Skip to main content

Tomato (Solanum lycopersicum L.) Breeding Strategies for Biotic and Abiotic Stresses

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

The cultivated tomato (Solanum lycopersicum L.) belongs to the Solanaceae family. The origin of tomato plant traces back to the Andean Region in South America, where wild types are still growing in their natural habitat. Tomatoes went through stages of domestication before it was discovered by the European expeditions in the sixteenth century and introduced to the Old World as an ornamental plant. Today, tomatoes are cultivated and consumed worldwide, either fresh or processed. The total world production of tomatoes in 2018 reached more than 182 million mt, steadily rising annually in consumption. The genomic characteristics and growth habits of tomato have made it a model in plant research with an increasing interest in breeding and development of molecular tools for crop improvement. The main breeding objectives of tomato are fruit yield, quality and resistance to biotic stress and tolerance to abiotic environmental factors. Traditional breeding of tomato is based on gene transfer from wild tomato relatives into modern cultivars. This chapter describes the origin and domestication of tomatoes. Traditional breeding strategies, such as mass selection, pedigree and hybridization methods and use of molecular markers are used to construct linkage maps. Biotic resistance and abiotic tolerance strategies are reviewed and the contributing role of biotechnology in generating new tomato cultivars through mutagenesis and the role of biotechnology and transgenic approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhary M, Rezk A (2015) RNAi technology: a potential tool in plant breeding. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham, pp 397–427

    Chapter  Google Scholar 

  • Acharya B, Dutta S, Dutta S, Chattopadhyay A (2018) Breeding tomato for simultaneous improvement of processing quality, fruit yield, and dual disease tolerance. Int J Veg Sci 24(5):407–423

    Article  Google Scholar 

  • Alfen V (2014) Encyclopedia of agriculture and food systems. Elsevier, San Diego. ISBN: 9780444525123

    Google Scholar 

  • Al-Khayri JM, Naik PM, Alwael HA (2017) In vitro plant regeneration of 'Ramsi' tomato landrace (Solanum lycopersicum L.) from cotyledonary explant. Acta Hort 1187:43–50. https://doi.org/10.17660/ActaHortic.2017.1187.5

    Article  Google Scholar 

  • Al-Saikhan MS, Rezk AA, Shalaby TA (2020) Evaluation of TY-2 gene ability for resistance to three strains of tomato yellow leaf curl virus-like viruses in segregated populations of tomato. Fres Environ Bull 29(5):3961–3969

    CAS  Google Scholar 

  • Alvarenga MR (2004) Tomate: produção em campo, em casa-de-vegetação e em hidroponia. UFLA, Lavras

    Google Scholar 

  • Alwael HA, Alkhuraiji TS, Naik PM, Al-Khayri JM (2020) Gamma radiation impact on seed germination and in vitro shoot regeneration of tomato (Solanum lycopersicum L.) Ramsi landrace. In Vitro Cell Dev Biol Plant 56:563 (Abstract). https://doi.org/10.1007/s11627-020-10096-7

  • Andrade TM, Maluf WR, Oliveira CM et al (2015) Interaction of the mutant genes B, og c, hp and t in the coloring of tomato fruit. Euphytica 205:773–783

    Article  CAS  Google Scholar 

  • Aslam MN, Mukhtar T, Hussain MA, Raheel M (2017) Assessment of resistance to bacterial wilt incited by Ralstonia solanacearum in tomato germplasm. J Plant Dis Prot 124:585–590

    Article  Google Scholar 

  • Atherton JG, Rudich J (1986) The tomato crop: a scientific basis for improvement. Chapman & Hall, London

    Book  Google Scholar 

  • Baek YS, Covey PA, Petersen JJ et al (2015) Testing the SI × SC rule: Pollen–pistil interactions in interspecific crosses between members of the tomato clade (Solanum section Lycopersicon, Solanaceae). Amer J Bot 102:302–311

    Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton DW (1950) Pachytene morphology of tomato chromosome complement. Am J Bot 37(8):639–643

    Article  Google Scholar 

  • Bauchet G, Grenier S, Samson N et al (2017) Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by genome wide association study. Theor Appl Genet 130:875

    Article  CAS  PubMed  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:1296–1303

    Article  PubMed  Google Scholar 

  • Bian XY, Thomas MR, Rasheed MS et al (2007) A recessive allele (tgr-1) conditioning tomato resistance to geminivirus infection is associated with impaired viral movement. Phytopathology 97(8):930–937

    Article  CAS  PubMed  Google Scholar 

  • Blanca J, Cañizares J, Cordero L et al (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 7:e48198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanca J, Montero-Pau J, Sauvage C et al (2015) Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16(1):257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blando F, Berland H, Maiorano G et al (2019) Nutraceutical characterization of anthocyanin-rich fruits produced by "sun Black" tomato line. Front Nutr 6:133. https://doi.org/10.3389/fnut.2019.00133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumwald E, Anil G, Allen G (2004) Breeding for abiotic stress resistance: challenges and opportunities. “New directions for a diverse planet”. Proceedings of the 4th international crop science congress, 26 Sep – 1 Oct 2004, Brisbane, Australia. www.cropscience.org.au

  • Bohs L (2005) Major clades in Solanum based on ndhF sequence data. In: Keating RC, Hollowell VC, Croat TB (eds) A festschrift for William GD Arcy: the legacy of a taxonomist. Mono Syst Bot Miss Bot Gard, vol 104, pp 27–49

    Google Scholar 

  • Bolger A, Scossa F, Bolger M et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038. https://doi.org/10.1038/ng.3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzroud S, Gasparini K, Hu G et al (2020) Down regulation and loss of auxin response factor 4 functions using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes 11(3):272. https://doi.org/10.3390/genes11030272

    Article  CAS  PubMed Central  Google Scholar 

  • Brommonschenkel SH, Frary A, Frary A et al (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact 13(10):1130–1138

    Article  CAS  PubMed  Google Scholar 

  • Butterbach P, Verlaan MG, Dullemans A et al (2014) Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci U S A 111(35):12942–12947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanelli G, Acciarri N, Campion B et al (2015) Participatory tomato breeding for organic conditions in Italy. Euphytica 204:179–197

    Article  CAS  Google Scholar 

  • Carbonell P, Alonso A, Grau A et al (2018) Twenty years of tomato breeding at EPSO-UMH: transfer resistance from wild types to local landraces from the first molecular markers to genotyping by sequencing (GBS). Diversity 10:12

    Article  CAS  Google Scholar 

  • Carelli BP, Gerald LT, Grazziotin F, Echeverrigaray S (2006) Genetic diversity among brazilian cultivars and landraces of tomato Lycopersicon esculentum Mill. revealed by RAPD markers. Gen Res Crop Evol 53:395–400

    Article  CAS  Google Scholar 

  • Caro M, Verlaan MG, Julián O et al (2015) Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Mol Breed 35:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrer Filho R, Oliveira RM, Dias VD et al (2016) Selection of tomato accessions resistant to Verticillium wilt. Pesq Agropec Trop Goiânia 46:429–433

    Article  Google Scholar 

  • Causse M, Grandillo S (2016) Gene mapping in tomato. The tomato genome. In: Causse M, Giovannoni J, Bouzayen M, Zouine M (eds) The tomato genome. Compendium of plant genomes. Springer, Berlin, pp 23–37

    Google Scholar 

  • Chaudhary J, Alisha A, Bhatt V et al (2019) Mutation breeding in tomato: advances, applicability and challenges. Plan Theory 8(5):128. https://doi.org/10.3390/plants8050128

    Article  CAS  Google Scholar 

  • Chen AL, Liu CY, Chen CH et al (2014) Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans. PLoS One 9:E96417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chetelat RT, Ji Y (2006) Cytogenetics and evolution. In: Razdan M, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2. Tomato. Science Publishers, Enfield, pp 73–108

    Google Scholar 

  • Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J Hort Sci Biotech 77:281–286

    Article  CAS  Google Scholar 

  • Clausen AM, Ferrer ME, Formica MB (2008) Informe Nacional. Situacion de los recursos fitogenticos en la Argentina 1996–2004. ISBN 978-987-521-296-1

    Google Scholar 

  • Colvine S, Branthôme FX (2016) The tomato: a seasoned traveler. In: Causse M, Giovannoni J, Bouzayen M, Zouine M (eds) The tomato genome. Compendium of plant genomes. Springer, Berlin, pp 1–5

    Google Scholar 

  • Cox S (2000) I say tomato, you say tomato. http://lamar.colostate.edu/%7Esamcox/Tomato.html

  • DellaPenna D, Alexander DC, Bennett AB (1986) Molecular cloning of tomato fruit polygalacturonase: analysis of polygalacturonase mRNA levels during ripening. Proc Natl Acad Sci U S A 83:6420–6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhaliwal MS, Jindal SK, Sharma A, Prasanna HC (2012) Tomato yellow leaf curl virus disease of tomato and its management through resistance breeding: a review. J Am Soc Hort Sci 47(3):324–327

    Google Scholar 

  • Dinh QD, Dechesne A, Furrer H et al (2019) High-altitude wild species Solanum arcanum LA385-A potential source for improvement of plant growth and photosynthetic performance at suboptimal temperatures. Front Plant Sci 10:1163. https://doi.org/10.3389/fpls.2019.01163

    Article  PubMed  PubMed Central  Google Scholar 

  • Diouf IA, Derivot L, Bitton F et al (2018) Water deficit and salinity stress reveal many specific QTL for plant growth and fruit quality traits in tomato. Front Plant Sci 9:279. https://doi.org/10.3389/fpls.2018.00279

    Article  PubMed  PubMed Central  Google Scholar 

  • Diwan N, Fluhr R, Eshed Y et al (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen Verticillium dahliae race 1. Theor Appl Genet 98:315–319

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Tanksley S (2000) The genetic basis of seed-weight variation: tomato as a model system. Theor Appl Genet 100:1267–1273

    Article  CAS  Google Scholar 

  • Dutta TK, Papolu PK, Banakar P et al (2015) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbio 6:260

    Article  Google Scholar 

  • Eboigbe L, Edemevughe VE (2019) Evaluating the variability in lycopene and agronomic characteristics of different tomato (Lycopersicon esculentum Mill) genotypes. J Appl Sci Environ Man 22:1777–1780

    Google Scholar 

  • Elías-López AL, Marquina B, Gutiérrez-Ortega A et al (2008) Transgenic tomato expressing interleukin-12 has a therapeutic effect in a murine model of progressive pulmonary tuberculosis. Clinic Exper Immun 154(1):123–133

    Article  CAS  Google Scholar 

  • El-Sappah AH, Islam MM, El-Awady HH et al (2019) Tomato natural resistance genes in controlling the root-knot nematode. Genes 10:925

    Google Scholar 

  • Ezin V, Dasenka T, Agbobatinkpo P et al (2018) Molecular genetics of salt tolerance in tomato F2 segregating population with the Aid of RAPD markers. Agric Sci 9:1553–1568

    CAS  Google Scholar 

  • FAOSTAT (2018) FAO Statistical Databases, Food and Agriculture Organization. http://faostat3.fao.org/home/E

  • Fari M, Szasz A, Mityko J et al (1992) Induced organogenesis via the seedling decapitation method (SDM) in three solanaceous vegetable species. Capsi Newsl:243–248

    Google Scholar 

  • Farooq AM, Tabassum B, Nasir IA, Husnain T (2010) Androgenesis induction, callogenesis, regeneration and cytogenetic studies of tomato haploid. J Agric Res 48(4):457–471

    Google Scholar 

  • Faruq G, Zakaria HP, Arash N (2012) Heat tolerance in tomato. Life Sci J 9(4):1936–1950

    Google Scholar 

  • Fentik DA (2017) Review on genetics and breeding of tomato (Lycopersicon esculentum Mill). Adv Crop Sci Tech 5:306

    Google Scholar 

  • Fernandez AI, Viron N, Alhagdow M et al (2009) Flexible tools for gene expression and silencing in tomato. Plant Phys 151(4):1729–1740

    Article  CAS  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Gen Vol 2007:ID 64358, p 52. https://doi.org/10.1155/2007/64358

  • Foolad MR, Chen FQ (1998) RAPD markers associated with salt tolerance in an interspecific cross of tomato (Lycopersicon esculentum × L. pennellii). Plant Cell Rep 17:306–312

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87(1–2):184–192

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144

    Google Scholar 

  • Foolad MR, Stoltz T, Dervinis C et al (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173

    Article  Google Scholar 

  • Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107

    Article  CAS  Google Scholar 

  • Foolad MR, Sullenberger MT, Ohlson EW, Gugino BK (2014) Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breed 133:401–411

    Article  CAS  Google Scholar 

  • Fournier P (1948) Plantes medicinales et venéneuses de France, vol III. Paul Lechevalier, Paris

    Google Scholar 

  • Fradin EF, Zhang Z, Juarez Ayala JC et al (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frary A, Doganlar S (2003) Comparative genetics of crop plant domestication and evolution. Turk J Agr For 27:59–69

    CAS  Google Scholar 

  • Frary A, Nesbitt C, Grandillo S et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • García-Martínez S, Grau A, Alonso A et al (2020) New cherry tomato breeding lines resistant to virus. J Am Soc Hort Sci 55(3):395–396

    Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AK (2014) Tomato (Solanum lycopersicum L.) in the service of biotechnology. PCTOC 120:881–902

    Article  CAS  Google Scholar 

  • Ghani MA, Abbas MM, Amjad M et al (2019) Production and characterization of tomato derived from interspecific hybridization between cultivated tomato and its wild relatives. J Hort Sci Biotech. https://doi.org/10.1080/14620316.2019.1689182

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genom 9:103–110

    Article  CAS  Google Scholar 

  • Gill U, Scott JW, Shekasteband R et al (2019) Ty 6, a major begomovirus resistance gene on chromosome 10, is effective against tomato yellow leaf curl virus and tomato mottle virus. Theor Appl Genet 132:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano L, Silva-Lobo V, Santana F et al (2005) Inheritance of resistance to the bipartite tomato chlorotic mottle begomovirus derived from Lycopersicon esculentum cv. ‘Tyking’. Euphytica 143(1–2):27–33

    Article  Google Scholar 

  • Gonzali S, Mazzucato A, Perata P (2009) Purple as a tomato: towards high anthocyanin tomatoes. Trends Plant Sci 14(5):237–241

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo MJ, Li YC, Chen KY et al (2020) Genetic control of reproductive traits in tomatoes under high temperature. Front Plant Sci 11:326. https://doi.org/10.3389/fpls.2020.00326

  • Gosal S, Wani SH, Kang M (2009) Biotechnology and drought tolerance. J Crop Improv 23(1):19–54

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  PubMed  Google Scholar 

  • Grieneisen ML, Aegerter BJ, Stoddard CS, Zhang M (2018) Yield and fruit quality of grafter tomatoes, and their potential for soil fumigant use reduction. A meta-analysis. Agronomy for sustainable development. Springer Verlag/EDP Science/INRA. 38(3):29. https://doi.org/10.1007/s13593-018-0507-5

    Article  CAS  Google Scholar 

  • Hanson PM, Bernacchi D, Green S et al (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hort Sci 125:15–20

    Article  CAS  Google Scholar 

  • Hanson P, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop 56:17–18

    Google Scholar 

  • Hemming MN, Basuki S, McGrath DJ et al (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor Appl Genet 109:409–418

    Article  CAS  PubMed  Google Scholar 

  • Hutton SF, Scott JW, Schuster DJ (2012) Recessive resistance to tomato yellow leaf curl virus from the tomato cultivar Tyking is located in the same region as Ty-5 on chromosome 4. J Am Soc Hort Sci 47(3):324–327

    Google Scholar 

  • Inderbitzin P, Christopoulou M, Lavelle D et al (2019) The LsVe1L allele provides a molecular marker for resistance to Verticillium dahlia race 1 in lettuce. BMC Plant Biol 19:305. https://doi.org/10.1186/s12870-019-1905-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal RK, Saeed K, Khan A et al (2019) Tomato (Lycopersicum esculentum) fruit improvement through breeding. Sch J Appl Sci Res 2(7):21–25

    Google Scholar 

  • Jablonska B, Ammiraju JS, Bhattarai KK et al (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143:1044–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins JA (1948) The origin of the cultivated tomato. Econ Bot 2:379–392

    Article  Google Scholar 

  • Ji Y, Scott JW, Hanson P et al (2007) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 343–362

    Chapter  Google Scholar 

  • Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009) Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hort Sci 134:281–288

    Article  Google Scholar 

  • Jones RA, Scott SJ (1983) Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 32:845–855

    Article  Google Scholar 

  • Jones JB, Lacy GH, Bouzar H et al (2005) Bacterial spot – worldwide distribution, importance and review. Acta Hort 695:27–33

    Google Scholar 

  • Jones JB, Zitter TA, Momol TM, Miller SA (eds) (2014) Compendium of tomato diseases and pests, 2nd edn. Minnesota, APS Press

    Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  • Khare N, Goyary D, Singh NK et al (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103:267–277

    Article  CAS  Google Scholar 

  • Kil GJ, Kim S, Lee YJ et al (2016) Tomato yellow leaf curl virus (TYLV-IL): a seed-transmissible geminivirus in tomatoes. Sci Rep 6:19013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp S (2002) Solanum section Geminata. Fl Neotrop 84:1–405

    Google Scholar 

  • Knapp S, Peralta IE (2016) The tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives. In: Causse M, Giovannoni J, Bouzayen M, Zouine M (eds) The tomato genome. Compendium of plant genomes. Springer, Berlin, pp 7–21

    Google Scholar 

  • Kostov K, Batchvarova R, Slavov S (2007) Application of chemical mutagenesis to increase the resistance of tomato to Orobanche ramosa L. Bulg J Agric Sci 13:505–513

    Google Scholar 

  • Kumar A, Jindal SK, Dhaliwal MS et al (2019) Gene pyramiding for elite tomato genotypes against ToLCV (Begomovirus spp.), late blight (Phytophthora infestans) and RKN (Meloidogyne spp.) for northern India farmers. Phys Mol Biol Plants 25(5):1197–1209

    Article  CAS  Google Scholar 

  • Laskar RA, Chaudhary C, Khan S, Chandra A (2016) Induction of mutagenized tomato populations for investigation on agronomic traits and mutant phenotyping. J Saudi Soc Agric Sci 17:51–60

    Google Scholar 

  • Lech M, Miczynski K, Pindel A (1996) Comparison of regeneration potentials in tissue cultures of primitive and cultivated tomato species (Lycopersicon sp.). Acta Soc Bot Polon 65:53–56

    Article  Google Scholar 

  • Li X, Song Y, Century K et al (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Zhang W, Zhang XY, Li DZ (2012) Cross breeding of canker-resistance varieties for tomato and identification by SSR molecular markers. Hunan Agric Sci 13:13–15

    CAS  Google Scholar 

  • Li T, Yang X, Yu Y et al (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotech. https://doi.org/10.1038/nbt.4273. Advance online publication

  • Liabeuf D, Francis DM, Sim SC (2015) Screening cultivated and wild tomato germplasm for resistance to Xanthomonas gardneri. Acta Hort 1069:65–70

    Article  Google Scholar 

  • Lim GTT, Wang GP, Hemming MN et al (2006) Mapping the I-3 gene for resistance to Fusarium wilt in tomato, application of an I-3 marker in tomato improvement and progress towards the cloning of I-3. Australas Plant Pathol 35:671–680

    Article  CAS  Google Scholar 

  • Lin WC, Lu CF, Wu JW et al (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13(6):567–581

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Lo HF, Lee SP et al (2006) RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hered 143:142–154. https://doi.org/10.1111/j.2006.0018-0661.01938.x

    Article  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D et al (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A 110:623–632

    Article  Google Scholar 

  • Martinez de Ilarduya O, Moore AE, Kaloshian I (2001) The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. Plant J 27:417–425

    Article  CAS  Google Scholar 

  • Mata-Nicolas E, Montero-Pau J, Gimeno-Paez E et al (2020) Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Hort Res 7(66)

    Google Scholar 

  • Matsukura C, Yamaguchi I, Inamura M et al (2007) Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar ‘Micro-Tom ’. Plant Biotech 24:39–44

    Article  Google Scholar 

  • Merk HL, Ashrafi H, Foolad MR (2012) Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum pimpinellifolium. Euphytica 187:63–75

    Article  Google Scholar 

  • Meyer R, Purugganan M (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852. https://doi.org/10.1038/nrg3605

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    Article  CAS  PubMed  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J et al (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Google Scholar 

  • Monforte AJ, Sins MA, Carbonell EA (1996) Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor Appl Genet 93:765–772

    Article  CAS  PubMed  Google Scholar 

  • Moreau P, Thoquet P, Olivier J et al (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant-Microbe Interact 11:259–269

    Article  CAS  Google Scholar 

  • Mukherjee D, Maurya P, Bhattacharjee T et al (2020) Assessment of Breeding Potential of Cherry Tomato [Solanum lycopersicum var. Cerasiforme (Dunnal) A. Gray] Grown under Open Field to Identify Desirable Alleles. IJCMAS 9:2152–2171. https://doi.org/10.20546/ijcmas.2020.904.258

  • Nesbitt TC, Tanksley SD (2001) fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthetic distribution. Plant Phys 127:575–583

    Article  CAS  Google Scholar 

  • Ohlson EW, Ashrafi H, Foolad MR (2018) Identification and mapping of late blight resistance quantitative trait loci in tomato accession PI 163245. Plant Genome 11:180007

    Article  CAS  Google Scholar 

  • Olmstead RG, Bohs L (2007) A summary of molecular systematic research in Solanaceae: 1982–2006. In: Spooner DM, Bohs L, Giovannoni J et al (eds) Solanaceae VI: Genomics meets biodiversity. Proceedings of the Sixth International Solanaceae Conference. Acta Hort 745, pp 255–268

    Google Scholar 

  • Olmstead RG, Palmer JD (1997) Implications for phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22:19–29

    Article  Google Scholar 

  • Olmstead RG, Sweere JA, Spangler RE et al (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon D, Lester RN, Jessop J (eds) Solanaceae IV: advances in biology and utilization. Royal Botanic Gardens, Kew, pp 111–137

    Google Scholar 

  • Osei MK, Prempeh R, Adjebeng-Danquah J et al (2018) Marker-assisted selection (MAS): a fast-track tool in tomato breeding. In: Nyaku ST, Danquah A (eds) Recent advances in tomato breeding and production. InTechOpen, pp 93–113. https://doi.org/10.5772/intechopen.70226

    Chapter  Google Scholar 

  • Pal RS, Hedau NK, Kant L, Pattanayak A (2018) Functional quality and antioxidant properties of tomato genotypes for breeding better quality varieties. Electro J Plant Breed 9:1–8

    Article  Google Scholar 

  • Palta JP, Chen HH, Li PH (1979) Relationship between heat and frost resistance of several Solanum species. Plant Phys 63:102

    Google Scholar 

  • Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panthee DR, Gardner RG (2011) Genetic improvement of fresh market tomatoes for yield and fruit quality over 35 years in North Carolina: a review. Int J Veget Sci 17(3):259–273

    Article  Google Scholar 

  • Panthee D, Brown AF, Yousef G et al (2013) Novel molecular marker associated with Tm2a gene conferring resistance to tomato mosaic virus in tomato. Plant Breed 132:413–416

    Article  CAS  Google Scholar 

  • Panthee DR, Piotrowski A, Ibrahem R (2017) Mapping quantitative trait loci (QTL) for resistance to late blight in tomato. Int J Mol Sci 18(7):1589

    Article  PubMed Central  CAS  Google Scholar 

  • Pedley KF, Martin GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41:215–243

    Article  CAS  PubMed  Google Scholar 

  • Pei CC, Wang H, Zhang JY et al (2012) Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3. Theor Appl Genet 124:533–542

    Article  CAS  PubMed  Google Scholar 

  • Peirce LC (1971) Linkage tests with Ph conditioning resistance to race 0, Phytophthora infestans. Tomato Genet Coop Rep 21:30

    Google Scholar 

  • Peralta IE, Spooner DM (2000) Classification of wild tomatoes: a review. Kurtziana 28(1):45–54

    Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Peralta IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 2. Tomato. Science, Enfield, pp 1–27

    Google Scholar 

  • Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Syst Bot 30(2):424–434

    Google Scholar 

  • Peralta IE, Knapp S, Spooner DM (2006) Nomenclature for wild and cultivated tomatoes. Feature article. Tomato Genet Coop Rep 56:6–12

    Google Scholar 

  • Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). American Society of Plant Taxonomists, Ann Arbor

    Google Scholar 

  • Perez de Castro A, Blanca JM, Díez MJ, Nuez F (2007) Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Eur J Plant Pathol 117:347–356

    Article  Google Scholar 

  • Pico B, Díez MJ, Nuez F (1996) Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus – a review. Sci Hort 67(3–4):151–196

    Google Scholar 

  • Piosik Ł, Ruta-Piosik M, Zenkteler M, Zenkteler E (2019) Development of interspecific hybrids between Solanum lycopersicum L. and S. sisymbriifolium Lam. via embryo calli. Euphytica 215:1–20. https://doi.org/10.1007/s10681-019-2358-9

    Article  Google Scholar 

  • Piron F, Nicolai M, Minoia S et al (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 5:e11313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popoola AR, Durosomo AH, Afolabi CG, Idehen EO (2015) Regeneration of somaclonal variants of tomato (Solanum lycopersicum L.) for resistance to fusarium wilt. J Crop Improv 29(5):636–649. https://doi.org/10.1080/15427528.2015.1066287

    Article  CAS  Google Scholar 

  • Rahman MM, Kaul K (1989) Differentiation of sodium chloride tolerant cell lines of tomato (Lycopersicon esculentum Mill.) cv. Jet Star. J Plant Phys 133:710–712

    Article  CAS  Google Scholar 

  • Ranc N, Muños S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biol 8:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranjan A, Ichihashi Y, Sinha NR (2012) The tomato genome: implications for plant breeding, genomics and evolution. Genome Biol 13(8):167

    Article  PubMed  PubMed Central  Google Scholar 

  • Razali R, Bougouffa S, Morton M et al (2018) The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front Plant Sci 9:1402. https://doi.org/10.3389/fpls.2018.01402

    Article  PubMed  PubMed Central  Google Scholar 

  • Razifard H, Ramos A, Della V et al (2020) Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol Biol Evol 37(4):1118–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rick CM (1978) The tomato. Sci Am 239:77–87

    Google Scholar 

  • Rick CM (1988) Tomato-like nightshades: affinities, autecology, and breeders opportunities. Econ Bot 42:145–154

    Article  Google Scholar 

  • Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme genetic variation and its evolutionary significance. Econ Bot 43(3):69–78

    Article  Google Scholar 

  • Rodriguez GR, Munos S, Anderson C et al (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Google Scholar 

  • Ruffel S, Gallois JL, Lesage ML, Caranta C (2005) The recessive potyvirus resistance gene pot–1 is the tomato orthologue of the pepper pvr2‐eIF4E gene. Mol Genet Genomics 274:346–353

    Google Scholar 

  • Ruiz JJ, García-Martínez S (2009) Tomato varieties ‘Muchamiel’ and ‘De la Pera’ from the southeast of Spain: genetic improvement to promote on-farm conservation. In: Vetelainen M, Negri V, Maxted N (eds) European landrace: on-farm conservation, management and use, Biodiversity technical bulletin No 15. Bioversity International, Rome

    Google Scholar 

  • Rzepka-Plevneš D, Kulpa D, Smolik M, Gáówka M (2007) Somaclonal variation in tomato L. pennelli and L. peruvianum f. glandulosum characterized in respect to salt tolerance. J Food Agric Environ 5(2):194–201

    Google Scholar 

  • Saavedra TM, Figueroa GA, Cauih JD (2017) Origin and evolution of tomato production Lycopersicon esculentum in México. Ciênc Rural 47(3):20160526

    Article  Google Scholar 

  • Sacks EJ, Gerhardt LM, Graham EB et al (1997) Variation among 41 genotypes of tomato (Lycopersicon esculentum Mill.) for crossability to L. peruvianum (L.) Mill. Ann Bot 80(4):469–477. https://doi.org/10.1006/anbo.1997.0468

    Article  Google Scholar 

  • Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I-2. Theor Appl Genet 78:755–759

    Article  CAS  PubMed  Google Scholar 

  • Sarfatti M, Abuabied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 82:22–26

    Article  CAS  PubMed  Google Scholar 

  • Scott J (2006) Breeding for resistance to viral pathogens. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 2. Tomato. Science Publishing, Enfield, pp 457–485

    Chapter  Google Scholar 

  • Scott JW, Stevens MR, Barten JHM et al (1996) Introgression of resistance to whitefly transmitted geminiviruses from Lycopersicon chilense to tomato. In: Gerling D, Mayer RT (eds) Bemisia: 1995, taxonomy, biology, damage, control and management. Intercept, Andover, pp 357–377

    Google Scholar 

  • Sen Y, Derwolf JV, Visser RGF, Heusden SV (2015) Bacterial canker of tomato: current knowledge of detection, management, resistance, and interactions. Plant Dis 99:4–13

    Article  PubMed  Google Scholar 

  • Shah SH, Ali S, Jan SA et al (2015a) Callus induction, in vitro shoot regeneration and hairy root formation by the assessment of various plant growth regulators in tomato (Solanum lycopersicum Mill.). J Anim Plant Sci 25:528–538

    CAS  Google Scholar 

  • Shah SRA, Tao LI, Haijuan CHI et al (2015b) Age-related resistance and the defense signaling pathway of Ph-3 gene against Phytophthora infestans in tomatoes. Hort Plant J 1(2):70–76

    Google Scholar 

  • Sharlach M, Dahlbeck D, Liu L et al (2013) Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Theor Appl Genet 126:601–609

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Hsu JC, Huang SM et al (2020) Construction of a single nucleotide polymorphism marker based QTL map and validation of resistance loci to bacterial wilt caused by Ralstonia solanacearum species complex. Euphytica 216:54. https://doi.org/10.1007/s10681-020-2576-1

    Article  CAS  Google Scholar 

  • Sims WL (1980) History of tomato production for industry around the world. Act Horticulture 100:25–26

    Article  Google Scholar 

  • Smith SLS, Murakishi HH (1987) Inheritance of resistance to tomato mosaic virus (ToMV-0), in tomato somaclones. TGC Rep 37:65–66

    Google Scholar 

  • Sohrab SS, Suhail M, Kamal MA (2017) Recent development and future prospects of plant-based vaccines. Curr Drug Metabol 18:831

    Article  CAS  Google Scholar 

  • Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80:676–688

    Article  CAS  Google Scholar 

  • Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs to other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst. subsection Lycopersicon]. Taxon 54:43–61

    Article  Google Scholar 

  • Stamova BS, Chetelat RT (2000) Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor Appl Genet 101:527–537

    Article  CAS  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:181–189

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genet 132:1141–1160

    Article  CAS  Google Scholar 

  • Thapa SP, Miyao EM, Davis RM, Coaker G (2015) Identification of QTLs controlling resistance to Pseudomonas syringae pv. tomato race 1 strains from the wild tomato, Solanum habrochaites LA1777. Theor Appl Genet 128:681–692

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes M et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Valdes VM, Gray D (1998) The influence of stage of fruit maturation on seed quality in tomato (Lycopersicon lycopersicum (L.) Karsten). Seed Sci Tech 26:309–318

    Google Scholar 

  • Van den Bulk RW, Löffler HJ, Lindhout WH, Koornneef M (1990) Somaclonal variation in tomato: effect of explant source and a comparison with chemical mutagenesis. Theor Appl Genet 80(6):817–825. https://doi.org/10.1007/BF00224199

    Article  PubMed  Google Scholar 

  • Van den Bulk RW, Jansen J, Lindhout WH, Löffler HJM (1991) Screening of tomato somaclones for resistance to bacterial canker (Clavibacter michiganensis subsp. michiganensis). Plant Breed 107:190–196. https://doi.org/10.1111/j.1439-0523.1991.tb01206.x

    Article  Google Scholar 

  • Van der Hoeven R, Ronning C, Giovannoni J et al (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14(7):1441–1456

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Knapp E, Chakrabarti M, Chu YH et al (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    Google Scholar 

  • Van Heusden AW, Lindhout P (2018) Genetics and breeding. In: Heuvelink E (ed) Tomatoes, 2nd edn. CAB International, Wallingford, pp 27–58

    Chapter  Google Scholar 

  • Venema JH, Linger P, Van Heusden AW et al (2005) The inheritance of chilling tolerance in tomato (Lycopersicon spp.). Plant Biol 7:118–130

    Article  CAS  PubMed  Google Scholar 

  • Vergani GR (2002) Lycupersicum esculentum: una breve historia del tomate. Rev Hort 158:9

    Google Scholar 

  • Vilchez D, Diego AS, Cinthya Z (2019) Ex situ conservation priorities for the peruvian wild tomato species (Solanum L. Sect. Lycopersicum (Mill.) Wettst.). Ecol Appl 18(2):171–183

    Article  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang H-S, Yu C, Tang X-F, Zhu Z-J, Ma N-N, Meng Q-W (2014) A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Reports 33(1):131–142

    Google Scholar 

  • Wang L, Chen L, Li R et al (2017) Reduced drought tolerance by CRISPR/Cas9-Mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682. https://doi.org/10.1021/acs.jafc.7b02745

  • Wen J, Jiang F, Weng Y et al (2019) Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol 19:398. https://doi.org/10.1186/s12870-019-2008-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ et al (2008) Breeding for abiotic stresses for sustainable agriculture. Phil Tran Roy Soc Lond Series B, Biol Sci 363(1492):703–716

    Article  CAS  Google Scholar 

  • Wolters A, Jacobsen E, O'Connell M et al (1994) Somatic hybridization as a tool for tomato breeding. Euphytica 79:265–277

    Article  Google Scholar 

  • Wu WW, Shen HL, Yang WC (2009) Sources for heat-stable resistance to southern root-knot nematode (Meloidogyne incognita) in Solanum lycopersicum. Agric Sci China 8:697–702

    Article  CAS  Google Scholar 

  • Xu Y, Li P, Zou C et al (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68(11):2641–2666. https://doi.org/10.1093/jxb/erx135

  • Yamaguchi H, Ohnishi J, Saito A et al (2018) An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 begomovirus resistance locus of tomato. Theor Appl Genet 131(6):1345–1362

    Article  CAS  PubMed  Google Scholar 

  • Yang WC, Francis DM (2007) Genetics and breeding for resistance to bacterial diseases in tomato: prospects for marker assisted selection. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 1. Tomato. Science Publishers, Enfield, pp 379–419

    Google Scholar 

  • Yang WC, Sacks EJ, Lewis-Ivey ML et al (2005) Resistance in Lycopersicum esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519–527

    Article  CAS  PubMed  Google Scholar 

  • Yin XG, Wang XJ, Zhang Y et al (2005) Research progress on tomato bacterial wilt and resistance breeding in China. J Yunnan Agric Univ 20:163–167

    Google Scholar 

  • Youm JW, Jeon JH, Kim H et al (2008) Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer's disease. Biotechnol Lett 30(10):1839–1845. https://doi.org/10.1007/s10529-008-9759-5

  • Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120:579–585

    Google Scholar 

  • Yuqing W, Yaxian Z, Zhipeng G, Wencai Y (2018) Breeding for resistance to tomato bacterial diseases in China: challenges and prospects. Hort Plant J 4(5):193–207

    Article  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y et al (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene Ty-1. Theor Appl Genet 88:141–146

    Article  CAS  PubMed  Google Scholar 

  • Zsogon A, Čermák T, Naves ER et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotech. https://doi.org/10.1038/nbt.4272. Advance online publication

Download references

Acknowledgements

We thank the editors for inviting us to contribute a chapter on tomato biotic and abiotic breeding in this book. We thank Dr. M. N Sattar, King Faisal University for helping to design Figs. 10.3 and 10.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Rezk .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Tomato

Institution name

Specialization

Address

Contact information and website

California Tomato Research Institute (CTRI)

Processing tomato crop production

Vegetable Crops Research & Information Center - University of California, Davis, California, USA

zach@tomatonet.org

https://tomatonet.org/ContactUs

Tomato Genetic Cooperative

Tomato genetic resources

University of Florida, Gainesville, FL 32611, USA

https://tgc.ifas.ufl.edu/

Department of Tomato and Self Pollinated Vegetable Crops Research

Tomato breeding research

Agriculture research center (ARC), Giza, Egypt

abdo@claes.sci.eg

hortinst@yahoo.com

http://www.hortinstitute.com/

Asian Vegetable Research and Development Center (AVRDC)

Crops and vegetable research and development

60 Yi- Min Liao; PO Box 42 , 741 Shanhua, Tainan, China

avrdcbox@netra.avrdc.org.tw

http://www.avrdc.org.tw/

ICAR-Indian Institute of Horticultural Research

Production and pest management of vegetables and tomato

Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore 560 089, India

https://iihr.res.in/tomato-varieties

atic.iihr@icar.gov.in

Faculty of Agronomy at University of San Carlos of Guatemala

Breeding of tomato, potato and medicinal plants. Crossing and evaluation of segregating populations and tomato breeding lines are carried out annually

Faculty of Agronomy at University of San Carlos, Guatemala

http://www.usac.edu.gt/

TOMATECH

Focusing exclusively on the development of innovative, superior quality, hybrid tomatoes

Calle Zurbano, 23 - PISO 1 DR, Madrid, 28010 , Madrid, S.L. Spain

https://www.tomatech.com/team-2-4-2/

maury@tomatech.es

1.2 Appendix II: Genetic Resources of Tomato

Cultivar

Important traits

Reference

Image

Image source

Plum tomato

Deep red color, oval or cylindrical in shape, fewer locules than round tomatoes semi-determinate its market varieties are Roma VF and San Marzano. Grown for sauce and packing purposes. Resistant to Fusarium and Verticillium wilt, early blight

https://www.deruiterseeds.com/en-no/tomato/plum.html

http://www.gradinamea.ro/Tomato_3262_574_1.html

Better Boy

Deep red color, round, medium or large in size, maturity from 70–80 days, grown for sauce purposes. indeterminate, resistant to Fusarium and Verticillium wilt and root knot nematode

Tomato - Vegetable Directory - Watch Your Garden Grow - University of Illinois Extension. urbanext.illinois.edu. Retrieved 22 June 2018

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=99259

Celebrity

Deep red color, large firm fruit, round, determinate, maturity 70 days, hybrid, grown for sauce purposes, crack resistant, resistant to Fusarium and Verticillium wilt, root knot nematode and TMV

https://njaes.rutgers.edu/tomato-varieties/variety.php?Celebrity

By © 2005 User:FoeNyx - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=115428

Moneymaker

Red color, firm fruit, round tomato, greenhouse tomato, indeterminate, maturity 75–80 days, grown for sauce purposes, popular cash crop for farmers, and it is a favorite of home gardeners, highly heat tolerant, 113–170 g fruits

T&M Seeds online shop entry for Tomato Moneymaker. Retrieved 2011-03-07

http://www.reimerseeds.com/tomato_1162.aspx

Mountain Pride

Deep red color, round tomato, determinant hybrid, grown for sauce purposes, juicy flavor perfect for serving fresh or cooking, crack resistant, grown for sauce, Fusarium and Verticillium tolerant, maturity days 77 days, 227–283 g fruits

https://cloversgarden.com/products/mountain-pride-tomato-plants

https://cloversgarden.com/products/mountain-pride-tomato-plants

Big Beef

Deep red color, round, large fruits, indeterminate hybrid, maturity days 70–80 days, Grown for sauce purposes, resistant to Fusarium wilt races 1 and 2, Verticillium wilt, Alternaria stem canker, nematodes, gray leaf spot and TMV, outstanding taste fruits

Selecting tomatoes for the Home Garden. University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources. Retrieved 4 September 2012

https://bonnieplants.com/product/big-beef-tomato/

Adoration

Red color, small fruits 28–57 g, round, cocktail tomato, indeterminate, maturity days 70–80 days, resistant to Fusarium and Verticillium wilt and TMV

Enza Zaden - Adoration. Archived from the original on 2012-04-15. Retrieved 2011-11-15

By Roseridge1 at English Wikipedia - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=26733320

Enchantment

Red color, small fruit 3 oz, firm flesh, indeterminate hybrid, slicing shape, maturity days 70–80 days, resistant to Fusarium wilt races 1 and 2, Verticillium wilt and nematodes

Enchantment. Agricultural Experiment Station. Rutgers University. Retrieved 4 September 2012

https://njaes.rutgers.edu/tomatovarieties/variety.php?Enchantment

Giulietta F1

Red color, large fruit and plum shape, extremely juicy and delicious with a high yield, ideal for greenhouses and outdoors. maturity days 70–80 days, resistant to Fusarium wilt, Verticillium wilt, Alternaria stem canker, nematodes and TMV

https://www.dobies.co.uk/Garden/Vegetables/Vegetable-Seeds/All-Vegetable-Seeds/Tomato-Seeds%2D%2D-Giulietta-F1_439074.htm

https://www.dobies.co.uk/Garden/Vegetables/Vegetable-Seeds/All-Vegetable-Seeds/Tomato-Seeds%2D%2D-Giulietta-F1_439074.htm

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezk, A., Abhary, M., Akhkha, A. (2021). Tomato (Solanum lycopersicum L.) Breeding Strategies for Biotic and Abiotic Stresses. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66961-4_10

Download citation

Publish with us

Policies and ethics