Skip to main content

Advertisement

Log in

Natural Products: An Alternative to Conventional Therapy for Dermatophytosis?

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The increased incidence of fungal infections, associated with the widespread use of antifungal drugs, has resulted in the development of resistance, making it necessary to discover new therapeutic alternatives. Among fungal infections, dermatophytoses constitute a serious public health problem, affecting 20–25 % of the world population. Medicinal plants represent an endless source of bioactive molecules, and their volatile and non-volatile extracts are clearly recognized for being the historical basis of therapeutic health care. Because of this, the research on natural products with antifungal activity against dermatophytes has considerably increased in recent years. However, despite the recognized anti-dermatophytic potential of natural products, often advantageous face to commercial drugs, there is still a long way to go until their use in therapeutics. This review attempts to summarize the current status of anti-dermatophytic natural products, focusing on their mechanism of action, the developed pharmaceutical formulations and their effectiveness in human and animal models of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Richardson MD, Warnock DW. Fungal infection: diagnosis and management. 4th ed. Oxford: Wiley-Blackwell; 2012.

    Book  Google Scholar 

  2. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12:501–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lopes G, Pinto E, Andrade PB, Valentão P. Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE. 2013;8(8):e72203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma R, Malik A. Activity of natural products derived essential oils against dermatophytes. WJPPS. 2015;4:1203–9.

    Google Scholar 

  5. Soares LA, de Cássia Orlandi Sardi J, Gullo FP, et al. Anti dermatophytic therapy: prospects for the discovery of new drugs from natural products. Braz J Microbiol. 2013;44:1035–41.

    Article  PubMed  Google Scholar 

  6. Dhayanithi N, Kumar TA, Kalaiselvam M, Balasubramanian T, Sivakumar N. Anti-dermatophytic activity of marine sponge, Sigmadocia carnosa (Dendy) on clinically isolated fungi. Asian Pac J Trop Biomed. 2012;2:635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Negri M, Salci TP, Shinobu-Mesquita CS, et al. Early state research on antifungal natural products. Molecules. 2014;19:2925–56.

    Article  PubMed  CAS  Google Scholar 

  8. Gowhar O, Singh NN, Sultan S, et al. Natural herbs as alternative to synthetic antifungal drugs-the future challenging therapy. Br Biomed Bull. 2015;3:440–52.

    Google Scholar 

  9. Pinto E, Pina-Vaz C, Salgueiro L, et al. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol. 2006;55:1367–73.

    Article  CAS  PubMed  Google Scholar 

  10. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51:2–15.

    Article  PubMed  Google Scholar 

  11. Drake LA, Patrick DL, Fleckman P, et al. The impact of onychomycosis on quality of life: development of an international onychomycosis-specific questionnaire to measure patient quality of life. J Am Acad Dermatol. 1999;41:189–96.

    Article  CAS  PubMed  Google Scholar 

  12. Vermout S, Tabart J, Baldo A, et al. Pathogenesis of dermatophytosis. Mycopathologia. 2008;166:267–75.

    Article  PubMed  Google Scholar 

  13. Fidel PL, Huffnagle GB. Fungal immunology: from an organ perspective. New-York: Springer; 2006.

    Google Scholar 

  14. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu L-C, Sun P-L, Chang Y-T. Extensive deep dermatophytosis cause by Trichophyton rubrum in a patient with liver cirrhosis and chronic renal failure. Mycopathologia. 2013;176:457–62.

    Article  PubMed  Google Scholar 

  16. Marconi VC, Kradin R, Marty FM, Hospenthal DR, Kotton CN. Disseminated dermatophytosis in a patient with hereditary hemochromatosis and hepatic cirrhosis: case report and review of the literature. Med Mycol. 2010;48:518–27.

    Article  PubMed  Google Scholar 

  17. Seebacher C, Bouchara J-P, Mignon B. Updates on the epidemiology of dermatophyte infections. Mycopathologia. 2008;166:335–52.

    Article  PubMed  Google Scholar 

  18. Putignani L, D’Arezzo S, Paglia MG, Visca P. DNA-based detection of human pathogenic fungi: dermatophytes, opportunists, and causative agents of deep mycoses. In: Gherbawy Y, Voigt K, Ferenczy L, editors. Molecular identification of fungi. New-York: Springer; 2010. p. 357–415.

    Chapter  Google Scholar 

  19. White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11:382–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lorian V. Antibiotics in laboratory medicine. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  21. Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev. 1993;6:1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li J, Li L, Tian Y, Niu G, Tan H. Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metab Eng. 2011;13:336–44.

    Article  CAS  PubMed  Google Scholar 

  23. Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166:353–67.

    Article  PubMed  Google Scholar 

  24. Ortholand J-Y, Ganesan A. Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol. 2004;8:271–80.

    Article  CAS  PubMed  Google Scholar 

  25. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod. 2003;66:1022–37.

    Article  CAS  PubMed  Google Scholar 

  26. Di Santo R. Natural products as antifungal agents against clinically relevant pathogens. Nat Prod Rep. 2010;27:1084–98.

    Article  PubMed  CAS  Google Scholar 

  27. Houghton P, Raman A. Laboratory handbook for the fractionation of natural extracts. Boston: Springer; 2012.

    Google Scholar 

  28. Hostettmann K, Wolfender J-L, Terreaux C. Modern screening techniques for plant extracts. Pharm Biol. 2001;39:18–32.

    CAS  PubMed  Google Scholar 

  29. Cheung RCF, Wong JH, Pan WL, et al. Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol. 2014;98:3475–94.

    Article  CAS  PubMed  Google Scholar 

  30. Cardozo KH, Guaratini T, Barros MP, et al. Metabolites from algae with economical impact. Comp Biochem Physiol C: Toxicol Pharmacol. 2007;146:60–78.

    Article  CAS  Google Scholar 

  31. Barros MP, Pinto E, Sigaud-Kutner TC, Cardozo KH, Colepicolo P. Rhythmicity and oxidative/nitrosative stress in algae. Biol Rhythm Res. 2005;36:67–82.

    Article  CAS  Google Scholar 

  32. Javed I. Antidermatophytic activity of angiospermic plants: a review. Asian J Pharm Clin Res. 2015;8:75–80.

    Google Scholar 

  33. Svetaz L, Zuljan F, Derita M, et al. Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. J Ethnopharmacol. 2010;127:137–58.

    Article  PubMed  Google Scholar 

  34. Webster D, Taschereau P, Belland RJ, Sand C, Rennie RP. Antifungal activity of medicinal plant extracts; preliminary screening studies. J Ethnopharmacol. 2008;115:140–6.

    Article  PubMed  Google Scholar 

  35. Ali-Shtayeh M, Abu Ghdeib SI. Antifungal activity of plant extracts against dermatophytes. Mycoses. 1999;42:665–72.

    Article  CAS  PubMed  Google Scholar 

  36. El-Wahidi M, El-Amraoui B, Biard J-F, et al. Variation saisonnière et géographique de l’activité antifongique des extraits de deux éponges marines récoltées sur le littoral atlantique d’El Jadida, Maroc. J Mycol Med. 2011;21:28–32.

    Article  CAS  PubMed  Google Scholar 

  37. Kuiate J-R, Bessière JM, Zollo PHA, Kuate SP. Chemical composition and antidermatophytic properties of volatile fractions of hexanic extract from leaves of Cupressus lusitanica Mill. from Cameroon. J Ethnopharmacol. 2006;103:160–5.

    Article  CAS  PubMed  Google Scholar 

  38. Roemer T, Xu D, Singh SB, et al. Confronting the challenges of natural product-based antifungal discovery. Chem Biol. 2011;18:148–64.

    Article  CAS  PubMed  Google Scholar 

  39. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70:461–77.

    Article  CAS  PubMed  Google Scholar 

  40. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. BBA Gen Subj. 2013;1830:3670–95.

    Article  CAS  Google Scholar 

  41. Vermerris W, Nicholson R (editors). Families of phenolic compounds and means of classification. In: Phenolic compound biochemistry. Netherlands: Springer; 2008. p. 1–34.

  42. Bruneton J. Pharmacognosy, phytochemistry, medicinal plants. 2nd ed. Paris: Lavoisier Publishing; 2008.

    Google Scholar 

  43. Ayres DC, Loike JD. Lignans: chemical, biological and clinical properties. Cambridge: Cambridge University Press; 1990.

    Book  Google Scholar 

  44. Zacchino S, Rodrıguez G, Santecchia C, et al. In vitro studies on mode of action of antifungal 8.O.4′-neolignans occurring in certain species of Virola and related genera of Myristicaceae. J Ethnopharmacol. 1998;62:35–41.

    Article  CAS  PubMed  Google Scholar 

  45. Apers S, Vlietinck A, Pieters L. Lignans and neolignans as lead compounds. Phytochem Rev. 2003;2:201–17.

    Article  CAS  Google Scholar 

  46. Zacchino SA, López SN, Pezzenati GD, et al. In vitro evaluation of antifungal properties of phenylpropanoids and related compounds acting against dermatophytes. J Nat Prod. 1999;62:1353–7.

    Article  CAS  PubMed  Google Scholar 

  47. MacRae WD, Towers GN. Biological activities of lignans. Phytochemistry. 1984;23:1207–20.

    Article  CAS  Google Scholar 

  48. Freixa B, Vila R, Ferro EA, Adzet T, Cañigueral S. Antifungal principles from Piper fulvescens. Planta Med. 2001;67:873–5.

    Article  CAS  PubMed  Google Scholar 

  49. Koroishi AM, Foss SR, Cortez DA, et al. In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. J Ethnopharmacol. 2008;117:270–7.

    Article  CAS  PubMed  Google Scholar 

  50. Kurdelas RR, Lima B, Tapia A, et al. Antifungal activity of extracts and prenylated coumarins isolated from Baccharis darwinii Hook & Arn. (Asteraceae). Molecules. 2010;15:4898–907.

    Article  CAS  PubMed  Google Scholar 

  51. Houghton P, Ismail K, Maxia L, Appendino G. Antidermatophytic prenylated coumarins from asafetida. Planta Med. 2006;72:S008.

    Google Scholar 

  52. Stein AC, Sortino M, Avancini C, Zacchino S, von Poser G. Ethnoveterinary medicine in the search for antimicrobial agents: antifungal activity of some species of Pterocaulon (Asteraceae). J Ethnopharmacol. 2005;99:211–4.

    Article  PubMed  Google Scholar 

  53. Vera N, Bardón A, Catalan CA, Gedris TE, Herz W. New coumarins from Pterocaulon polystachyum. Planta Med. 2001;67:674–7.

    Article  CAS  PubMed  Google Scholar 

  54. Mercer DK, Robertson J, Wright K, et al. A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses. PLoS ONE. 2013;8(11):e80760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Stewart C. Use of coumarin derivatives in antifungal therapy. U.S. Patent Application No. 12/303,958, 2007.

  56. Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anticancer Agents. 2005;5:29–46.

    Article  CAS  PubMed  Google Scholar 

  57. Agüero MB, Svetaz L, Baroni V, et al. Urban propolis from San Juan province (Argentina): ethnopharmacological uses and antifungal activity against Candida and dermatophytes. Ind Crops Prod. 2014;57:166–73.

    Article  CAS  Google Scholar 

  58. De Campos MP, Cechinel Filho V, Da Silva RZ, et al. Evaluation of antifungal activity of Piper solmsianum C. DC. var. solmsianum (Piperaceae). Biol Pharm Bull. 2005;28:1527–30.

    Article  PubMed  Google Scholar 

  59. Alvarez M, Debattista N, Pappano N. Antimicrobial activity and synergism of some substituted flavonoids. Folia Microbiol. 2008;53:23–8.

    Article  CAS  Google Scholar 

  60. Bitencourt TA, TakahasiKomoto T, Marins M, Fachin AL. Antifungal activity of flavonoids and modulation of expression of genes of fatty acid synthesis in the dermatophyte Trichophyton rubrum. BMC Proc. 2014;8(Suppl 4):P53.

    Article  PubMed Central  Google Scholar 

  61. Ghani SBA, Weaver L, Zidan ZH, et al. Microwave-assisted synthesis and antimicrobial activities of flavonoid derivatives. Bioorg Med Chem Lett. 2008;18:518–22.

    Article  PubMed  CAS  Google Scholar 

  62. Bhadauria S, Kumar P. Broad spectrum antidermatophytic drug for the control of tinea infection in human beings. Mycoses. 2012;55:339–43.

    Article  CAS  PubMed  Google Scholar 

  63. de Pinho BR. Naphthoquinones and ubiquinone analogues biological properties: modulation of immune and neurological systems. Ph.D. Thesis, Phytochemistry and Pharmacognosy Speciality, Faculty of Pharmacy, University of Porto, Porto, Portugal, 2014.

  64. Errante G, La Motta G, Lagana C, et al. Synthesis and evaluation of antifungal activity of naphthoquinone derivatives. Eur J Med Chem. 2006;41:773–8.

    Article  CAS  PubMed  Google Scholar 

  65. Ryu C-K, Kang H-Y, Yi Y-J, Shin K-H, Lee B-H. Synthesis and antifungal activities of 5/6-arylamino-4,7-dioxobenzothiazoles. Bioorg Med Chem Lett. 2000;10:1589–91.

    Article  CAS  PubMed  Google Scholar 

  66. Gershon H, Shanks L. Fungitoxicity of 1,4-naphthoquinones to Candida albicans and Trichophyton mentagrophytes. Can J Microbiol. 1975;21:1317–21.

    Article  CAS  PubMed  Google Scholar 

  67. Dzoyem JP, Tangmouo JG, Kechia FA, et al. In vitro antidermatophytic activity of Diospyros crassiflora Hiern (Ebenaceae). Sudan J Dermatol. 2006;4:10–5.

    Google Scholar 

  68. Gupta D, Thappa DM. Dermatoses due to indian cultural practices. Indian J Dermatol. 2015;60:3–12.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guiraud P, Steiman R, Campos-Takaki G-M, Seigle-Murandi F, Simeon de Buochberg M. Comparison of antibacterial and antifungal activities of lapachol and beta-lapachone. Planta Med. 1994;60:373–4.

    Article  CAS  PubMed  Google Scholar 

  70. Lown JW. The mechanism of action of quinone antibiotics. Mol Cell Biochem. 1983;55:17–40.

    Article  CAS  PubMed  Google Scholar 

  71. Lopes GLL. Seaweeds from the Portuguese coast: chemistry, antimicrobial and antiinflammatory capacity. Ph.D. Thesis, Phytochemistry and Pharmacognosy Speciality, Faculty of Pharmacy, University of Porto, Porto, Portugal, 2014.

  72. Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30:3875–83.

    Article  CAS  Google Scholar 

  73. Lipińska L, Klewicka E, Sójka M. The structure, occurrence and biological activity of ellagitannins: a general review. Acta Sci Pol Technol Aliment. 2014;13:289–99.

    Article  PubMed  Google Scholar 

  74. Foss SR, Nakamura CV, Ueda-Nakamura T, et al. Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Ann Clin Microbiol Antimicrob. 2014;13:1–6.

    Article  CAS  Google Scholar 

  75. Lee MH, Lee KB, Oh SM, Lee BH, Chee HY. Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. J Korean Soc Appl Biol Chem. 2010;53:504–7.

    Article  CAS  Google Scholar 

  76. Koivikko R, Loponen J, Pihlaja K, Jormalainen V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal. 2007;18:326–32.

    Article  CAS  PubMed  Google Scholar 

  77. Cordell GA. The alkaloids chemistry and biology, vol. 67. London: Academic Press; 2009.

    Google Scholar 

  78. Singh U, Sarma B, Mishra P, Ray A. Antifungal activity of venenatine, an indole alkaloid isolated from Alstonia venenata. Folia Microbiol. 2000;45:173–6.

    Article  CAS  Google Scholar 

  79. Emile A, Waikedre J, Herrenknecht C, et al. Bioassay-guided isolation of antifungal alkaloids from Melochia odorata. Phytother Res. 2007;21:398–400.

    Article  CAS  PubMed  Google Scholar 

  80. Meng F, Zuo G, Hao X, et al. Antifungal activity of the benzo [c] phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates. J Ethnopharmacol. 2009;125:494–6.

    Article  CAS  PubMed  Google Scholar 

  81. Lohombo-Ekomba M, Okusa P, Penge O, et al. Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. J Ethnopharmacol. 2004;93:331–5.

    Article  PubMed  Google Scholar 

  82. Ferheen S, Ahmed E, Afza N, et al. Haloxylines A and B, antifungal and cholinesterase inhibiting piperidine alkaloids from Haloxylon salicornicum. Chem Pharm Bull. 2005;53:570–2.

    Article  CAS  PubMed  Google Scholar 

  83. Xiao C, Ji Q, Rajput Z, et al. Antifungal efficacy of Phellodendron amurense ethanol extract against Trichophyton mentagrophytes in rabbits. Pak Vet J. 2014;34:219–23.

    Google Scholar 

  84. Sher A. Antimicrobial activity of natural products from medicinal plants. Gomal J Med Sci. 2004;7:72–8.

    Google Scholar 

  85. Vincken J-P, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry. 2007;68:275–97.

    Article  CAS  PubMed  Google Scholar 

  86. Houghton P, Patel N, Jurzysta M, Biely Z, Cheung C. Antidermatophyte activity of medicago extracts and contained saponins and their structure-activity relationships. Phytother Res. 2006;20:1061–6.

    Article  CAS  PubMed  Google Scholar 

  87. Njateng GSS, Du Z, Gatsing D, et al. Antifungal properties of a new terpernoid saponin and other compounds from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement Altern Med. 2015;15:1–12.

    Article  CAS  Google Scholar 

  88. Lunga PK, Qin X-J, Yang XW, et al. Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata. BMC Complement Altern Med. 2014;14:1–7.

    Article  Google Scholar 

  89. Avis T. Antifungal compounds that target fungal membranes: applications in plant disease control. Can J Plant Pathol. 2007;29:323–9.

    Article  CAS  Google Scholar 

  90. Kandi S, Godishala V, Rao P, Ramana K. Biomedical significance of terpenes: an insight. Biomed Biotechnol. 2015;3:8–10.

    CAS  Google Scholar 

  91. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils—a review. Food Chem Toxicol. 2008;46:446–75.

    Article  CAS  PubMed  Google Scholar 

  92. Baser KHC, Demirci F. Chemistry of essential oils. In: Berger RG, editor. Flavours and fragrances—chemistry, bioprocessing and sustainability. Springer: Berlin; 2007. p. 43–86.

    Google Scholar 

  93. Theis N, Lerdau M. The evolution of function in plant secondary metabolites. Int J Plant Sci. 2003;164:93–102.

    Article  Google Scholar 

  94. Zuzarte M, Gonçalves M, Canhoto J, Salgueiro L. Antidermatophytic activity of essential oils. In: Méndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Singapore: World Scientific; 2011. p. 1167–78.

    Google Scholar 

  95. Smith R, Cohen S, Doull J, et al. A procedure for the safety evaluation of natural flavor complexes used as ingredients in food: essential oils. Food Chem Toxicol. 2005;43:345–63.

    Article  CAS  PubMed  Google Scholar 

  96. Masotti V, Juteau F, Bessière JM, Viano J. Seasonal and phenological variations of the essential oil from the narrow endemic species Artemisia molinieri and its biological activities. J Agric Food Chem. 2003;51:7115–21.

    Article  CAS  PubMed  Google Scholar 

  97. Lawrence BM. A planning scheme to evaluate new aromatic plants for the flavor and fragrance industries. In: Janick J, Simon JE, editors. New crops. New York: Wiley; 1993. p. 620–7.

    Google Scholar 

  98. Edris AE. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res. 2007;21:308–23.

    Article  CAS  PubMed  Google Scholar 

  99. Maruzzella JC, Liguori L. The in vitro antifungal activity of essential oils. J Am Pharm Assoc. 1958;47:250–4.

    Article  CAS  Google Scholar 

  100. Maxia A, Falconieri D, Piras A, et al. Chemical composition and antifungal activity of essential oils and supercritical CO2 extracts of Apium nodiflorum (L.) Lag. Mycopathologia. 2012;174:61–7.

    Article  CAS  PubMed  Google Scholar 

  101. Marongiu B, Piras A, Porcedda S, et al. Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: chemical composition and antifungal activity. Nat Prod Res. 2013;27:1521–7.

    Article  CAS  PubMed  Google Scholar 

  102. Valente J, Resende R, Zuzarte M, et al. Bioactivity and safety profile of Daucus carota subsp. maximus essential oil. Ind Crops Prod. 2015;77:218–24.

    Article  CAS  Google Scholar 

  103. Valente J, Zuzarte M, Resende R, et al. Daucus carota subsp. gummifer essential oil as a natural source of antifungal and anti-inflammatory drugs. Ind Crops Prod. 2015;65:361–6.

    Article  CAS  Google Scholar 

  104. Cavaleiro C, Gonçalves MJ, Serra D, et al. Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. Laínz) M. Laínz, signalised by the antifungal activity. J Pharm Biomed Anal. 2011;54:619–22.

    Article  CAS  PubMed  Google Scholar 

  105. Flores FC, Beck RC, da Silva Cde B. Essential oils for treatment for onychomycosis: a mini-review. Mycopathologia. 2016;181:9–15.

    Article  CAS  PubMed  Google Scholar 

  106. Zuzarte M, Gonçalves MJ, Cavaleiro C, et al. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav. Chem Biodivers. 2009;6:1283–92.

    Article  CAS  PubMed  Google Scholar 

  107. Zuzarte M, Gonçalves MJ, Cavaleiro C, et al. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Hér. J Med Microbiol. 2011;60:612–8.

    Article  CAS  PubMed  Google Scholar 

  108. Tullio V, Nostro A, Mandras N, et al. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J Appl Microbiol. 2007;102:1544–50.

    Article  CAS  PubMed  Google Scholar 

  109. I J, Karim Moharam BA, Santhanam J, Jamal JA. Correlation between chemical composition and antifungal activity of the essential oils of eight Cinnamomum species. Pharm Biol. 2008;46:406–12.

    Article  CAS  Google Scholar 

  110. Elaissi A, Rouis Z, Salem NAB, et al. Chemical composition of 8 eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement Altern Med. 2012;12:1–15.

    Article  CAS  Google Scholar 

  111. Kavoosi G, Rowshan V. Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: effect of collection time. Food Chem. 2013;138:2180–7.

    Article  CAS  PubMed  Google Scholar 

  112. Marongiu B, Maxia A, Piras A, et al. Isolation of Crithmum maritimum L. volatile oil by supercritical carbon dioxide extraction and biological assays. Nat Prod Res. 2007;21:1145–50.

    Article  CAS  PubMed  Google Scholar 

  113. Vale-Silva L, Silva M-J, Oliveira D, et al. Correlation of the chemical composition of essential oils from Origanum vulgare subsp. virens with their in vitro activity against pathogenic yeasts and filamentous fungi. J Med Microbiol. 2012;61:252–60.

    Article  CAS  PubMed  Google Scholar 

  114. Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol. 2009;58:1454–62.

    Article  PubMed  Google Scholar 

  115. Miron D, Battisti F, Silva FK, et al. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Rev Bras Farmacogn. 2014;24:660–7.

    Article  CAS  Google Scholar 

  116. Miron D, Cornelio R, Troleis J, et al. Influence of penetration enhancers and molecular weight in antifungals permeation through bovine hoof membranes and prediction of efficacy in human nails. Eur J Pharm Sci. 2014;51:20–5.

    Article  CAS  PubMed  Google Scholar 

  117. De Lucca AJ, Pauli A, Schilcher H, et al. Fungicidal and bactericidal properties of bisabolol and dragosantol. J Essent Oil Res. 2011;23:47–54.

    Article  Google Scholar 

  118. Pinto E, Hrimpeng K, Lopes G, et al. Antifungal activity of Ferulago capillaris essential oil against Candida, Cryptococcus, Aspergillus and dermatophyte species. Eur J Clin Microbiol Infect Dis. 2013;32:1311–20.

    Article  CAS  PubMed  Google Scholar 

  119. Shin S, Lim S. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J Appl Microbiol. 2004;97:1289–96.

    Article  CAS  PubMed  Google Scholar 

  120. Pyun M-S, Shin S. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine. 2006;13:394–400.

    Article  CAS  PubMed  Google Scholar 

  121. Khan MSA, Ahmad I. Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl Microbiol Biotechnol. 2011;90:1083–94.

    Article  CAS  PubMed  Google Scholar 

  122. Houël E, Rodrigues A, Jahn-Oyac A, et al. In vitro antidermatophytic activity of Otacanthus azureus (Linden) Ronse essential oil alone and in combination with azoles. J Appl Microbiol. 2014;116:288–94.

    Article  PubMed  CAS  Google Scholar 

  123. Pina-Vaz C, Gonçalves Rodrigues A, Pinto E, et al. Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol Venereol. 2004;18:73–8.

    Article  CAS  PubMed  Google Scholar 

  124. Lazutka J, Mierauskien J, Slapšyt G, Dedonyt V. Genotoxicity of dill (Anethum graveolens L.), peppermint (Mentha × piperita L.) and pine (Pinus sylvestris L.) essential oils in human lymphocytes and Drosophila melanogaster. Food Chem Toxicol. 2001;39:485–92.

    Article  CAS  PubMed  Google Scholar 

  125. Andersen PH, Jensen NJ. Mutagenic investigation of peppermint oil in the Salmonella/mammalian-microsome test. Mutat Res Genet Toxicol. 1984;138:17–20.

    Article  CAS  Google Scholar 

  126. Hasheminejad G, Caldwell J. Genotoxicity of the alkenylbenzenes α- and β-asarone, myristicin and elemicin as determined by the UDS assay in cultured rat hepatocytes. Food Chem Toxicol. 1994;32:223–31.

    Article  CAS  PubMed  Google Scholar 

  127. Abel G. Chromosome-damaging effect of beta-asaron on human lymphocytes. Planta Med. 1987;53:251–3.

    Article  CAS  PubMed  Google Scholar 

  128. Morales-Ramirez P, Madrigal-Bujaidar E, Mercader-Martinez J, et al. Sister-chromatid exchange induction produced by in vivo and in vitro exposure to alpha-asarone. Mutat Res Genet Toxicol. 1992;279:269–73.

    Article  CAS  Google Scholar 

  129. Kim S, Liem A, Stewart B, Miller J. New studies on trans-anethole oxide and trans-asarone oxide. Carcinogenesis. 1999;20:1303–7.

    Article  CAS  PubMed  Google Scholar 

  130. Gomes-Carneiro MR, Felzenszwalb I, Paumgartten FJ. Mutagenicity testing of (±)-camphor, 1,8-cineole, citral, citronellal, (−)-menthol and terpineol with the Salmonella/microsome assay. Mutat Res, Genet Toxicol Environ Mutagen. 1998;416:129–36.

    Article  CAS  Google Scholar 

  131. Stammati A, Bonsi P, Zucco F, et al. Toxicity of selected plant volatiles in microbial and mammalian short-term assays. Food Chem Toxicol. 1999;37:813–23.

    Article  CAS  PubMed  Google Scholar 

  132. Pinto E, Salgueiro LR, Cavaleiro C, Palmeira A, Gonçalves MJ. In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Ind Crops Prod. 2007;26:135–41.

    Article  CAS  Google Scholar 

  133. Inouye S, Nishiyama Y, Uchida K, et al. The vapor activity of oregano, perilla, tea tree, lavender, clove, and geranium oils against a Trichophyton mentagrophytes in a closed box. J Infect Chemother. 2006;12:349–54.

    Article  CAS  PubMed  Google Scholar 

  134. Jeung E-B, Choi I-G. Antifungal activities of the essential oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their constituents against various dermatophytes. J Microbiol. 2007;45:460–5.

    PubMed  Google Scholar 

  135. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12:564–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bajpai VK, Yoon JI, Kang SC. Antifungal potential of essential oil and various organic extracts of Nandina domestica Thunb. against skin infectious fungal pathogens. Appl Microbiol Biotechnol. 2009;83:1127–33.

    Article  CAS  PubMed  Google Scholar 

  137. Rana B, Singh U, Taneja V. Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. J Ethnopharmacol. 1997;57:29–34.

    Article  CAS  PubMed  Google Scholar 

  138. Zacchino S, Santecchia C, López S, et al. In vitro antifungal evaluation and studies on mode of action of eight selected species from the Argentine flora. Phytomedicine. 1998;5:389–95.

    Article  CAS  PubMed  Google Scholar 

  139. Natarajan V, Venugopal P, Menon T. Effect of Azadirachta indica (neem) on the growth pattern of dermatophytes. Indian J Med Microbiol. 2003;21:98–101.

    CAS  PubMed  Google Scholar 

  140. Lopez S, Furlan R, Zacchino S. Detection of antifungal compounds in Polygonum ferrugineum Wedd. extracts by bioassay-guided fractionation. Some evidences of their mode of action. J Ethnopharmacol. 2011;138:633–6.

    Article  CAS  PubMed  Google Scholar 

  141. Svetaz L, Agüero MB, Alvarez S, et al. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action. Planta Med. 2007;73:1074–80.

    Article  CAS  PubMed  Google Scholar 

  142. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, 2nd ed. Approved standard. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA.

  143. Nweze E, Mukherjee P, Ghannoum M. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. J Clin Microbiol. 2010;48:3750–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shehata AS, Mukherjee PK, Ghannoum MA. Comparison between the standardized clinical and laboratory standards institute M38-A2 method and a 2,3-bis (2-methoxy-4-nitro-5-[(sulphenylamino) carbonyl]-2H-tetrazolium hydroxide-based method for testing antifungal susceptibility of dermatophytes. J Clin Microbiol. 2008;46:3668–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lopes G, Andrade PB, Valentão P. Screening of a marine algal extract for antifungal activities. In: Stengel DB, Connan S, editors. Natural products from marine algae: methods and protocols, methods in molecular biology. New York: Springer Science; 2015. p. 411–20.

    Chapter  Google Scholar 

  146. Hadacek F, Greger H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem Anal. 2000;11:137–47.

    Article  CAS  Google Scholar 

  147. Kassem A. Development and formulation of a new natural product for the treatment of pityriasis versicolor and skin dermatophyte infections. Ph.D Thesis, Faculty of Pharmacy, University of Khartoum, Sudan, 2015.

  148. Buck DS. Comparison of two topical preparations for the treatment of onychomycosis: Melaleuca altemifilia (tea tree) oil and clotrimazole. J Fam Pract. 1994;38:601–5.

    CAS  PubMed  Google Scholar 

  149. Syed T, Qureshi Z, Ali S, Ahmad S, Ahmad S. Treatment of toenail onychomycosis with 2% butenafine and 5% Melaleuca alternifolia (tea tree) oil in cream. Trop Med Int Health. 1999;4:284–7.

    Article  CAS  PubMed  Google Scholar 

  150. Derby R, Rohal P, Jackson C, Beutler A, Olsen C. Novel treatment of onychomycosis using over-the-counter mentholated ointment: a clinical case series. J Am Board Fam Med. 2011;24:69–74.

    Article  PubMed  Google Scholar 

  151. Lee S-J, Han J-I, Lee G-S, et al. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol Pharm Bull. 2007;30:184–8.

    Article  CAS  PubMed  Google Scholar 

  152. Mugnaini L, Nardoni S, Pinto L, et al. In vitro and in vivo antifungal activity of some essential oils against feline isolates of Microsporum canis. J Mycol Med. 2012;22:179–84.

    Article  CAS  PubMed  Google Scholar 

  153. Wagini NH, Abbas MS, Soliman AS, Hanafy YA. Badawy E-SM. In vitro and in vivo anti dermatophytes activity of Lawsonia inermis L. (henna) leaves against ringworm and its etiological agents. Am. J Clin Exp Med. 2014;2:51–8.

    Article  Google Scholar 

  154. Njateng GSS, Gatsing D, Mouokeu RS, Lunga PK, Kuiate J-R. In vitro and in vivo antidermatophytic activity of the dichloromethane-methanol (1:1 v/v) extract from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement Altern Med. 2013;13:1–10.

    Article  Google Scholar 

  155. Nyong EE, Odeniyi MA, Moody JO. In vitro and in vivo antimicrobial evaluation of alkaloidal extracts of Enantia chlorantha stem bark and their formulated ointments. Acta Pol Pharm. 2015;72:147–52.

    PubMed  Google Scholar 

  156. Singh G, Kumar P, Joshi SC. Treatment of dermatophytosis by a new antifungal agent ‘apigenin’. Mycoses. 2014;57:497–506.

    Article  CAS  PubMed  Google Scholar 

  157. Romero-Cerecero O, Román-Ramos R, Zamilpa A, et al. Clinical trial to compare the effectiveness of two concentrations of the Ageratina pichinchensis extract in the topical treatment of onychomycosis. J Ethnopharmacol. 2009;126:74–8.

    Article  PubMed  Google Scholar 

  158. Bindra RL, Singh AK, Shawl AS, Kumar S. Anti-fungal herbal formulation for treatment of human nails fungus and process thereof. U.S. Patent No. 6,296,838. 2 Oct. 2001.

  159. Céspedes CL, Avila JG, Garcıa AM, et al. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z Naturforsch C. 2006;61:35–43.

    Article  PubMed  Google Scholar 

  160. Ahmad K, Sultana N. Studies on bioassay directed antifungal activity of medicinal plants Calotropis procera, Skimmia laureola, Peltophorum pterocarpum and two pure natural compounds ulopterol and 4-methoxy-1-methyl-3-(2′S-hydroxy-3′-ene butyl)-2-quinolone. J Chem Soc Pak. 2003;25:328–30.

    CAS  Google Scholar 

  161. Stein AC, Álvarez S, Avancini C, Zacchino S, von Poser G. Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae). J Ethnopharmacol. 2006;107:95–8.

    Article  CAS  PubMed  Google Scholar 

  162. Navarro-García VM, Rojas G, Avilés M, Fuentes M, Zepeda G. In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand. Mycoses. 2011;54:569–71.

    Article  Google Scholar 

  163. Sathiamoorthy B, Gupta P, Kumar M, et al. New antifungal flavonoid glycoside from Vitex negundo. Bioorg Med Chem Lett. 2007;17:239–42.

    Article  CAS  PubMed  Google Scholar 

  164. Mbaveng AT, Ngameni B, Kuete V, et al. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J Ethnopharmacol. 2008;116:483–9.

    Article  CAS  PubMed  Google Scholar 

  165. Prasad NR, Anandi C, Balasubramanian S, Pugalendi K. Antidermatophytic activity of extracts from Psoralea corylifolia (Fabaceae) correlated with the presence of a flavonoid compound. J Ethnopharmacol. 2004;91:21–4.

    Article  CAS  Google Scholar 

  166. Zhang H-X, Lunga P-K, Li Z-J, Dai Q, Du Z-Z. Flavonoids and stilbenoids from Derris eriocarpa. Fitoterapia. 2014;95:147–53.

    Article  CAS  PubMed  Google Scholar 

  167. Singh D, Verma N, Raghuwanshi S, Shukla P, Kulshreshtha D. Antifungal anthraquinones from Saprosma fragrans. Bioorg Med Chem Lett. 2006;16:4512–4.

    Article  CAS  PubMed  Google Scholar 

  168. Feresin GE, Tapia A, Sortino M, et al. Bioactive alkyl phenols and embelin from Oxalis erythrorhiza. J Ethnopharmacol. 2003;88:241–7.

    Article  CAS  PubMed  Google Scholar 

  169. Perry NB, Blunt JW, Munro MH. A cytotoxic and antifungal 1,4-naphthoquinone and related compounds from a New Zealand brown alga, Landsburgia quercifolia. J Nat Prod. 1991;54:978–85.

    Article  CAS  PubMed  Google Scholar 

  170. Singh S, Prasad R, Pathania K, Joshi H. Antifungal activity of plumbagin & isodiospyrin from Diospyros kaki root bark. Asian J Plant Sci Res. 2012;2:1–5.

    Google Scholar 

  171. Gozubuyuk G, Aktas E, Yigit N. An ancient plant Lawsonia inermis (henna): determination of in vitro antifungal activity against dermatophytes species. J Mycol Med. 2014;24:313–8.

    Article  CAS  PubMed  Google Scholar 

  172. Thouvenel C, Gantier JC, Duret P, et al. Antifungal compounds from Zanthoxylum chiloperone var. angustifolium. Phytother Res. 2003;17:678–80.

    Article  CAS  PubMed  Google Scholar 

  173. Morteza-Semnani K, Amin G, Shidfar M, Hadizadeh H, Shafiee A. Antifungal activity of the methanolic extract and alkaloids of Glaucium oxylobum. Fitoterapia. 2003;74:493–6.

    Article  CAS  PubMed  Google Scholar 

  174. Chakraborty A, Chowdhury B, Bhattacharyya P. Clausenol and clausenine—two carbazole alkaloids from Clausena anisata. Phytochemistry. 1995;40:295–8.

    Article  CAS  PubMed  Google Scholar 

  175. Volleková A, Košt’álová D, Kettmann V, Tóth J. Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids. Phytother Res. 2003;17:834–7.

    Article  PubMed  CAS  Google Scholar 

  176. Duraipandiyan V, Ignacimuthu S. Antibacterial and antifungal activity of flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. J Ethnopharmacol. 2009;123:494–8.

    Article  CAS  PubMed  Google Scholar 

  177. Escalante AM, Santecchia CB, López SN, et al. Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J Ethnopharmacol. 2002;82:29–34.

    Article  CAS  PubMed  Google Scholar 

  178. Favel A, Kemertelidze E, Benidze M, Fallague K, Regli P. Antifungal activity of steroidal glycosides from Yucca gloriosa L. Phytother Res. 2005;19:158–61.

    Article  CAS  PubMed  Google Scholar 

  179. Tamura Y, Mizutani K, Ikeda T, et al. Antimicrobial activities of saponins of pericarps of Sapindus mukurossi on dermatophytes. Nat Med. 2001;55:11–6.

    CAS  Google Scholar 

  180. Stergiopoulou T, De Lucca AJ, Meletiadis J, et al. In vitro activity of CAY-1, a saponin from Capsicum frutescens, against Microsporum and Trichophyton species. Med Mycol. 2008;46:805–10.

    Article  CAS  PubMed  Google Scholar 

  181. García-Sosa K, Sánchez-Medina A, Álvarez SL, et al. Antifungal activity of sakurasosaponin from the root extract of Jacquinia flammea. Nat Prod Res. 2011;25:1185–9.

    Article  PubMed  CAS  Google Scholar 

  182. Lopez-Villegas EO, Herrera-Arellano A, de Los Angeles Martinez-Rivera M, et al. Ultrastructural changes on clinical isolates of Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum caused by Solanum chrysotrichum saponin SC-2. Planta Med. 2009;75:1517–20.

    Article  CAS  PubMed  Google Scholar 

  183. Cavaleiro C, Pinto E, Gonçalves M, Salgueiro L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J Appl Microbiol. 2006;100:1333–8.

    Article  CAS  PubMed  Google Scholar 

  184. Salgueiro L, Pinto E, Goncalves M, et al. Chemical composition and antifungal activity of the essential oil of Thymbra capitata. Planta Med. 2004;70:572–5.

    Article  CAS  PubMed  Google Scholar 

  185. Flach A, Gregel B, Simionatto E, et al. Chemical analysis and antifungal activity of the essential oil of Calea clematidea. Planta Med. 2002;68:836–8.

    Article  CAS  PubMed  Google Scholar 

  186. Tavares AC, Gonçalves MJ, Cruz MT, et al. Essential oils from Distichoselinum tenuifolium: chemical composition, cytotoxicity, antifungal and anti-inflammatory properties. J Ethnopharmacol. 2010;130:593–8.

    Article  CAS  PubMed  Google Scholar 

  187. Zuzarte M, Vale-Silva L, Gonçalves M, et al. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur J Clin Microbiol Infect Dis. 2012;31:1359–66.

    Article  CAS  PubMed  Google Scholar 

  188. Pinto E, Gonçalves MJ, Oliveira P, et al. Activity of Thymus caespititius essential oil and α-terpineol against yeasts and filamentous fungi. Ind Crops Prod. 2014;62:107–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugénia Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, G., Pinto, E. & Salgueiro, L. Natural Products: An Alternative to Conventional Therapy for Dermatophytosis?. Mycopathologia 182, 143–167 (2017). https://doi.org/10.1007/s11046-016-0081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0081-9

Keywords

Navigation