Skip to main content

Are Natural Products an Alternative Therapy for Dermatophytosis?

  • Chapter
  • First Online:
Dermatophytes and Dermatophytoses

Abstract

Dermatophytosis is an important health concern with an increasing negative impact due to unsuccessful therapeutic approaches. Natural products have emerged as promising alternative/complementary agents, due to long traditional uses and increasing scientific recognition. Current knowledge on the antidermatophytic activity of natural products, mainly plant extracts with an up-to-date status on their activity, mechanism of action, developed pharmaceutical formulations, and effectiveness in animal models of infection and patients with dermatophytosis is presented. Although the information available on this matter points out an undeniable potential of these compounds, their usage by the pharmaceutical industry and medical community remains a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51:2–15.

    Article  PubMed  Google Scholar 

  2. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12(4):501–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MA. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother. 2003;47(1):82–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monod M. Secreted proteases from dermatophytes. Mycopathologia. 2008;166(5–6):285–94.

    Article  PubMed  Google Scholar 

  5. Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166(5–6):353–67.

    Article  PubMed  Google Scholar 

  6. Ríos JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol. 2005;100(1–2):80–4.

    Article  PubMed  CAS  Google Scholar 

  7. Soares LA, de Sardi J, Gullo FP, de Pitangui N, Scorzoni L, Leite FS, et al. Anti dermatophytic therapy—prospects for the discovery of new drugs from natural products. Braz J Microbiol. 2013;44(4):1035–41.

    Article  PubMed  Google Scholar 

  8. Lopes G, Pinto E, Salgueiro L. Natural products: an alternative to conventional therapy for dermatophytosis? Mycopathologia. 2017;182(1–2):143–67.

    Article  CAS  PubMed  Google Scholar 

  9. Cheuka PM, Mayoka G, Mutai P, Chibale K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules. 2017;22(1):E58.

    Article  CAS  Google Scholar 

  10. Yun B-W, Yan Z, Amir R, Hong S, Jin Y-W, Lee E-K, et al. Plant natural products: history, limitations and the potential of cambial meristematic cells. Biotechnol Genet Eng Rev. 2012;28(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  11. Dahdah MJ, Scher RK. Dermatophytes. Curr Fungal Infect Rep. 2008;2(2):81–6.

    Article  Google Scholar 

  12. Piggott C, Friedlander S. Dermatophytes and other superficial fungi. In: Long S, editor. Principles and practice of pediatric infectious diseases. 4th ed. Amsterdam: Elsevier; 2013. p. 1246–50.

    Google Scholar 

  13. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8(2):240–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11(4):275–88.

    Article  CAS  PubMed  Google Scholar 

  15. Akinboro A, Olasode O, Onayemi O, Oguntola A, Ajibola A. Prediction of dermatophyte culture by clinical features: saving time and cost in resource-poor settings. Ibnosina J Med Biomed Sci. 2013;5(4):189–95.

    Article  Google Scholar 

  16. Ziemer M, Seyfarth F, Elsner P, Hipler U-C. Atypical manifestations of tinea corporis. Mycoses. 2007;50(Suppl 2):31–5.

    Article  PubMed  Google Scholar 

  17. Robert R, Pihet M. Conventional methods for the diagnosis of dermatophytosis. Mycopathologia. 2008;166(5–6):295–306.

    Article  PubMed  Google Scholar 

  18. Gupta AK, Chow M, Daniel CR, Aly R. Treatments of tinea pedis. Dermatol Clin. 2003;21(3):431–62.

    Article  CAS  PubMed  Google Scholar 

  19. Castellsague J, García-Rodríguez L-A, Duque A, Pérez S. Risk of serious skin disorders among users of oral antifungals: a population-based study. BMC Dermatol. 2002;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gupta AK, Versteeg SG, Shear NH. Common drug-drug interactions in antifungal treatments for superficial fungal infections. Expert Opin Drug Metab Toxicol. 2018;14(4):387–98.

    Article  CAS  PubMed  Google Scholar 

  21. Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 2008;15(8):639–52.

    Article  CAS  PubMed  Google Scholar 

  22. Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS, et al. Natural products—antifungal agents derived from plants. J Asian Nat Prod Res. 2009;11(7):621–38.

    Article  CAS  PubMed  Google Scholar 

  23. Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep. 2019;36(6):869–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yarnell E. Synergy in herbal medicines: Part 1. J Restor Med. 2015;4(1):60–73.

    Article  Google Scholar 

  25. Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, et al. Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol. 2014;98(8):3475–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zuzarte M, Gonçalves MJ, Canhoto J, Salgueiro L. Antidermatophytic activity of essential oils. Sci Against Microb Pathog. 2011:1167–78.

    Google Scholar 

  27. Hadacek F, Greger H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem Anal. 2000;11(3):137–47.

    Article  CAS  Google Scholar 

  28. Golan D, Tahsjian A, Armstrong E, Armstrong A. Principles of pharmacology. The pathophysiologic basics of drug therapy. 3rd ed. Philadelphia, PA: Wolters Kluwer; 2012. p. 620.

    Google Scholar 

  29. Sepahvand A, Eliasy H, Mohammadi M, Safarzadeh A, Azarbaijani K, Shahsavari S, et al. A review of the most effective medicinal plants for dermatophytosis in traditional medicine. Biomed Res Ther. 2018;5(6):2378–88.

    Article  Google Scholar 

  30. Javed I, Mishra R, Aashiq HA. Antidermatophytic activity of angiospermic plants: a review. Asian J Pharm Clin Res. 2015;8(2):75–80.

    Google Scholar 

  31. Svetaz L, Zuljan F, Derita M, Petenatti E, Tamayo G, Cáceres A, et al. Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. J Ethnopharmacol. 2010;127(1):137–58.

    Article  PubMed  Google Scholar 

  32. Dhayanithi NB, Kumar TTA, Kalaiselvam M, Balasubramanian T, Sivakumar N. Anti-dermatophytic activity of marine sponge, Sigmadocia carnosa (Dendy) on clinically isolated fungi. Asian Pac J Trop Biomed. 2012;2(8):635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sit NW, Chan YS, Lai SC, Lim LN, Looi GT, Tay PL, et al. In vitro antidermatophytic activity and cytotoxicity of extracts derived from medicinal plants and marine algae. J Mycol Med. 2018;28(3):561–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kurdelas RR, Lima B, Tapia A, Feresin GE, Sierra MG, Rodríguez MV, et al. Antifungal activity of extracts and prenylated coumarins isolated from Baccharis darwinii Hook and Arn. (Asteraceae). Molecules. 2010;15(7):4898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Navarro-García VM, Rojas G, Avilés M, Fuentes M, Zepeda G. In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand. Mycoses. 2011;54(5):e569–71.

    Article  PubMed  Google Scholar 

  36. Ahmad K, Sultana N. Studies on bioassay directed antifungal activity of medicinal plants Calotropis procera, Skimmia laureola, Peltophorum pterocarpum and two pure natural compounds ulopterol and 4-methoxy-1-methyl-3-(2’S-hydroxy-3’-ene butyl)-2-quinolone. J Chem Soc Pak. 2003;25(4):328–30.

    CAS  Google Scholar 

  37. Singh DN, Verma N, Raghuwanshi S, Shukla PK, Kulshreshtha DK. Antifungal anthraquinones from Saprosma fragrans. Bioorg Med Chem Lett. 2006;16(17):4512–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feresin GE, Tapia A, Sortino M, Zacchino S, De Arias AR, Inchausti A, et al. Bioactive alkyl phenols and embelin from Oxalis erythrorhiza. J Ethnopharmacol. 2003;88(2–3):241–7.

    Article  CAS  PubMed  Google Scholar 

  39. Sakunphueak A, Panichayupakarananta P. Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina. Nat Prod Res. 2012;26(12):1119–24.

    Article  CAS  PubMed  Google Scholar 

  40. Aljabre SHM, Randhawa MA, Akhtar N, Alakloby OM, Alqurashi AM, Aldossary A. Antidermatophyte activity of ether extract of Nigella sativa and its active principle, thymoquinone. J Ethnopharmacol. 2005;101(1–3):116–9.

    Article  PubMed  Google Scholar 

  41. Mahmoudvand H, Sepahvand A, Jahanbakhsh S, Ezatpour B, Ayatollahi Mousavi SA. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. J Mycol Med. 2014;24(4):e155–61.

    Article  CAS  PubMed  Google Scholar 

  42. Agüero MB, Svetaz L, Baroni V, Lima B, Luna L, Zacchino S, et al. Urban propolis from San Juan province (Argentina): ethnopharmacological uses and antifungal activity against Candida and dermatophytes. Ind Crop Prod. 2014;57:166–73.

    Article  CAS  Google Scholar 

  43. Zhang H-X, Lunga P-K, Li Z-J, Dai Q, Du Z-Z. Flavonoids and stilbenoids from Derris eriocarpa. Fitoterapia. 2014;95:147–53.

    Article  CAS  PubMed  Google Scholar 

  44. Sathiamoorthy B, Gupta P, Kumar M, Chaturvedi AK, Shukla PK, Maurya R. New antifungal flavonoid glycoside from Vitex negundo. Bioorg Med Chem Lett. 2007;17(1):239–42.

    Article  CAS  PubMed  Google Scholar 

  45. Pereira R, Pereira AL, Ferreira MM, Fontenelle ROS, Saker-Sampaio S, Santos HS, et al. Evaluation of the antimicrobial and antioxidant activity of 7-hydroxy-4’, 6-dimethoxy-isoflavone and essential oil from Myroxylon peruiferum L.f. An Acad Bras Cienc. 2019;91(2):e20180204.

    Article  PubMed  CAS  Google Scholar 

  46. Souza-Moreira TM, Severi JA, Rodrigues ER, de Paula MI, Freitas JA, Vilegas W, et al. Flavonoids from Plinia cauliflora (Mart.) Kausel (Myrtaceae) with antifungal activity. Nat Prod Res. 2019;33(17):2579–82.

    Article  CAS  PubMed  Google Scholar 

  47. De Campos MP, Cechinel Filho V, Da Silva RZ, Yunes RA, Zacchino S, Juarez S, et al. Evaluation of antifungal activity of Piper solmsianum C. DC. var. solmsianum (Piperaceae). Biol Pharm Bull. 2005;28(8):1527–30.

    Article  PubMed  Google Scholar 

  48. Freixa B, Vila R, Ferro EA, Adzet T, Cañigueral S. Antifungal principles from Piper fulvescens. Planta Med. 2001;67(9):873–5.

    Article  CAS  PubMed  Google Scholar 

  49. Koroishi AM, Foss SR, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Dias Filho BP. In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. J Ethnopharmacol. 2008;117(2):270–7.

    Article  CAS  PubMed  Google Scholar 

  50. Bang KH, Kim YK, Min BS, Na MK, Rhee YH, Lee JP, et al. Antifungal activity of magnolol and honokiol. Arch Pharm Res. 2000;23(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  51. Lee MH, Lee KB, Oh SM, Lee BH, Chee HY. Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. J Appl Biol Chem. 2010;53(4):504–7.

    CAS  Google Scholar 

  52. Foss SR, Nakamura CV, Ueda-Nakamura T, Cortez DAG, Endo EH, Dias Filho BP. Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Ann Clin Microbiol Antimicrob. 2014;13(1):32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kariba RM, Houghton PJ, Yenesew A. Antimicrobial activities of a new schizozygane indoline alkaloid from Schizozygia coffaeoides and the revised structure of isoschizogaline. J Nat Prod. 2002;65:566–9.

    Article  CAS  PubMed  Google Scholar 

  54. Semwal DK, Rawat U. Antimicrobial hasubanalactam alkaloid from Stephania glabra. Planta Med. 2009;75(4):378–80.

    Article  CAS  PubMed  Google Scholar 

  55. Lakshmi V, Srivastava S, Mishra SK, Shukla PK. Antifungal activity of bivittoside-D from Bohadschia vitiensis (Semper). Nat Prod Res. 2012;26(10):913–8.

    Article  CAS  PubMed  Google Scholar 

  56. Stergiopoulou T, De Lucca AJ, Meletiadis J, Sein T, Boue SM, Schaufele R, et al. In vitro activity of CAY-1, a saponin from Capsicum frutescens, against Microsporum and Trichophyton species. Med Mycol. 2008;46(8):805–10.

    Article  CAS  PubMed  Google Scholar 

  57. Duraipandiyan V, Ignacimuthu S. Antibacterial and antifungal activity of flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. J Ethnopharmacol. 2009;123(3):494–8.

    Article  CAS  PubMed  Google Scholar 

  58. Singh DN, Verma N, Raghuwanshi S, Shukla PK, Kulshreshtha DK. Antifungal activity of Agapanthus africanus extractives. Fitoterapia. 2008;79(4):298–300.

    Article  CAS  PubMed  Google Scholar 

  59. García-Sosa K, Sánchez-Medina A, Álvarez SL, Zacchino S, Veitch NC, Sima-Polanco P, et al. Antifungal activity of sakurasosaponin from the root extract of Jacquinia flammea. Nat Prod Res. 2011;25(12):1185–9.

    Article  PubMed  CAS  Google Scholar 

  60. López-Villegas EO, Herrera-Arellano A, de Los Angeles Martínez-Rivera M, Alvarez L, Cano-Nepauseno M, Marquina S, et al. Ultrastructural changes on clinical isolates of Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum caused by Solanum chrysotrichum saponin SC-2. Planta Med. 2009;75(14):1517–20.

    Article  PubMed  CAS  Google Scholar 

  61. Vermerris W, Nicholson R. Families of phenolic compounds and means of classification. In: Vermerris W, Nicholson R, editors. Phenolic compound biochemistry. Dordrecht: Springer; 2008. p. 1–34.

    Google Scholar 

  62. Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21(10):E1374.

    Article  PubMed  CAS  Google Scholar 

  63. Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int. 2013;2013:963248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem. 2005;12(8):887–916.

    Article  CAS  PubMed  Google Scholar 

  65. Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG. Coumarins—an important class of phytochemicals. In: Rao V, editor. Phytochemicals—isolation, characterisation and role in human health. Rijeka: InTech; 2015. p. 113–40.

    Google Scholar 

  66. Xu L, Zhao X-Y, Wu Y-L, Zhang W. The study on biological and pharmacological activity of coumarins. In: Asia-Pacific energy equipment engineering research conference. Amsterdam: Atlantis Press; 2015.

    Google Scholar 

  67. Céspedes CL, Avila JG, Martínez A, Serrato B, Calderón-Mugica JC, Salgado-Garciglia R. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem. 2006;54(10):3521–7.

    Article  PubMed  CAS  Google Scholar 

  68. Stein AC, Álvarez S, Avancini C, Zacchino S, von Poser G. Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae). J Ethnopharmacol. 2006;107(1):95–8.

    Article  CAS  PubMed  Google Scholar 

  69. Rehman SU, Chohan ZH, Gulnaz F, Supuran CT. In vitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes. J Enzyme Inhib Med Chem. 2005;20(4):333–40.

    Article  CAS  PubMed  Google Scholar 

  70. Stewart CS. Use of coumarin derivatives in antifungal therapy. PCT/GB2007/002062; 2007.

    Google Scholar 

  71. Mercer DK, Robertson J, Wright K, Miller L, Smith S, Stewart CS, et al. A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses. PLoS One. 2013;8(11):e80760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Futuro DO, Ferreira PG, Nicoletti CD, Borba-Santos LP, Da Silva FC, Rozental S, et al. The antifungal activity of naphthoquinones: an integrative review. An Acad Bras Cienc. 2018;90(1):1187–214.

    Article  CAS  PubMed  Google Scholar 

  73. Eyong KO, Kuete V, Efferth T. Quinones and benzophenones from the medicinal plants of Africa. In: Kuete V, editor. Medicinal plant research in Africa: pharmacology and chemistry. Amsterdam: Elsevier; 2013. p. 351–91.

    Chapter  Google Scholar 

  74. Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta. 2010;1797(9):1587–605.

    Article  CAS  PubMed  Google Scholar 

  75. Dzoyem JP, Tangmouo JG, Lontsi D, Etoa FX, Lohoue PJ. In vitro antifungal activity of extract and plumbagin from the stem bark of Diospyros crassiflora Hiern (Ebenaceae). Phytother Res. 2007;21(7):671–4.

    Article  CAS  PubMed  Google Scholar 

  76. Guiraud P, Steiman R, Campos-Takaki G-M, Seigle-Murandi F, de Buochberg M. Comparison of antibacterial and antifungal activities of lapachol and β-lapachone. Planta Med. 1994;60(04):373–4.

    Article  CAS  PubMed  Google Scholar 

  77. Wittebolle V, Lemriss S, La Morella G, Errante J, Boiron P, Barret R, et al. Antifungal effects of aminosulphoxide and disulphide derivatives. Mycoses. 2006;49(3):169–75.

    Article  CAS  PubMed  Google Scholar 

  78. Inouye S, Uchida K, Takizawa T, Yamaguchi H, Abe S. Evaluation of the effect of terpenoid quinones on Trichophyton mentagrophytes by solution and vapor contact. J Infect Chemother. 2006;12(2):100–4.

    Article  CAS  PubMed  Google Scholar 

  79. Sytar O, Švedienė J, Ložienė K, Paškevičius A, Kosyan A, Taran N. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm Biol. 2016;54(12):3121–5.

    Article  CAS  PubMed  Google Scholar 

  80. Castro MÁ, Gamito AM, Tangarife-Castaño V, Zapata B, Miguel Del Corral JM, Mesa-Arango AC, et al. Synthesis and antifungal activity of terpenyl-1,4-naphthoquinone and 1,4-anthracenedione derivatives. Eur J Med Chem. 2013;67:19–27.

    Article  CAS  PubMed  Google Scholar 

  81. Vermerris M, Nicholson R. Phenolic compound biochemistry. Dordrecht: Springer; 2006.

    Google Scholar 

  82. Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Laganà A. Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat Prod Res. 2011;25(5):469–95.

    Article  CAS  PubMed  Google Scholar 

  83. Park BJ, Taguchi H, Kamei K, Matsuzawa T, Hyon SH, Park JC. In vitro antifungal activity of epigallocatechin 3-O-gallate against clinical isolates of dermatophytes. Yonsei Med J. 2011;52(3):535–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bitencourt TA, Komoto TT, Massaroto BG, Miranda CES, Beleboni RO, Marins M, et al. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement Altern Med. 2013;13:229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mbaveng AT, Ngameni B, Kuete V, Simo IK, Ambassa P, Roy R, et al. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J Ethnopharmacol. 2008;116(3):483–9.

    Article  CAS  PubMed  Google Scholar 

  86. Ali I, Khan FG, Suri KA, Gupta BD, Satti NK, Dutt P, et al. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann Clin Microbiol Antimicrob. 2010;9(1):7–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Boeck P, Leal PC, Yunes RA, Cechinel Filho V, López S, Sortino M, et al. Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Arch Pharm (Weinheim). 2005;338(2–3):87–95.

    Article  CAS  Google Scholar 

  88. Alvarez MA, Debattista NB, Pappano NB. Antimicrobial activity and synergism of some substituted flavonoids. Folia Microbiol (Praha). 2008;53(1):23–8.

    Article  CAS  Google Scholar 

  89. Zálešák F, Bon DJ-YD, Pospíšil J. Lignans and neolignans: plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res. 2019;146:104284.

    Article  PubMed  CAS  Google Scholar 

  90. Calvo-Flores FG, Dobado JA, Isac-García J, Martín-Martínez FJ. Structure and chemical properties of lignans. In: Calvo-Flores FG, Dobado JA, Isac-García J, Martín-Martínez FJ, editors. Lignin and lignans as renewable raw materials. New York: Wiley; 2015. p. 313–68.

    Chapter  Google Scholar 

  91. Bruneton J. Pharmacognosy, phytochemistry, medicinal plants. 2nd ed. Paris: Lavoisier; 2008. p. 1136.

    Google Scholar 

  92. Shehzad A, Islam SU, Al-Suhaimi EA, Lee Y-S. Pleiotropic effects of bioactive phytochemicals (polyphenols and terpenes). In: Vattem D, Maitin V, editors. Functional foods, nutraceuticals and natural products concepts and applications. Pennsylvania: DEStech; 2016. p. 66.

    Google Scholar 

  93. Saleem M, Hyoung JK, Ali MS, Yong SL. An update on bioactive plant lignans. Nat Prod Rep. 2005;22(6):696–716.

    Article  CAS  PubMed  Google Scholar 

  94. Agüero MB, Svetaz L, Sánchez M, Luna L, Lima B, López ML, et al. Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC-MS and GC-MS characterization and antifungal activity. Food Chem Toxicol. 2011;49(9):1970–8.

    Article  PubMed  CAS  Google Scholar 

  95. Iida Y, Oh KB, Saito M, Matsuoka H, Kurata H. In vitro synergism between nyasol, an active compound isolated from Anemarrhena asphodeloides, and azole agents against Candida albicans. Planta Med. 2000;66(5):435–8.

    Article  CAS  PubMed  Google Scholar 

  96. Zacchino S, Rodríguez G, Santecchia C, Pezzenati G, Giannini F, Enriz R. In vitro studies on mode of action of antifungal 8.O.4’-neolignans occurring in certain species of Virola and related genera of Myristicaceae. J Ethnopharmacol. 1998;62(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  97. Lopes G. Seaweeds from the Portuguese coast: chemistry, antimicrobial and antiinflammatory capacity. PhD Thesis. University of Porto; 2014.

    Google Scholar 

  98. Vonshak A, Barazani O, Sathiyamoorthy P, Shalev R, Vardy D, Golan-Goldhirsh A. Screening south Indian medicinal plants for antifungal activity against cutaneous pathogens. Phytother Res. 2003;17(9):1123–5.

    Article  CAS  PubMed  Google Scholar 

  99. Lopes G, Sousa C, Silva LR, Pinto E, Andrade PB, Bernardo J, et al. Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS One. 2012;7(2):e31145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koivikko R, Loponen J, Pihlaja K, Jormalainen V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal. 2007;18(4):326–32.

    Article  CAS  PubMed  Google Scholar 

  101. Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30(12):3875–83.

    Article  CAS  Google Scholar 

  102. Lopes G, Pinto E, Andrade PB, Valentão P. Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS One. 2013;8(8):e72203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ziegler J, Facchini PJ. Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol. 2008;59(1):735–69.

    Article  CAS  PubMed  Google Scholar 

  104. Evans W. Trease and Evans’ pharmacognosy. 16th ed. Philadelphia: Saunders; 2009. p. 616.

    Google Scholar 

  105. Wangchuk P. Plant alkaloids: classification, isolation and drug development. In: Swamy MK, Patra JK, Rudramurthy GR, editors. Medicinal plants: chemistry, pharmacology and therapeutic applications. Boca Raton: Taylor and Francis, CRC; 2019. p. 131–7.

    Chapter  Google Scholar 

  106. Singh N, Sharma B. Toxicological effects of berberine and sanguinarine. Front Mol Biosci. 2018;5:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xiao CW, Ji QA, Rajput ZI, Wei Q, Liu Y, Bao GL. Antifungal efficacy of Phellodendron amurense ethanol extract against Trichophyton mentagrophytes in rabbits. Pakistan Vet J. 2014;34(2):219–23.

    Google Scholar 

  108. Phetkul U, Wanlaso N, Mahabusarakam W, Phongpaichit S, Carroll AR. New acridone from the wood of Citrus reticulata Blanco. Nat Prod Res. 2013;27(20):1922–6.

    Article  CAS  PubMed  Google Scholar 

  109. Morteza-Semnani K, Amin G, Shidfar MR, Hadizadeh H, Shafiee A. Antifungal activity of the methanolic extract and alkaloids of Glaucium oxylobum. Fitoterapia. 2003;74(5):493–6.

    Article  CAS  PubMed  Google Scholar 

  110. Yu HF, Qin XJ, Ding CF, Wei X, Yang J, Luo JR, et al. Nepenthe-like indole alkaloids with antimicrobial activity from Ervatamia chinensis. Org Lett. 2018;20(13):4116–20.

    Article  CAS  PubMed  Google Scholar 

  111. Lohombo-Ekomba M-L, Okusa P, Penge O, Kabongo C, Choudhary MI, Kasende O. Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. J Ethnopharmacol. 2004;93(2–3):331–5.

    Article  PubMed  Google Scholar 

  112. Khan H, Mubarak MS, Amin S. Antifungal potential of alkaloids as an emerging therapeutic target. Curr Drug Targets. 2017;18(16):1825–35.

    Article  CAS  PubMed  Google Scholar 

  113. Biswas T, Dwivedi UN. Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. Protoplasma. 2019;256(6):1463–86.

    Google Scholar 

  114. Vincken J-P, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry. 2007;68(3):275–97.

    Article  CAS  PubMed  Google Scholar 

  115. Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol. 2014;49(6):439–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lunga PK, Qin XJ, Yang XW, Kuiate JR, Du ZZ, Gatsing D. Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata. BMC Complement Altern Med. 2014;14(1):369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Hu Q, Chen YY, Jiao QY, Khan A, Li F, Han DF, et al. Triterpenoid saponins from the pulp of Sapindus mukorossi and their antifungal activities. Phytochemistry. 2018;147:1–8.

    Article  CAS  PubMed  Google Scholar 

  118. González M, Zamilpa A, Marquina S, Navarro V, Alvarez L. Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure-activity relationships. J Nat Prod. 2004;67(6):938–41.

    Article  PubMed  CAS  Google Scholar 

  119. Njateng GSS, Du Z, Gatsing D, Nanfack Donfack AR, Feussi Talla M, Kamdem Wabo H, et al. Antifungal properties of a new terpernoid saponin and other compounds from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement Altern Med. 2015;15:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Sobolewska D, Janeczko Z, Kisiel W, Podolak I, Galanty A, Trojanowska D. Steroidal glycosides from the underground parts of Allium ursinum L. and their cytostatic and antimicrobial activity. Acta Pol Pharm Drug Res. 2006;63(3):219–23.

    CAS  Google Scholar 

  121. Zhang D, Fu Y, Yang J, Li XN, San MM, Oo TN, et al. Triterpenoids and their glycosides from Glinus oppositifolius with antifungal activities against Microsporum gypseum and Trichophyton rubrum. Molecules. 2019;24(12):2206–8.

    Article  CAS  PubMed Central  Google Scholar 

  122. Houghton P, Patel N, Jurzysta M, Biely Z, Cheung C. Antidermatophyte activity of medicago extracts and contained saponins and their structure-activity relationships. Phytother Res. 2006;20(12):1061–6.

    Article  CAS  PubMed  Google Scholar 

  123. Kim DW, Bang KH, Rhee YH, Lee KT, Park HJ. Growth inhibitory activities of kalopanaxsaponins A and I against human pathogenic fungi. Arch Pharm Res. 1998;21(6):688–91.

    Article  CAS  PubMed  Google Scholar 

  124. Takechi M, Doi K, Wakayama Y. Biological activities of synthetic saponins and cardiac glycosides. Phytother Res. 2003;17(1):83–5.

    Article  CAS  PubMed  Google Scholar 

  125. Avis TJ. Antifungal compounds that target fungal membranes: applications in plant disease control. Can J Plant Pathol. 2007;29(4):323–9.

    Article  CAS  Google Scholar 

  126. ISO 9235. Aromatic natural raw materials—vocabulary. 2013.

    Google Scholar 

  127. Council of Europe. European pharmacopoeia. 5th ed. Strasbourg: Council of Europe; 2004.

    Google Scholar 

  128. Baser K, Demirci F. Chemistry of essential oils. In: Berger R, editor. Flavours and fragrances—chemistry, bioprocessing and sustainability. Berlin: Springer; 2007. p. 43–86.

    Google Scholar 

  129. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils-a review. Food Chem Toxicol. 2008;46(2):446–75.

    Article  CAS  PubMed  Google Scholar 

  130. Dewick P. The mevalonate and deoxyxylulose phosphate pathways: terpenoids and steroids. In: Medicinal natural products: a biosynthetic approach. 2nd ed. London: Wiley; 2002. p. 167–285.

    Google Scholar 

  131. Dewick P. The shikimate pathway: aromatic amino acids and phenylpropanoids. In: Dewick PM, editor. Medicinal natural products: a biosynthetic approach. 2nd ed. London: Wiley; 2002. p. 121–64.

    Google Scholar 

  132. Svoboda K, Svoboda T. In: Syred PM, editor. Secretory structures of aromatic and medicinal plants: a review and atlas of micrographs. Knighton: Microscopix; 2000. p. 60.

    Google Scholar 

  133. Theis N, Lerdau M. The evolution of function in plant secondary metabolites. Int J Plant Sci. 2003;164(S3):S93–102.

    Article  CAS  Google Scholar 

  134. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J. 2008;23(4):213–26.

    Article  CAS  Google Scholar 

  135. Taiz L, Zeiger E. Plant physiology. 5th ed. Sunderland: Sinauer Associates; 2010. p. 782.

    Google Scholar 

  136. Zuzarte M, Salgueiro L. Essential oils chemistry. In: Sousa DP, editor. Bioactive essential oils and cancer. Cham: Springer International; 2015. p. 19–61.

    Chapter  Google Scholar 

  137. Barbieri C, Borsotto P. Essential oils: market and legislation. In: El-Shemy H, editor. Potential of essential oils. Rijeka: InTech; 2018. p. 107–27.

    Google Scholar 

  138. Elshafie HS, Camele I. An overview of the biological effects of some Mediterranean essential oils on human health. Biomed Res Int. 2017;2017:9268468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Baser K. Handbook of essential oils: science, technology, and applications. New York: CRC; 2010. p. 1112.

    Google Scholar 

  140. Cavaleiro C, Salgueiro L, Gonçalves MJ, Hrimpeng K, Pinto J, Pinto E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J Nat Med. 2015;69(2):241–8.

    Article  CAS  PubMed  Google Scholar 

  141. Maxia A, Falconieri D, Piras A, Porcedda S, Marongiu B, Frau MA, et al. Chemical composition and antifungal activity of essential oils and supercritical CO2 extracts of Apium nodiflorum (L.) Lag. Mycopathologia. 2012;174(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  142. Abu-Darwish MS, Cabral C, Gonçalves MJ, Cavaleiro C, Cruz MT, Zulfiqar A, et al. Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of Jordan. J Ethnopharmacol. 2016;191:161–8.

    Article  CAS  PubMed  Google Scholar 

  143. López S, Lima B, Aragón L, Espinar LA, Tapia A, Zacchino S, et al. Essential oil of Azorella cryptantha collected in two different locations from San Juan Province, Argentina: chemical variability and anti-insect and antimicrobial activities. Chem Biodivers. 2012;9(8):1452–64.

    Article  PubMed  CAS  Google Scholar 

  144. Prasad CS, Shukla R, Kumar A, Dubey NK. In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses. 2010;53(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  145. Mahboubi M, Mohammad Taghizadeh Kashani L. The anti-dermatophyte activity of Commiphora molmol. Pharm Biol. 2016;54(4):720–5.

    Article  PubMed  Google Scholar 

  146. Romagnoli C, Andreotti E, Maietti S, Mahendra R, Mares D. Antifungal activity of essential oil from fruits of Indian Cuminum cyminum. Pharm Biol. 2010;48(7):834–8.

    Article  CAS  PubMed  Google Scholar 

  147. Dias N, Dias MC, Cavaleiro C, Sousa MC, Lima N, Machado M. Oxygenated monoterpenes-rich volatile oils as potential antifungal agents for dermatophytes. Nat Prod Res. 2017;31(4):460–4.

    Article  CAS  PubMed  Google Scholar 

  148. Alves-Silva JM, Zuzarte M, Gonçalves MJ, Cavaleiro C, Cruz MT, Cardoso SM, et al. New claims for wild carrot (Daucus carota subsp. carota) essential oil. Evid Based Complement Altern Med. 2016; 9045196.

    Google Scholar 

  149. Salehi B, Ayatollahi SA, Segura-Carretero A, Kobarfard F, Contreras MM, Faizi M, et al. Bioactive chemical compounds in Eremurus persicus (Joub. and Spach) Boiss. essential oil and their health implications. Cell Mol Biol. 2017;63(9):1–7.

    Article  CAS  PubMed  Google Scholar 

  150. Tolba H, Moghrani H, Benelmouffok A, Kellou D, Maachi R. Essential oil of Algerian Eucalyptus citriodora: chemical composition, antifungal activity. J Mycol Med. 2015;25(4):e128–33.

    Article  CAS  PubMed  Google Scholar 

  151. Baptista EB, Zimmermann-Franco DC, Lataliza AAB, Raposo NRB. Chemical composition and antifungal activity of essential oil from Eucalyptus smithii against dermatophytes. Rev Soc Bras Med Trop. 2015;48(6):746–52.

    Article  PubMed  Google Scholar 

  152. Pinto SML, Sandoval LVH, Vargas LY. In vitro susceptibility of Microsporum spp. and mammalian cells to Eugenia caryophyllus essential oil, eugenol and semisynthetic derivatives. Mycoses. 2019;62(1):41–50.

    Article  CAS  Google Scholar 

  153. Cabral C, Miranda M, Gonçalves MJ, Cavaleiro C, Cruz MT, Salgueiro L. Assessment of safe bioactive doses of Foeniculum vulgare Mill. essential oil from Portugal. Nat Prod Res. 2017;31(22):2654–9.

    Article  CAS  PubMed  Google Scholar 

  154. Zeng H, Chen X, Liang J. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species. J Med Microbiol. 2015;64(1):93–103.

    Article  CAS  PubMed  Google Scholar 

  155. Khoury M, El Beyrouthy M, Ouaini N, Eparvier V, Stien D. Hirtellina lobelii DC. essential oil, its constituents, its combination with antimicrobial drugs and its mode of action. Fitoterapia. 2019;133:130–6.

    Article  CAS  PubMed  Google Scholar 

  156. Policegoudra RS, Goswami S, Aradhya SM, Chatterjee S, Datta S, Sivaswamy R, et al. Bioactive constituents of Homalomena aromatica essential oil and its antifungal activity against dermatophytes and yeasts. J Mycol Med. 2012;22(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  157. Cabral C, Francisco V, Cavaleiro C, Gonçalves MJ, Cruz MT, Sales F, et al. Essential oil of Juniperus communis subsp. alpina (Suter) Čelak needles: chemical composition, antifungal activity and cytotoxicity. Phytother Res. 2012;26(9):1352–7.

    Article  CAS  PubMed  Google Scholar 

  158. Zuzarte M, Vale-Silva L, Gonçalves MJ, Cavaleiro C, Vaz S, Canhoto J, et al. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur J Clin Microbiol Infect Dis. 2012;31(7):1359–66.

    Article  CAS  PubMed  Google Scholar 

  159. Zuzarte M, Gonçalves M, Cavaleiro C, Canhoto J, Vale-Silva L, Silva M, et al. Chemical composition and antifungal activity of the essential oils of Lavandula viridis l’Hér. J Med Microbiol. 2011;60(5):612–8.

    Article  CAS  PubMed  Google Scholar 

  160. Costa DCMH, Vermelho AB, Almeida CA, De Souza Dias EP, Cedrola SML, De Fátima A-BM, et al. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes. J Enzyme Inhib Med Chem. 2014;29(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  161. Rahman A, Al-Reza SM, Siddiqui SA, Chang T, Kang SC. Antifungal potential of essential oil and ethanol extracts of Lonicera japonica Thunb. against dermatophytes. EXCLI J. 2014;13:427–36.

    PubMed  PubMed Central  Google Scholar 

  162. Jamalian A, Shams-Ghahfarokhi M, Jaimand K, Pashootan N, Amani A, Razzaghi-Abyaneh M. Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens. J Mycol Med. 2012;22(4):308–15.

    Article  CAS  PubMed  Google Scholar 

  163. Bajpai VK, Yoon JI, Chul KS. Antioxidant and antidermatophytic activities of essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu. Food Chem Toxicol. 2009;47(6):1355–61.

    Article  CAS  PubMed  Google Scholar 

  164. Bouzabata A, Bazzali O, Cabral C, Gonçalves MJ, Cruz MT, Bighelli A, et al. New compounds, chemical composition, antifungal activity and cytotoxicity of the essential oil from Myrtus nivellei Batt. and Trab.; an endemic species of Central Sahara. J Ethnopharmacol. 2013;149(3):613–20.

    Article  CAS  PubMed  Google Scholar 

  165. Bajpai VK, Yoon JI, Kang SC. Antifungal potential of essential oil and various organic extracts of Nandina domestica Thunb. against skin infectious fungal pathogens. Appl Microbiol Biotechnol. 2009;83(6):1127–33.

    Article  CAS  PubMed  Google Scholar 

  166. Valente J, Zuzarte M, Gonçalves MJ, Lopes MC, Cavaleiro C, Salgueiro L, et al. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem Toxicol. 2013;62:349–54.

    Article  CAS  PubMed  Google Scholar 

  167. Guerra-Boone L, Alvarez-Román R, Salazar-Aranda R, Torres-Cirio A, Rivas-Galindo VM, de Torres NW, et al. Antimicrobial and antioxidant activities and chemical characterization of essential oils of Thymus vulgaris, Rosmarinus officinalis, and Origanum majorana from northeastern México. Pak J Pharm Sci. 2015;28(1):363–9.

    CAS  PubMed  Google Scholar 

  168. Houël E, Rodrigues AMS, Jahn-Oyac A, Bessière JM, Eparvier V, Deharo E, et al. In vitro antidermatophytic activity of Otacanthus azureus (Linden) Ronse essential oil alone and in combination with azoles. J Appl Microbiol. 2014;116(2):288–94.

    Article  PubMed  CAS  Google Scholar 

  169. Fahed L, Stien D, Ouaini N, Eparvier V, El Beyrouthy M. Chemical diversity and antimicrobial activity of Salvia multicaulis Vahl essential oils. Chem Biodivers. 2016;13(5):591–5.

    Article  CAS  PubMed  Google Scholar 

  170. Danielli LJ, Pippi B, Duarte JA, Maciel AJ, Lopes W, Machado MM, et al. Antifungal mechanism of action of Schinus lentiscifolius Marchand essential oil and its synergistic effect in vitro with terbinafine and ciclopirox against dermatophytes. J Pharm Pharmacol. 2018;70(9):1216–27.

    Article  CAS  PubMed  Google Scholar 

  171. Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol. 2009;58(11):1454–62.

    Article  PubMed  Google Scholar 

  172. Pinto E, Gonçalves M-J, Cavaleiro C, Salgueiro L. Antifungal activity of Thapsia villosa essential oil against Candida, Cryptococcus, Malassezia, Aspergillus and dermatophyte species. Molecules. 2017;22(10):E1595–605.

    Article  PubMed  CAS  Google Scholar 

  173. Alves M, Gonçalves MJ, Zuzarte M, Alves-Silva JM, Cavaleiro C, Cruz MT, et al. Unveiling the antifungal potential of two Iberian thyme essential oils: effect on C. albicans germ tube and preformed biofilms. Front Pharmacol. 2019;10:446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vale-Silva LA, Gonçalves MJ, Cavaleiro C, Salgueiro L, Pinto E. Antifungal activity of the essential oil of Thymus x viciosoi against Candida, Cryptococcus, Aspergillus and dermatophyte species. Planta Med. 2010;76(9):882–8.

    Article  CAS  PubMed  Google Scholar 

  175. Marongiu B, Piras A, Porcedda S, Falconieri D, Goncalves MJ, Salgueiro L, et al. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2. Nat Prod Res. 2010;24(6):569–79.

    Article  CAS  PubMed  Google Scholar 

  176. Cabral C, Gonçalves MJ, Cavaleiro C, Sales F, Boyom F, Salgueiro L. Composition and antifungal activity of the essential oil from cameroonian Vitex rivularis Gurke. Nat Prod Res. 2009;23(16):1478–84.

    Article  CAS  PubMed  Google Scholar 

  177. Mahboubi M, HeidaryTabar R, Mahdizadeh E. The anti-dermatophyte activity of Zataria multiflora essential oils. J Mycol Med. 2017;27(2):232–7.

    Article  CAS  PubMed  Google Scholar 

  178. Abu-Darwish MS, Cabral C, Gonçalves MJ, Cavaleiro C, Cruz MT, Paoli M, et al. Ziziphora tenuior L. essential oil from Dana Biosphere Reserve (Southern Jordan); chemical characterization and assessment of biological activities. J Ethnopharmacol. 2016;194:963–70.

    Article  CAS  PubMed  Google Scholar 

  179. Chaftar N, Girardot M, Labanowski J, Ghrairi T, Hani K, Frère J, et al. Comparative evaluation of the antimicrobial activity of 19 essential oils. Adv Exp Med Biol. 2016;901:1–15.

    CAS  PubMed  Google Scholar 

  180. Nardoni S, Giovanelli S, Pistelli L, Mugnaini L, Profili G, Pisseri F, et al. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat Prod Commun. 2015;10(8):1473–8.

    PubMed  Google Scholar 

  181. Nasir M, Tafess K, Abate D. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complement Altern Med. 2015;15(1):260.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sadhasivam S, Palanivel S, Ghosh S. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections. Lett Appl Microbiol. 2016;63(6):495–501.

    Article  CAS  PubMed  Google Scholar 

  183. Fahed L, Khoury M, Stien D, Ouaini N, Eparvier V, El Beyrouthy M. Essential oils composition and antimicrobial activity of six conifers harvested in Lebanon. Chem Biodivers. 2017;14(2):e1600235.

    Article  CAS  Google Scholar 

  184. Palmeira-de-Oliveira A, Salgueiro L, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Pina-Vaz C, Queiroz J, et al. Anti-Candida activity of essential oils. Mini reviews. Med Chem. 2009;9(11):1292–305.

    CAS  Google Scholar 

  185. Flores FC, Beck RCR, da Silva C. Essential oils for treatment for onychomycosis: a mini-review. Mycopathologia. 2016;181(1–2):9–15.

    Article  CAS  PubMed  Google Scholar 

  186. Shokri H. A review on the inhibitory potential of Nigella sativa against pathogenic and toxigenic fungi. Avicenna J Phytomed. 2016;6(1):21–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Tullio V, Nostro A, Mandras N, Dugo P, Banche G, Cannatelli MA, et al. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J Appl Microbiol. 2007;102(6):1544–50.

    Article  CAS  PubMed  Google Scholar 

  188. Lima B, López S, Luna L, Aguero MB, Aragón L, Tapia A, et al. Essential oils of medicinal plants from the Central Andes of Argentina: chemical composition, antifungal, antibacterial and insect-repellent activities. Chem Biodivers. 2011;8:924–36.

    Article  CAS  PubMed  Google Scholar 

  189. Marongiu B, Maxia A, Piras A, Porcedda S, Tuveri E, Gonçalves MJ, et al. Isolation of Crithmum maritimum L. volatile oil by supercritical carbon dioxide extraction and biological assays. Nat Prod Res. 2007;21(13):1145–50.

    Article  CAS  PubMed  Google Scholar 

  190. Zuzarte M, Gonçalves MJ, Cavaleiro C, Dinis AM, Canhoto JM, Salgueiro LR. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav. Chem Biodivers. 2009;6(8):1283–92.

    Article  CAS  PubMed  Google Scholar 

  191. Maxia A, Marongiu B, Piras A, Porcedda S, Tuveri E, Gonçalves MJ, et al. Chemical characterization and biological activity of essential oils from Daucus carota L. subsp. carota growing wild on the Mediterranean coast and on the Atlantic coast. Fitoterapia. 2009;80(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  192. Piras A, Marzouki H, Maxia A, Marengo A, Porcedda S, Falconieri D, et al. Chemical characterisation and biological activity of leaf essential oils obtained from Pistacia terebinthus growing wild in Tunisia and Sardinia Island. Nat Prod Res. 2017;31(22):2684–9.

    Article  CAS  PubMed  Google Scholar 

  193. Mahboubi M, Kazempour N. The antifungal activity of Artemisia sieberi essential oil from different localities of Iran against dermatophyte fungi. J Mycol Med. 2015;25(2):e65–71.

    Article  CAS  PubMed  Google Scholar 

  194. Fekrazad R, Poorsattar Bejeh Mir A, Ghasemi Barghi V, Shams-Ghahfarokhi M. Eradication of C. albicans and T. rubrum with photoactivated indocyanine green, Citrus aurantifolia essential oil and fluconazole. Photodiagnosis Photodyn Ther. 2015;12(2):289–97.

    Article  CAS  PubMed  Google Scholar 

  195. De Oliveira PF, Mendes JM, Lima IO, De Lira Mota KS, De Oliveira WA, De Oliveira Lima E. Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis. Pharm Biol. 2015;53(2):228–34.

    Article  PubMed  CAS  Google Scholar 

  196. Romagnoli C, Baldisserotto A, Malisardi G, Vicentini CB, Mares D, Andreotti E, et al. A multi-target approach toward the development of novel candidates for antidermatophytic activity: ultrastructural evidence on α-bisabolol-treated Microsporum gypseum. Molecules. 2015;20(7):11765–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Miron D, Battisti F, Silva FK, Lana AD, Pippi B, Casanova B, et al. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Rev Bras Farm. 2014;24(6):660–7.

    Article  CAS  Google Scholar 

  198. Brasch J, Horter F, Fritsch D, Beck-Jendroschek V, Tröger A, Francke W. Acyclic sesquiterpenes released by Candida albicans inhibit growth of dermatophytes. Med Mycol. 2014;52(1):46–55.

    CAS  PubMed  Google Scholar 

  199. Carrasco H, Raimondi M, Svetaz L, Di Liberto M, Rodriguez MV, Espinoza L, et al. Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules. 2012;17(1):1002–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Singh G, Kumar P, Joshi SC. Treatment of dermatophytosis by a new antifungal agent “apigenin.”. Mycoses. 2014;57(8):497–506.

    Article  CAS  PubMed  Google Scholar 

  201. Nyong EE, Odeniyi MA, Moody JO. In vitro and in vivo antimicrobial evaluation of alkaloidal extracts of Enantia chlorantha stem bark and their formulated ointments. Acta Pol Pharm Drug Res. 2015;72(1):147–52.

    Google Scholar 

  202. Xiao CW, Ji QA, Wei Q, Liu Y, Bao GL. Antifungal activity of berberine hydrochloride and palmatine hydrochloride against Microsporum canis—induced dermatitis in rabbits and underlying mechanism. BMC Complement Altern Med. 2015;15(1):177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Ayatollahi MSA, Kazemi A. In vitro and in vivo antidermatophytic activities of some Iranian medicinal plants. Med Mycol. 2015;53(8):852–9.

    Article  Google Scholar 

  204. Njateng GSS, Gatsing D, Mouokeu RS, Lunga PK, Kuiate JR. In vitro and in vivo antidermatophytic activity of the dichloromethane-methanol (1:1 v/v) extract from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement Altern Med. 2013;13:95.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Lee S-J, Han J-I, Lee G-S, Park M-J, Choi I-G, Na K-J, et al. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol Pharm Bull. 2007;30(1):184–8.

    Article  CAS  PubMed  Google Scholar 

  206. Mugnaini L, Nardoni S, Pinto L, Pistelli L, Leonardi M, Pisseri F, et al. In vitro and in vivo antifungal activity of some essential oils against feline isolates of Microsporum canis. J Mycol Med. 2012;22(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  207. Wagini NH. In vitro and in vivo anti dermatophytes activity of Lawsonia Inermis L. (Henna) leaves against ringworm and its etiological agents. Am J Clin Exp Med. 2014;2(3):51–8.

    Article  Google Scholar 

  208. Moghimipour E, Aghel N, Mahmoudabadi AZ, Ramezani Z, Handali S. Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis Leaf. Jundishapur J Nat Pharm Prod. 2012;7(3):117–22.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Pisseri F, Bertoli A, Nardoni S, Pinto L, Pistelli L, Guidi G, et al. Antifungal activity of tea tree oil from Melaleuca alternifolia against Trichophyton equinum: an in vivo assay. Phytomedicine. 2009;16(11):1056–8.

    Article  CAS  PubMed  Google Scholar 

  210. Romero-Cerecero O, Román-Ramos R, Zamilpa A, Jiménez-Ferrer JE, Rojas-Bribiesca G, Tortoriello J. Clinical trial to compare the effectiveness of two concentrations of the Ageratina pichinchensis extract in the topical treatment of onychomycosis. J Ethnopharmacol. 2009;126(1):74–8.

    Article  PubMed  Google Scholar 

  211. Bhadauria S, Kumar P. Broad spectrum antidermatophytic drug for the control of tinea infection in human beings. Mycoses. 2012;55(4):339–43.

    Article  CAS  PubMed  Google Scholar 

  212. Bindra R, Singh A, Shawl A, Kumar S. Antifungal herbal formulation for treatment of human nails fungus and process thereof. US Patent No 6,296,838, 2001.

    Google Scholar 

  213. Veiga FF, Gadelha MC, da Silva MRT, Costa MI, Kischkel B, de Castro-Hoshino LV, et al. Propolis extract for onychomycosis topical treatment: from bench to clinic. Front Microbiol. 2018;9:779.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Buck DS, Nidorf DM, Addino JG. Comparison of two topical preparations for the treatment of onychomycosis: Melaleuca alternifolia (tea tree) oil and clotrimazole. J Fam Pract. 1994;38(6):601–5.

    CAS  PubMed  Google Scholar 

  215. Syed TA, Qureshi ZA, Ali SM, Ahmad S, Ahmad SA. Treatment of toenail onychomycosis with 2% butenafine and 5% Melaleuca alternifolia (tea tree) oil in cream. Trop Med Int Health. 1999;4(4):284–7.

    Article  CAS  PubMed  Google Scholar 

  216. Satchell AC, Saurajen A, Bell C, Barnetson RSC. Treatment of interdigital tinea pedis with 25% and 50% tea tree oil solution: a randomized, placebo-controlled, blinded study. Australas J Dermatol. 2002;43(3):175–8.

    Article  PubMed  Google Scholar 

  217. Derby R, Rohal P, Jackson C, Beutler A, Olsen C. Novel treatment of onychomycosis using over-the-counter mentholated ointment: a clinical case series. J Am Board Fam Med. 2011;24(1):69–74.

    Article  PubMed  Google Scholar 

  218. Pandey KP, Mishra RK, Kamran A, Mishra P, Bajaj AK, Dikshit A. Studies on antidermatophytic activity of waste leaves of Curcuma longa L. Physiol Mol Biol Plants. 2010;16(2):177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Freile M, Giannini F, Sortino M, Zamora M, Juárez A, Zacchino S, et al. Antifungal activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Acta Farm Bonaer. 2006;25(1):83–8.

    CAS  Google Scholar 

  220. Jagetia GC, Venkatesh P, Baliga MS. Evaluation of the radioprotective effect of bael leaf (Aegle marmelos) extract in mice. Int J Radiat Biol. 2004;80(4):281–90.

    Article  CAS  PubMed  Google Scholar 

  221. Balakumar S, Rajan S, Thirunalasundari T, Jeeva S. Antifungal activity of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on dermatophytes. Asian Pac J Trop Biomed. 2011;1(4):309–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Li W, Zjou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3(5):617–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugénia Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zuzarte, M., Lopes, G., Pinto, E., Salgueiro, L. (2021). Are Natural Products an Alternative Therapy for Dermatophytosis?. In: Bouchara, JP., Nenoff, P., Gupta, A.K., Chaturvedi, V. (eds) Dermatophytes and Dermatophytoses. Springer, Cham. https://doi.org/10.1007/978-3-030-67421-2_22

Download citation

Publish with us

Policies and ethics