Skip to main content

Abstract

Traditional plant breeding has been very successful in producing agricultural crops with many desirable traits. However, it is a time-consuming process with limited genetic resources, which is restricted to closely related species for crossing. RNA interference (RNAi) technology presents a new potential tool for plant breeding by introducing small non-coding RNA sequences with the ability to switch-off gene expression in a sequence-specific manner. The ability to suppress expression of a specific gene provides an opportunity to acquire a new trait by eliminating or accumulating certain plant traits, leading to biochemical or phenotypic changes that do not exist in non-transgenic plants. RNAi is an ancient evolutionary mechanism adopted by plants as a defense strategy against foreign invading genes but is used today as a tool for generating new quality traits in organisms. In this chapter, we review RNAi applications in plants to acquire new traits, which are difficult to obtain through traditional breeding and present the potential of combining this technology with conventional breeding to overcome the current challenges facing agriculture such as: abiotic stress, biotic stress, nutritional value, allergens, secondary metabolites and flower traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhary MK, Anfoka GH, Nakhla MK, Maxwell DP (2006) Post-transcriptional gene silencing in controlling viruses of the tomato yellow leaf curl virus complex. Arch Virol 151(12):2349–2363

    Article  CAS  PubMed  Google Scholar 

  • Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296(5571):1270–1273

    Article  CAS  PubMed  Google Scholar 

  • Aida R, Yoshida K, Kondo T et al (2000) Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene. Plant Sci 160:49–56

    Article  CAS  PubMed  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L et al (2007) Silencing of mitochondrial ascorbate synthesizing enzyme L-Galactono-1.4-Lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  • Andre CV, Suma C, Gregory BM (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28:1292–1301

    Google Scholar 

  • Andrieu A, Breitler J, Sire C et al (2012) An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice 5:23

    Article  PubMed  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17(6):1658–1673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nature Biotechnol 25:1322–1326

    Article  CAS  Google Scholar 

  • Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  CAS  PubMed  Google Scholar 

  • Baykal U, Zhang Z (2010) Small RNA-mediated gene silencing for plant biotechnology. In: Catalano AJ (ed) Gene silencing: theory, techniques and applications. Nova Sci Publishing Inc, New York, pp 254–269

    Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bhalla PL, Swoboda I, Singh MB (1999) Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proc Natl Acad Sci U S A 96:11676–11680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bian XY, Rasheed MS, Seemanpillai MJ, Rezaian MA (2006) Analysis of silencing escape of tomato leaf curl virus: an evaluation of the role of DNA methylation. Mol Plant Microbe 19:614–624

    Article  CAS  Google Scholar 

  • Boerjan W, Bauw G, Van Montagu M, Inze D (1994) Distinct phenotypes generated by overexpression and suppression of S-Adenosyl-L-Methionine Synthase reveal developmental patterns of gene silencing in tobacco. Plant Cell 6:1401–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brigneti G, Voinnet O, Li WX et al (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brugliera F, Tao G, Tems U et al (2013) Violet/blue chrysanthemums–metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol 54(10):1696–1710

    Article  CAS  PubMed  Google Scholar 

  • Bucher E, Sijen T, De Haan P et al (2003) Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77:1329–1336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746. doi:10.1111/j.1365-313X.2004.02158.x

    Article  CAS  PubMed  Google Scholar 

  • Cakir C, Tor M (2010) Factors influencing barley stripe mosaic virus-mediated gene silencing in wheat. Phys Mol Plant Pathol 74:246–253

    Article  CAS  Google Scholar 

  • Carrillo-Tripp J, Shimada-Beltran H, Rivera-Bustamante R (2006) Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol 9:209–215

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li WX, Xie D et al (2004) Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16:1302–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen WH, Hsu CY, Cheng HY et al (2011) Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep 30(6):1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun TA, Schimmel BC, Kim JY et al (2010) A petunia chorismate mutase specialized for the production of floral volatiles. Plant J 61:145–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Constantin GD, Krath BN, MacFarlane SA et al (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40:622–631

    Article  CAS  PubMed  Google Scholar 

  • Constantin GD, Grønlund M, Johansen IE et al (2008) Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules. MPMI 21(6):720–727

    Article  CAS  PubMed  Google Scholar 

  • Das D, Moiani D, Axelrod HL et al (2010) Crystal structure of the first eubacterial Mre11 nuclease reveals novel features that may discriminate substrates during DNA repair. J Mol Biol 397:647–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de la Torre F, El-Azaz J, Avila C, Canovas F (2014) Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism. Plant Physiol 164:92–104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • del Rosario Abraham-Juárez M, del Carmen Rocha-Granados M, López MG et al (2008) Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227(3):681–695

    Article  PubMed  CAS  Google Scholar 

  • Di Stilio VS, Kumar RA, Oddone AM et al (2010) Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS One 5(8):e12064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ding XS, Schneider WL, Chaluvadi SR et al (2006) Characterization of a brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe 19:1229–1239

    Article  CAS  Google Scholar 

  • Dodo HW, Konan KN, Chen FC (2008) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 6(2):135–145

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Pfeffer S, Fritsch C et al (2002) Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J 29(5):555–567

    Article  CAS  PubMed  Google Scholar 

  • Elbashir MS, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eschen-Lippold L, Lübken T, Smolka U, Rosahl S (2012) Characterization of potato plants with reduced StSYR1 expression. Plant Signal Behav 7:559–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dander AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci U S A 98:13437–13442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fagard M, Boutet S, Morel JB et al (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci U S A 97:11650–11654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faivre-Rampant O, Gilroy EM, Hrubikova K et al (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134:1308–1316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fei Z, Joung JG, Tang X et al (2011) Tomato functional genomics database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res 39:D1156–D1163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ferracane J (2001) Materials in dentistry: principles and applications, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Flores T, Karpova O, Su X (2008) Silencing of GmFAD3 gene by siRNA leads to low alpha-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17:839–850

    Article  CAS  PubMed  Google Scholar 

  • Fofana IB, Sangare A, Collier R et al (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol 56:613–624

    Article  CAS  PubMed  Google Scholar 

  • Freiman A, Shlizerman L, Golobovitch S et al (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235(6):1239–1251

    Article  CAS  PubMed  Google Scholar 

  • Frizzi A, Huang S, Gilbertson LA (2008) Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol J 6:13–21

    CAS  PubMed  Google Scholar 

  • Gilissen LJ, Bolhaar ST, Matos CI et al (2005) Silencing the major apple allergen Mal d 1 by using RNA interference approach. J Allergy Clin Immunol 115(2):364–369

    Article  CAS  PubMed  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  CAS  PubMed  Google Scholar 

  • Golenberg EM, Sather DN, Hancock LC et al (2009) Development of a gene silencing DNA vector derived from a broad host range geminivirus. Plant Methods 5:9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gould B, Kramer EM (2007) Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). Plant Methods 3:6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, Van-Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grønlund M, Constantin G, Piednoir E et al (2008) Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Res 135:345–349

    Article  PubMed  CAS  Google Scholar 

  • Grønlund M, Olsen A, Johansen E, Jakobsen I (2010) Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum. Plant Methods 6:28. http://www.plantmethods.com/content/6/1/28

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Physiol Plant Mol Biol 57:761–780

    Article  CAS  Google Scholar 

  • Guo S, Kemphues KJ (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    Article  CAS  PubMed  Google Scholar 

  • Hamilton A, Baulcombe D (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Hans H, Lucas K, Dick L et al (2009) Binding of small interfering RNA molecules is crucial for RNA interference suppressor activity of rice hoja blanca virus NS3 in plants. J Gen Virol 90:1762–1766

    Article  CAS  Google Scholar 

  • Haq QMI, Arif A, Malathi VG (2010) Engineering resistance against mungbean yellow mosaic India virus using antisense RNA. Indian J Virol 21:82–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He X, Jin C, Li G et al (2008) Use of the modified viral satellite DNA vector to silence mineral nutrition-related genes in plants: silencing of the tomato ferric chelate reductase gene, FRO1, as an example. Sci China Ser C Life Sci 51:402–409

    Article  CAS  Google Scholar 

  • He F, Mu L, Yan G-L et al. (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091

    Article  CAS  PubMed  Google Scholar 

  • Herman E, Helm R, Jung R, Kinney A (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132(1):36–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Himani T, Shanmugam R, Manchikatla VR, Dasgupta I (2008) RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17:897–904

    Article  CAS  Google Scholar 

  • Hirai S, Kodama H (2008) RNAi vectors for manipulation of gene expression in higher plants. Open Plant Sci J 2:21–30

    Article  CAS  Google Scholar 

  • Hiriart JB, Aro EM, Lehto K (2003) Dynamics of the VIGS mediated chimeric silencing of the Nicotiana benthamiana ChlH gene and of the tobacco mosaic virus vector. Mol Plant Microbe Interact 16:99–106

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Qiu W (2003) A novel co-delivery system consisting of a tomato bushy stunt virus and a defective interfering rna for studying gene silencing. J Virol Methods 111:37–42

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Zhang T, Li FF et al (2011) Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alpha satellite. J Zhejiang Univ Sci B 12:83–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hull R (1989) The movement of viruses in plants. Annu Rev Plant Physiol Plant Mol Biol 27:213–240

    Google Scholar 

  • Jada B, Soitamo AJ, Lehto K (2013) Organ-specific alterations in tobacco transcriptome caused by the PVX-derived P25 silencing suppressor transgene. BMC Plant Biol 13(1):8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Barterl B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Physiol Plant Mol Biol 57:19–53

    Article  CAS  Google Scholar 

  • Jouannet V, Moreno A, Elmayan T et al (2012) Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO J 31:1704–1713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15:826–833

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan AS, Varadarajan DK, Jain A et al (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907–918

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan A, Deivamani M, Shobhana VG et al (2013) RNA interference: evolutions and applications in plant disease management. Arch Phytopathol Plant Protect 46(12):1430–1441

    Article  CAS  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103:47–52

    Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small rnas in Arabidopsis. Genes Dev 21:3123–3134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y et al (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinine. Plant Cell Physiol 48(11):1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321(5893):1200–1202

    Article  CAS  PubMed  Google Scholar 

  • Kessler D, Diezel C, Clark D et al (2012) Petunia flowers solve the defense/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol Lett. doi:10.1111/ele.12038

  • Koeduka T, Orlova I, Baiga T et al (2009) The lack of floral synthesis and emission of isoeugenol in Petunia axillaris subsp. Parodii is due to a mutation in the isoeugenol synthase gene. Plant J 58(6):961–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S et al (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774

    Article  CAS  PubMed  Google Scholar 

  • Kong YM, Elling AA, Chen B, Deng XW (2010) Differential expression of microRNAs in Maize inbred and hybrid lines during salt and drought stress. Am J Plant Sci 1:69–76

    Article  CAS  Google Scholar 

  • Krenz B, Windeisen V, Wege C et al (2010) A plastid targeted heat shock cognate 70 kDa protein interacts with the abutilon mosaic virus movement protein. Virology 401:6–17

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Tsuda S, Tamai A, Meshi T (2003) Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 77:11016–11026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumagai MH, Donson J, Della-Cioppa G et al (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92:1679–1683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laufs J, Traut W, Heyraud F et al (1995) In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci U S A 92:3879–3883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le LQ, Mahler V, Lorenz Y et al (2006) Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immunol 118:1176–1183

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Li W, Han Y, Tao F, Chong K (2011) Knockdown of SAMS genes encoding S-adenosyl-L-methionine synthases causes methylation alternations of DNAs and histones and leads to late flowering in rice. J Plant Physiol 168:1837–1843

    Article  CAS  PubMed  Google Scholar 

  • Li F, Huang C, Li Z, Zhou X (2014) Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 10(2):e1003921

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang J, Deng G, Long H, Pan Z, Wang C, Cai P et al (2012) Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to drought tolerance. Mol Breed 30:441–451. doi:10.1007/s11032-011-9633-3

    Article  CAS  Google Scholar 

  • Liu L, Grainger J, Canizares MC et al (2004) Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing. Virology 323:37–48

    Article  CAS  PubMed  Google Scholar 

  • Lv B, Nitcher R, Han X et al (2014) Characterization of flowering locus T1 (FT1) gene in Brachypodium and wheat. PLoS One 9(4):e94171. doi:10.1371/journal.pone.0094171

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsui A, Nguyen AH, Nakaminami K, Seki M (2013) Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 14:22642–22654

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mohanpuria P, Kumar V, Ahuja PS, Yadav SK (2011) Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA. Plant Mol Biol 76(6):523–524

    Article  CAS  PubMed  Google Scholar 

  • Morandini P (2010) Inactivation of allergens and toxins. New Biotechnol 27(5):482–493

    Article  CAS  Google Scholar 

  • Mumbanza FM, Kiggundu A, Tusiime G (2013) In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f sp cubense and Mycosphaerella fijiensis. Pest Manage Sci 6(10):1155–1162

    Article  CAS  Google Scholar 

  • Muruganantham M, Moskovitz Y, Haviv S et al (2009) Grape vine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. J Virol Methods 155:167–174

    Article  CAS  PubMed  Google Scholar 

  • Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:1–7

    Article  PubMed  Google Scholar 

  • Mutti NS, Louis J, Pappan LK et al (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci U S A 105:9965–9969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagamatsu A, Masuta C, Senda M et al (2007) Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol J 5:778–790

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Abe Y, Kakizaki Y et al (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26(11):1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naylor M, Reeves J, Cooper JI et al (2005) Construction and properties of a gene silencing vector based on poplar mosaic virus (Genus Carlavirus). J Virol Methods 124:27–36

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M, Nakatsuka T, Yamamura S (2005) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett 579:6074–6078

    Google Scholar 

  • Nowara D, Gay A, Lacomme C et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  CAS  PubMed  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y (2003) Producing decaffeinated coffee plants. Nature 423:823

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Choudhury NR, Mukherjee SK (2009) A geminiviral amplicon (VA) derived from tomato leaf curl virus (ToLCV) can replicate in a wide variety of plant species and also acts as a VIGS vector. Virol J 6:152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pflieger S, Blanchet S, Camborde L (2008) Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector. Plant J 56:678–690

    Article  CAS  PubMed  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME et al (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6:e25709. doi:10.1371/journal.pone.0025709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prentice K, Pertry I, Christiaens O, Bauters L, Bailey A, Niblett C et al (2015) Transcriptome analysis and systemic RNAi response in the African sweetpotato Weevil (Cylas puncticollis, Coleoptera, Brentidae). PLoS One 10(1):e0115336. doi:10.1371/ journal.pone.0115336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Microbiology 11:745–760

    CAS  PubMed  Google Scholar 

  • Purkayastha A, Sharma S, Dasgupta I (2010) A negative element in the downstream region of the rice tungro bacilliform virus promoter is orientation- and position-independent and is active with heterologous promoters. Virus Res 153:166–171

    Article  CAS  PubMed  Google Scholar 

  • Qian S, McDonough H, Boellmann F, Cyr D, Patterson C (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440:551–555. doi:10.1038/nature04600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  CAS  PubMed  Google Scholar 

  • Ré DA, Raud B, Chan R et al (2012) RNAi-mediated silencing of the HD-Zip gene HD20 in Nicotiana attenuata affects benzyl acetone emission from corollas via ABA levels and the expression of metabolic genes. BMC Plant Biol 12:60

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rezk AA, Abdallah NA, Abdel-Salam AM et al (2006) Transgene-mediated RNA silencing of TYLCV genes affecting the accumulation of viral DNA in plants. Arab J Biotechnol 9(1):143–157

    Google Scholar 

  • Rodoni BC, Dale JL, Harding RM (1999) Characterization and expression of the coat protein-coding region of the banana bract mosaic potyvirus, development of diagnostic assays and detection of the virus in banana plants from five countries in Southeast Asia. Arch Virol 144:1725–1737

    Article  CAS  PubMed  Google Scholar 

  • Runo S, Alakonya A, Machuka J, Sinha N (2011) RNA interference as a resistance mechanism against crop parasites in Africa: a ‘Trojan horse’ approach. Pest Manag Sci 67:129–136. doi:10.1002/Ps.2052

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895–903

    Article  CAS  PubMed  Google Scholar 

  • Scofield SR, Nelson RS (2009) Resources for virus-induced gene silencing in the grasses. Plant Physiol 149:152–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Segal G, Song R, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Senapedis WT, Kennedy CJ, Boyle PM, Silver PA (2011) Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain. Mol Biol Cell 22:1791–1805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2010) RNAi in plants: recent developments and application in agriculture. In: Gene silencing: theory, techniques and application. Chapter VII. Nova Science publisher, Inc, New York

    Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Udayakumar M (2010) Post transcriptional gene silencing methods for functional characterization of abiotic stress responsive genes in plants. In: Catalano AJ (ed) Gene silencing: theory, techniques and applications. Nova Science Publishing Inc, New York, pp 271–286

    Google Scholar 

  • Sestili F, Janni M, Doherty A et al (2010) Increasing the amylose content of durum wheat through silencing the SBEIIa genes. BMC Plant Biol 10:144–155

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shang Y, Schwinn KE, Bennett MJ et al (2007) Methods for transient assay of gene function in floral tissues. Plant Methods 3:1. doi:10.1186/1746-4811-3-1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shelly-Praveen S, Ramesh V, Anil KM et al (2010) Silencing potential of viral derived RNAi constructs in tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Res 19:45–55

    Article  CAS  Google Scholar 

  • Shi J, Wang H, Schellin K et al (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25(8):930–937

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang X, Xu Z-Y et al (2011) Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana. Plant Biol 13:731–739

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Yoshii M, Wei T et al (2009) Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J 7:24–32

    Article  CAS  PubMed  Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG et al (2009) Effective and specific in plant RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60(1):315–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith NA, Singh SP, Wang MB et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Soler N, Fagoaga C, Chiibi S et al (2011) RNAi mediated protection against Citrus tristeza virus in transgenic citrus plants. In: Erdmann VA, Barciszewski J (eds) Non coding RNAs in plants. Springer, Berlin, pp 447–460

    Chapter  Google Scholar 

  • Soliman AM, Barsoum BN, Mohamed GG (2008) siRNA silencing of PVX coat protein gene affects accumulation of viral RNA in potato and tobacco plants. Int J Virol 4(1):14–25

    Article  CAS  Google Scholar 

  • Spitzer B, Zvi M, Ovadis M et al (2007) Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in petunia. Plant Physiol 145:1241–1250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szankowski I, Waidmann S, El-Din Saad O et al (2009) RNAi-silencing of MdTFL1 induces early flowering in apple. Acta Horticult 839:633–636

    Article  CAS  Google Scholar 

  • Tanaka Y, Nakamura N, Togami J (2008) Altering flower color in transgenic plants by RNAi-mediated engineering of flavonoid biosynthesis pathway. Methods Mol Biol 442:245–257

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Galili G (2004) Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol 22(9):463–469

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Zhou X (2004) A modified viral satellite DNA that suppresses gene expression in plants. Plant J 38:850–860

    Article  CAS  PubMed  Google Scholar 

  • Tavernarakis N, Wang SL, Dorovkov M et al (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet 24:180–183

    Article  CAS  PubMed  Google Scholar 

  • To KY, Wang CK (2006) Molecular breeding of flower color. In: de Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances in topical issues, vol 1, 1st edn. Global Science Books Ltd, Isleworth, pp 300–310

    Google Scholar 

  • Trusov Y, Botella JR (2006) Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.]. J Exp Bot 57(14):3953–3960

    Article  CAS  PubMed  Google Scholar 

  • Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus based vectors for gene silencing in Arabidopsis. Plant J 30:107–117

    Article  CAS  PubMed  Google Scholar 

  • Tuttle JR, Idris AM, Brown JK et al (2008) Geminivirus-mediated gene silencing from cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol 148:41–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ufaz S, Galili G (2008) Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol 147:954–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaistij FE, Jones L (2009) Compromised virus-induced gene silencing in RDR6-deficient plants. Plant Physiol 149(3):1399–1407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van der Linde K, Kastner C, Kumlehn J (2011) Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol 189:471–483

    Article  PubMed  CAS  Google Scholar 

  • Van Wezel WR, Dong X, Liu H et al (2002) Mutation of three cysteine residues in tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene silencing suppression. Mol Plant-Microbe Interact 15:203–208

    Article  Google Scholar 

  • Vanderauwera S, De Block M, Van de Steene N et al (2007) Silencing of a poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci U S A 104(38):15150–15155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanderschuren H, Akbergenov R, Pooggin MM (2007) Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64:549–557

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi- mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272

    Article  CAS  PubMed  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10(3):144–151

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomic-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Béclin C, Fagard M (2001) Post-transcriptional gene silencing in plants. J Cell Sci 114:3083–3091

    CAS  PubMed  Google Scholar 

  • Velásquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and Tomato. J Vis Exp 28, e1292. doi:10.3791/1292

    Google Scholar 

  • Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC (2005) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17(5):1612–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96:14147–14152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voinnet O, Lederer C, Baulcombe DC (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157–167

    Article  CAS  PubMed  Google Scholar 

  • Wakasa Y, Hirano K, Uriso A et al (2011) Generation of transgenic rice lines with reduced contents of multiple potential allergens using a null mutant in combination with an RNA silencing method. Plant Cell Physiol 52(12):2190–2199

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Abbott D, Waterhouse PM (2000) A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:401–410

    Article  Google Scholar 

  • Wani SH, Sanghera GS, Singh NB (2010) Biotechnology and plant disease control-role of RNA interference. Am J Plant Sci 1:55–68

    Article  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S et al (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3(3):e1829. doi:10.1371/journal.pone.0001829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waterhouse P, Wang M, Lough T (2001) Gene silencing as an adaptive defense against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Xiong XP, Kurthkoti K, Chang KY et al (2013) Core small nuclear ribonucleoprotein particle splicing factor SmD1 modulates RNA interference in Drosophila. Proc Natl Acad Sci U S A 110(41):16520–16525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamagishi N, Kishigama R, Yoshikawa N (2013) Reduced generation time of apple seedlings to within a year by means of plant virus vector: a new plant breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol J. doi:10.1111/pbi.12116

  • Yan Y, Zhang Y, Yang K (2010) Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J. doi:10.1111/j.1365-313X.2010.04467.x

  • Yang EC, Chuang YC, Chen L, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101:1743–1748

    Article  CAS  PubMed  Google Scholar 

  • Yelina NE, Savenkov EI, Solovyev AG (2002) Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76(24):12981–12991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact 24:554–561

    Article  CAS  PubMed  Google Scholar 

  • Zha W, Peng X, Chen R, Du B, Zhu L et al (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the Hemipteran insect Nilaparvata lugens. PLoS One 6(5):e20504. doi:10.1371/journal.pone.0020504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2005) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  PubMed  CAS  Google Scholar 

  • Zorrilla-López U, Masip G, Arjo G, Bai C, Banakar R et al (2013) Engineering metabolic pathways in plants by multigene transformation. Int J Dev Biol 57:565–576. doi:10.1387/ijdb.130162pc

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Rezk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abhary, M., Rezk, A. (2015). RNAi Technology: A Potential Tool in Plant Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_14

Download citation

Publish with us

Policies and ethics