Skip to main content

Surface Properties of Dental Materials and Biofilm Formation

  • Chapter
  • First Online:
Oral Biofilms and Modern Dental Materials

Abstract

Bacterial adhesion to biological tissues of the oral cavity or artificial dental materials and the subsequent formation of complex biofilms are responsible for major dental pathologies such as caries, periodontitis, peri-implantitis, denture stomatitis, and candidiasis [1]. The first and essential step in biofilm formation is the initial attachment of single microbes to a substratum, where they have to interact with the available physicochemical surface conditions in order to remain and multiply [2, 3]. As a matter of principle, bacteria exist naturally within structured communities growing as biofilms and sufficient bacterial adhesion in the oral cavity is therefore the only way to survive for most bacteria in the long run [2, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflict and control. Periodontology. 2011;55(1):16–35.

    Article  Google Scholar 

  2. Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev. 2009;73(3):407–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Wang L, Levanen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013;3:12003–20.

    Article  Google Scholar 

  4. Quirynen M, Bollen CM. The influence of surface roughness and surface free energy on supra- and subgingival plaque formation in man: a review of the literature. J Clin Periodontol. 1995;22:1–14.

    Article  PubMed  Google Scholar 

  5. Busscher HJ, Norde W, van der Mei HC. Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol. 2008;74(9):2559–64.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev. 1999;23:179–229.

    Article  PubMed  Google Scholar 

  7. Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci. 2012;179-182:142–9.

    Article  PubMed  Google Scholar 

  8. Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res. 2015;94(8):1027–34.

    Article  PubMed  Google Scholar 

  9. Antonio PD, Lasalvia M, Perna G, Capozzi V. Scale-independent roughness value of cell membranes studied by means of AFM technique. Biochim Biophys Acta. 2012;1818:3141–8.

    Article  PubMed  Google Scholar 

  10. Boulange-Petermann L, Rault J, Bellon-Fontaine MN. Adhesion of Streptococcus thermophilus to stainless steel with different surface topography and roughness. Biofouling. 1997;11:201–16.

    Article  Google Scholar 

  11. Mei L, Busscher HJ, van der Mei HC, Ren Y. Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent Mater. 2011;27:770–8.

    Article  PubMed  Google Scholar 

  12. Hannig M. Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci. 1999;107:55–64.

    Article  PubMed  Google Scholar 

  13. Rimondini L, Fare S, Brambilla E, Felloni A, Consonni C, Brossa F, Carrassi A. The effect of surface roughness on early in vivo plaque colonization on titanium. J Periodontol. 1997;68:556–62.

    Article  PubMed  Google Scholar 

  14. Scheuermann TR, Camper AK, Hamilton MA. Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci. 1998;208:23–33.

    Article  Google Scholar 

  15. Wang Y, Lee SM, Dykes G. The physicochemical process of bacterial attachment to abiotic surfaces: challenges for mechanistic studies, predictability and the development of control strategies. Crit Rev Microbiol. 2014;41(4):452–64.

    Article  PubMed  Google Scholar 

  16. Kocher T, Langenbeck N, Rosin M, Bernhardt O. Methodology of three-dimensional determination of root surface roughness. J Periodontal Res. 2002;37:125–31.

    Article  PubMed  Google Scholar 

  17. Sander M. A practical guide to the assessment of surface texture. Göttingen: Mahr Feinprüf; 1991.

    Google Scholar 

  18. Tschernin M. Oberflächeneigenschaften von Zahnrestaurationsmaterialien, Text. PhD thesis, 2003.

    Google Scholar 

  19. Park JB, Yang SM, Ko YK. Evaluation of the surface characteristics of various implant abutment materials using confocal microscopy and white light interferometry. Implant Dent. 2015;24:650–6.

    Article  PubMed  Google Scholar 

  20. Poncin-Epaillard F, Henry J, Marmey P, Legeay G, Debarnot D, Bellon-Fontaine M. Elaboration of highly hydrophobic polymeric surface: a potential strategy to reduce the adhesion of pathogenic bacteria? Mater Sci Eng. 2013;33(3):1152–61.

    Article  Google Scholar 

  21. Siegismund D, Undisz A, Germerodt S, Schuster S, Rettenmayr M. Quantification of the interaction between biomaterial surfaces and bacteria by 3-D-modelling. Acta Biomater. 2014;10(1):267–75.

    Article  PubMed  Google Scholar 

  22. Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH. Roughness parameters. J Mater Proc Technol. 2002;123:133–45.

    Article  Google Scholar 

  23. Surface roughness terminology and parameters. www.predev.com/pdffiles/surface_roughness_terminology_and_parameters.pdf.

  24. Rauheitswerte. www.zimob.de/wp-content/uploads/2014/04/Rauheitswerte.pdf.

  25. Quick guide to surface roughness measurement. www.mitutoyo.com/wp-content/uploads/2012/11/1984_Surface_Roughness_PG.pdf.

  26. Oberflächenbeurteilung. www.ima.uni-stuttgart.de/pdf/studium/bachelor/dt/spezialisierungsfachversuche/HFV_Oberflaechenbeurteilung_2012.pdf.

  27. Webb HK, Truong K, Hasan J, Fluke C, Crawford RJ, Ivanova EP. Roughness parameters for standard description of surface nanoarchitecture. Scanning. 2012;34:257–63.

    Article  PubMed  Google Scholar 

  28. Oliveira K, Oliveira T, Teixeira P, et al. Comparison of the adhesion ability of different Salmonella enteritidis serotypes to materials used in kitchens. J Food Prot. 2006;69:2352–6.

    Article  PubMed  Google Scholar 

  29. Ortega MP, Hagiwara T, Watanable H, Sakiyama T, et al. Adhesion behavior and removeability of E. coli on stainless steel surface. Food Control. 1998;21:573–8.

    Article  Google Scholar 

  30. An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43:338–48.

    Article  PubMed  Google Scholar 

  31. Quirynen M, van der Mei HC, Bollen CML. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J Dent Res. 1993;72:1304–9.

    Article  PubMed  Google Scholar 

  32. Barnes LM, Lo MF, Adams MR, Chamberlain AHL. Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl Environ Microbiol. 1999;65:4543–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Faille C, Jullien C, Fontaine F, et al. Adhesion of Bacillus spores and E. coli cells to inert surfaces: role of surface hydrophobicity. Can J Microbiol. 2002;48:728–38.

    Article  PubMed  Google Scholar 

  34. McAllister EW, Carey LC, Brady PG, et al. The role of polymeric surface smoothness of biliary stents in bacterial adherence, biofilm deposition, and stent occlusion. Gastrointest Endosc. 1993;39:422–5.

    Article  PubMed  Google Scholar 

  35. Einwag J, Ulrich A, Gehring F. In-vitro-Plaqueanlagerung an unterschiedliche Füllungsmaterialien. Oralprophylaxe. 1990;12:22–7.

    PubMed  Google Scholar 

  36. Schwartz ML, Phillips RW. Comparison of bacterial accumulation on rough and smooth enamel surfaces. J Periodontal. 1957;28:304–7.

    Article  Google Scholar 

  37. Yamauchi M, Yamamoto M. In vitro adherence of microorganisms to denture base resin with different surface texture. Dent Mater J. 1990;9:19–24.

    Article  PubMed  Google Scholar 

  38. Larato DC. Influence of a composite resin restoration on the gingiva. J Prosthet Dent. 1972;28:402–4.

    Article  PubMed  Google Scholar 

  39. Möhrmann W, Regolati B, Renggli HH. Gingival reaction to well-fitted subgingival proximal gold inlays. J Clin Periodontol. 1974;1:120–5.

    Article  Google Scholar 

  40. Trivedi SC, Talim ST. The response of human gingiva to restorative materials. J Prosthet Dent. 1973;29:73–80.

    Article  PubMed  Google Scholar 

  41. Weitmann RT, Eames WB. Plaque accumulation on composite surfaces after various finishing procedures. JADA. 1975;91:101–6.

    Google Scholar 

  42. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17(Suppl 2):68–81.

    Article  PubMed  Google Scholar 

  43. Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S. Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur J Oral Sci. 2012;120(5):458–65.

    Article  PubMed  Google Scholar 

  44. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res. 1996;7:201–11.

    Article  PubMed  Google Scholar 

  45. Quirynen M, Bollen CM, Papaioannou W, Van Eldere J, van Steenberghe D. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: a short-term observation. Int J Oral Maxillofacial Implants. 1996;11:169–78.

    Google Scholar 

  46. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial retention: a review of the literature. Dent Mater. 1997;13:258–69.

    Article  PubMed  Google Scholar 

  47. Hannig M. Transmission electron microscopic study of in vivo pellicle formation on dental restorative materials. Eur J Oral Sci. 1997;105(5):422–33.

    Article  PubMed  Google Scholar 

  48. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. J Clin Periodontol. 1990;17:138–44.

    Article  PubMed  Google Scholar 

  49. Tanner J, Robinson C, Soderling E, Vallittu P. Early plaque formation on fibre-reinforced composites in vivo. Clin Oral Invest. 2005;9:154–60.

    Article  Google Scholar 

  50. Lafuma A, Quere D. Superhydrophobic states. Nat Mater. 2003;2:457–60.

    Article  PubMed  Google Scholar 

  51. Busscher HJ, Van Pelt AWK, De Boer P, de Jong HP, Arends J. The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf. 1984;9:319–31.

    Article  Google Scholar 

  52. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7.

    Article  Google Scholar 

  53. Young T. An essay on the cohesion of fluids. Philos Trans R Soc Lond. 1805;95:65–87.

    Google Scholar 

  54. Tadanaga K, Morinaga J, Matsuda A, Minami T. Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem Mater. 1999;12:590–2.

    Article  Google Scholar 

  55. Zhao Q, Liu Y, Abel EW. Effect of temperature on surface free energy of amorphous carbon films. J Colloid Interface Sci. 2004;280:174–83.

    Article  PubMed  Google Scholar 

  56. Bürgers R, Rosentritt M, Handel G. Bacterial adhesion of Streptococcus mutans to provisional fixed prosthodontic material. J Prosthet Dent. 2007;98(6):461–9.

    Article  Google Scholar 

  57. Bürgers R, Schneider-Brachert W, Rosentritt M, Handel G, Hahnel S. Candida albicans adhesion to composite resin materials. Clin Oral Invest. 2009;13(3):293–9.

    Article  Google Scholar 

  58. Absolom DR, Lamberti FV, Policova Z, Zing W, van Oss CJ, Neumann AW. Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol. 1983;46:90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Neumann AW, Good RJ, Hope CJ, Sejpal M. An equation-of-state-approach to determine surface tensions of low-energy solids from contact angles. J Colloid Interface Sci. 1974;49:291–304.

    Article  Google Scholar 

  60. Bürgers R, Gerlach T, Hahnel S, Schwarz F, Handel G, Gosau M. In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res. 2010;21:156–64.

    Article  PubMed  Google Scholar 

  61. Kaelble DH. Dispersion-polar surface tension properties of organic solids. J Adhes. 1970;2:66–8.

    Article  Google Scholar 

  62. Rabel W. Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. Farbe und Lack. 1971;77(10):997–1005.

    Google Scholar 

  63. Bürgers R, Cariaga T, Müller R, Rosentritt M, Reischl U, Handel G, Hahnel S. Effects of aging on surface properties and adhesion of Streptococcus mutans on various fissure sealants. Clin Oral Invest. 2009;13:419–26.

    Article  Google Scholar 

  64. de Wouters T, Jans C, Niederberger T, Fischer P, Rühs PA. Adhesion potential of intestinal microbes predicted by physico-chemical characterization methods. PLOS One. 2015;10(8):e0136437.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett. 1980;9:29–33.

    Article  Google Scholar 

  66. Rosenberg M, Rosenberg E, Judes H, Weiss E. Bacterial adherence to hydrocarbons and to surfaces in the oral cavity. FEMS Microbiol Lett. 1983;20:1–5.

    Article  Google Scholar 

  67. Clark WB, Lane MD, Beem E, et al. Relative hydrophobicities of Actinomyces viscosus and Actinomyces naeslundii strains and their adsorption to saliva-treated hydroxyapatite. Infect Immun. 1985;47:730–6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lindahl M, Faris A, Wadstrom T, Hjerten S. A new test based on “salting out” to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta. 1981;677:471–6.

    Article  PubMed  Google Scholar 

  69. Busscher HJ, Weerkamp AH, van der Mei HV, Van Pelt AWJ, de Jong HP, Arends J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol. 1984;48:980–3.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morisaki H, Nakagawa K, Shiraishi H. Measurement of attachment force of microbial adhesion. Colloids Surf B Biointerfaces. 1996;6:347–52.

    Article  Google Scholar 

  71. Rosenberg M, Kjelleberg S. Hydrophobic interactions: role in bacterial adhesion. In: Marshall KC, editor. Advances in microbial ecology. New York: Plenum; 1986. p. 353–93.

    Chapter  Google Scholar 

  72. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein absorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–82.

    Article  PubMed  Google Scholar 

  73. Lee JH, Khang G, Lee JW, Lee HB. Interaction of different types of cells of polymer surfaces with wettability gradient. J Colloid Interface Sci. 1998;205:323–30.

    Article  PubMed  Google Scholar 

  74. Li J, Zhang W. Bacterial behaviours on polymer surfaces with organic and inorganic antimicrobial compounds. J Biomed Mater Res A. 2008;88A:448–53.

    Google Scholar 

  75. Yang H, Deng Y. Preparation and physical properties of superhydrophobic papers. J Colloid Interface Sci. 2008;325:588–93.

    Article  PubMed  Google Scholar 

  76. Zhao Q, Wang S, Steinhagen HM. Tailored surface free energy of membrane diffusers to minimize microbial adhesion. Appl Surf Sci. 2004;230:371–8.

    Article  Google Scholar 

  77. Mabboux F, Ponsonnet L, Morrier JJ, Jaffrezic N, Barsotti O. Surface free energy and bacterial retention to saliva-coated dental implant materials: an in vitro study. Colliods Surf B Biointerfaces. 2004;39(4):1226–31.

    Google Scholar 

  78. Hu XL, Ho B, Lim CT, Hsu CS. Thermal treatments modulate bacterial adhesion to dental enamel. J Dent Res. 2011;90(12):1451–6.

    Article  PubMed  Google Scholar 

  79. Busscher HJ, Bos R, van der Mei HC. Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiol Lett. 1995;128:229–34.

    Article  PubMed  Google Scholar 

  80. Christersson CE, Dunford RG, Glantz PO, Baier RE. Effect of critical surface tension on retention of oral microorganisms. Scand J Dent Res. 1989;97:247–56.

    PubMed  Google Scholar 

  81. van Dijk J, Herkströter F, Busscher H, Weerkamp A, Jansen H, Arends J. Surface free energy and bacterial adhesion. An in vivo study in beagle dogs. J Clin Periodontol. 1987;14:300–4.

    Article  PubMed  Google Scholar 

  82. van Pelt AWJ, De Jong HP, Busscher HJ, Arends J. Dispersion and polar free energies of human enamel. J Biomed Mater Res. 1983;17:637–41.

    Article  PubMed  Google Scholar 

  83. Mabboux F, Ponsonnet L, Morrier JJ, Jaffrezic N, Barsotti O. Surface free energy and bacterial retention to saliva-coated dental implant materials—an in vitro study. Colloids Surf B Biointerfaces. 2004;39:199–205.

    Article  PubMed  Google Scholar 

  84. Bartholett W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1–8.

    Article  Google Scholar 

  85. Crick CR, Ismail S, Pratten J, Parkin IP. An investigation into bacterial attachment to n elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films. 2011;519:3722–7.

    Article  Google Scholar 

  86. Rzhepishevska O, Hakobyan S, Ruhal R, Gautrot J, Barbero D, Ramstedt M. The surface charge of antibacterial coatings alters motility and biofilm architecture. Biomater Sci. 2013;1(6):589–602.

    Article  PubMed  Google Scholar 

  87. Terada A, Okuyama K, Nishikawa M, Tsuneda S, Hosomi M. The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. Biotechnol Bioeng. 2012;109(7):1745–54.

    Article  PubMed  Google Scholar 

  88. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Permanent, non-leaching antibacterial surface—2: how high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28(32):4870–9.

    Article  PubMed  Google Scholar 

  89. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28(29):4192–9.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HK. Antimicrobial effects of positively charges surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemother. 2001;48(1):7–13.

    Article  PubMed  Google Scholar 

  91. Wilson WW, Wadeb MM, Holmana SC, Champlinb FR. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods. 2001;43:153–64.

    Article  PubMed  Google Scholar 

  92. Poortinga AT, Bos R, Norde W, Busscher HJ. Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep. 2002;47:1–32.

    Article  Google Scholar 

  93. Pederson K. Electrostatic interaction chromatography, a method for assaying the relative surface charges of bacteria. FEMS Microbiol Lett. 1982;12:365–7.

    Article  Google Scholar 

  94. Faircloth DC, Allen NL. High resolution measurements of surface charge densities on insulator surfaces. IEEE Trans Dielectr Electr Insul. 2003;10:285–90.

    Article  Google Scholar 

  95. Smith WE, Rungis J. Twin adhering conducting spheres in an electric field—an alternative geometry for an electrostatic voltmeter. J Phys E Sci Instrum. 1975;8:379–82.

    Article  Google Scholar 

  96. Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf B Biointerface. 1999;14:105–19.

    Article  Google Scholar 

  97. Cavalcanti YW, Wilson M, Lewis M, Williams D, Senna PM, Del-Bel-Cury AA, da Silva WJ. Salivary pellicles equalize surfaces’ charges and modulate the virulence of Candida albicans biofilm. Arch Oral Biol. 2016;66:129–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Bürgers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bürgers, R., Krohn, S., Wassmann, T. (2021). Surface Properties of Dental Materials and Biofilm Formation. In: Ionescu, A.C., Hahnel, S. (eds) Oral Biofilms and Modern Dental Materials . Springer, Cham. https://doi.org/10.1007/978-3-030-67388-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67388-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67387-1

  • Online ISBN: 978-3-030-67388-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics