currently discussed by Committee 24 of the National Council on Radiation Protection and Measurements (NCRP), U.S.A.

  13. Ertl, H. H., Feinendegen, L. E., Heiniger, H. J.: Iodine-125, a tracer in cell biology: Physical properties and biological aspects. Phys. Med. Biol.15, 447–456 (1970)

    Google Scholar 

  14. Hughes, W. L., Commerford, S. L., Gitlin, D., Krueger, R. C., Schultze, B., Shah, V., Reilly, P.: Deoxyribonucleic acid metabolism in vivo: I. Cell proliferation and death as measured by incorporation and elimination of iododeoxyuridine. Fed. Proc. Chem. Med.23, 640 (1964)

    Google Scholar 

  15. Feinendegen, L. E., Heiniger, H. J., Friedrich, G., Cronkite, E. P.: Differences in reutilization of thymidine in hemopoietic and lymphopoietic tissues of the normal mouse. Cell Tiss. Kinet.6, 573–585 (1973)

    Google Scholar 

  16. Feinendegen, L. E., Bond, V. P., Hughes, W. L.: 125-I-DU (5-iodo-2′-deoxyuridine) in autoradiographic studies of cell proliferation. Exp. Cell Res.43, 107–119 (1966)

    Google Scholar 

  17. Feinendegen, L. E., Bond, V. P., Hughes, W. L.: Physiological thymidine reutilization in rat bone marrow. Proc. Soc. exp. Biol. (N.Y.)122, 448–455 (1966)

    Google Scholar 

  18. Porschen, W., Feinendegen, L. E.: In vivo-Bestimmung der Zellverlustrate bei Experimentaltumoren mit markiertem Joddeoxyuridin. Strahlentherapie137, 718–723 (1969)

    Google Scholar 

  19. Hofer, K. G.: Radiation effects on death and migration of tumor cells in mice. Radiat. Res.43, 663–678 (1970)

    Google Scholar 

  20. Cheong, L., Rich, M. A., Eidinoff, M. L.: Introduction of the 5-halogenated uracil moiety into deoxyribonucleic acid of mammalian cells in culture. J. biol. Chem.235, 1441 (1960)

    Google Scholar 

  21. Feige, Y., Gavron, A.: On the biological effectiveness of 125-I in DNA relative to 3-H and 32-P. In: Proc. Third Symp. on Microdosimetry, Stresa/Italy, pp. 389–402. Luxemburg: Commission of the European Communities 1971

    Google Scholar 

  22. Feinendegen, L. E., Ertl, H. H., Bond, V. P.: Biological toxicity associated the Auger effect. In: Biophysical aspects of radiation quality, pp. 419–430. Vienna: IAEA 1971

    Google Scholar 

  23. Krisch, R. E.: Lethal effects of iodine-125 decay by electron capture in E. coli and bacteriophage T1. Int. J. Radiat. Biol.21, 167–189 (1972)

    Google Scholar 

  24. Ertl, H. H., Feinendegen, L. E.: Microdosimetry of iodine-125 with reference to the Auger effect. In: Proc. Second Symp. on Microdosimetry, Stresa/Italy, pp. 787–797. Brussels: Commission of the European Communities 1969

    Google Scholar 

  25. Hofer, K. G., Hughes, W. L.: Radiotoxicity of intranuclear tritium, 125-iodine, and 131-iodine. Radiat. Res.47, 94–109 (1971)

    Google Scholar 

  26. Roots, R., Feinendegen, L. E., Bond, V. P.: Comparative radiotoxicity of 3-H-IUdR and 125-IUdR after incorporation of cultured mammalian cells. In. Proc. Third Symp. on Microdosimetry, Stresa/Italy, pp. 371–388. Luxemburg: Commission of the European Communities 1971

    Google Scholar 

  27. Burki, H. J., Roots, R., Feinendegen, L. E., Bond, V. P.: Inactivation of mammalian cells after disintegration of 3-H or 125-I in cell DNA at −196° C. Int. J. Radiat. Biol.24, 363–375 (1973)

    Google Scholar 

  28. Feinendegen, L. E., Tisljar-Lentulis, G., Bond, V. P.: The biological toxicity of X-ray induced Auger effect in nuclides of medium mass, incorporated into cellular DNA. Presented at: 5th Intern. Congress of Rad. Research, Seattle/U.S.A. 1974

  29. Latarjet, R., Ekert, B., Apelgot, S., Rebeyrotte, N.: Etudes radio-biochémique sur l'ADN. J. chim. phys.58, 1046 (1961)

    Google Scholar 

  30. Schmidt, A., Hotz, G.: The occurence of double-strand breaks in coliphage T1-DNA by iodine-125 decay. Int. J. Radiat. Biol.24, 307–313 (1973)

    Google Scholar 

  31. Krisch, R. E., Ley, R. D.: Induction of lethality and DNA breakage in bacteriophage T4 by the decay of incorporated radiophosphorus (32-Pvs. 33-P) and radioiodine (125-I). Presented at: 7th Intern. Hot Atom Chemistry Symposium, Jülich 1973

  32. Christensen, R. C., Tobias, C. A., Taylor, W. D.: Heavy-ion-induced single and double strand breaks inΦ-X-174 replicative from DNA. Int. J. Radiat. Biol.22, 457–477 (1972)

    Google Scholar 

  33. Painter, R. B., Young, B. R., Burki, H. J.: Non-repairable strand breaks induced by 125-I incorporated into mammalian DNA. Submitted to Proc. nat. Acad. Sci. (Wash.)

  34. Ahnström, G., Ehrenberg, L., Hussian, S., Natarajan, A. T.: On the killing and mutagenic action inE. coli associated with the Auger effect during 125-I decay. Mutation Res.10, 247–250 (1970)

    Google Scholar 

  35. Carlson, T. A., White, M.: “Explosion” of multicharged molecular ions: Chemical consequences of inner shell vacancies in atoms. Proc. Symp. on Chemical Effects of Nuclear Transformations1, p. 23, Vienna 1965

  36. Burki, H. J.: Mammalian cells: Damage in late replicating DNA as the efficient cause of reproductive death. Exp. Cell Res. (in print)

  37. Tisljar-Lentulis, G., Feinendegen, L. E., Bond, V. P.: Biologische Strahleneffekte bei Einbau mittelschwerer Kerne ins Gewebe und Verwendung weicher Röntgenstrahlen. Strahlentherapie145, 656–662 (1973)

    Google Scholar 

  38. Halpern, A., Knust, E. J., Stöcklin, G.: Chemische Folgereaktionen des Auger-Effektes an organisch gebundenen Halogenatomen. Presented at: Gemeinsame Tagung der GDCh-Fachgruppe Kern-, Radio- und Strahlenchemie und der Ges. f. Nuklearmedizin, Freiburg 1972

  39. Diehn, B., Halpern, A., Stöcklin, G.: Specific inactivation of bovine carbonic anhydrase as the consequence of X-ray resonance absorption in the constituent zinc atom. Presented at: 5th Intern. Congress of Rad. Research, Seattle/U.S.A. 1974

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. H. Muth on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinendegen, L.E. Biological damage from the Auger effect, possible benefits. Radiat Environ Biophys 12, 85–99 (1975). https://doi.org/10.1007/BF01328970

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01328970

Keywords

Navigation