Skip to main content

Biosynthesis of Nanoparticles by Microorganisms and Applications in Plant Stress Control

  • Chapter
  • First Online:
Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management

Abstract

In particular, microorganisms and plants which are naturally synthesized have drawn significant attention to nanoscale materials. It is of considerable importance to establish environmentally friendly techniques in nanomaterial synthesis to extend their biological applications. Currently, many techniques were developed using different microorganisms to synthesize a wide range of inorganic nanomaterials with well-illustrated chemical structure, particle size, and shape. Their applications were also investigated in several high-tech scientific fields. Recent advances in biosynthesis of nanoparticles, including metallic nanoparticles, oxide nanoparticles, sulfide nanoparticles, or other typical microorganism nanoparticles, have demonstrated organic and inorganic properties of nanoparticles and their overall properties. There would also be consideration of various suggested pathways of inorganic nanoparticles. Consideration is given to conditions for control of nanoparticles’ size/shape and stability and applications of such biosynthesized nanoparticles to plant physiology, crop protection, and antibacterial agents in a wide range of application areas. It addresses potential mechanisms for regulating biotic and abiotic stress by biosynthesized nanoparticles and the existing limitations and prospects for microorganisms to synthesize inorganic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgNPs:

Silver nanoparticles

AuNPs:

Gold nanoparticles

BacMPs:

Bacterial magnetic particles

BMs:

Bacterial magnetosomes

BRECs:

Bovine retinal endothelial cells

CdS NPs:

CdS nanoparticles

CSE:

Cell-soluble extract

GTPase:

Guanosine triphosphatase

HRP:

Horseradish peroxidase

mAbs:

Monoclonal antibodies

MRI:

Magnetic resonance imaging

MTB:

Magnetotactic bacteria

PHB:

Polyhydroxybutyrate

TEM:

Transmission electron microscope

References

  • Abdel-Kareem MM, Zohri AA (2018) Extracellular mycosynthesis of gold nanoparticles using Trichoderma hamatum: optimization, characterization and antimicrobial activity. Lett Appl Microbiol 67:465–475

    Article  Google Scholar 

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63(15):1231–1234

    Article  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D et al (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    Article  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553

    Article  Google Scholar 

  • Ahmad A, Senapati S, Khan MI et al (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824–828

    Article  Google Scholar 

  • Ahmed T, Shahid M, Noman M, Niazi MBK, Mahmood F, Manzoor I, Zhang Y, Li B, Yang Y, Yan C et al (2020) Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens 9:160

    Article  Google Scholar 

  • Akther T, Hemalatha S (2019) Mycosilver nanoparticles: synthesis, characterization and its efficacy against plant pathogenic Fungi. BioNanoScience 9:296–301

    Article  Google Scholar 

  • Ali FT, El-Sheikh HH, El-Hady MM, Elaasser MM, El-Agamy DM (2014) Silver nanoparticles synthesized by Penicillium Citreonigrum and Fusarium moniliforme isolated from El-Sharkia, Egypt. Int J Sci Eng Res 5(4):181–186

    Google Scholar 

  • Almaary KS, Sayed SRM, Abd-Elkader OH, Dawoud TM, El Orabi NF, Elgorban AM (2020) Complete green synthesis of silver-nanoparticles applying seed-borne Penicillium duclauxii. Saudi J Biol Sci 27:133–1339

    Article  Google Scholar 

  • Al-Zubaidi S, Alayafi AA, Abdelkader HS (2019) Biosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus niger isolate. J Nanotechnol Res 1:23–36

    Article  Google Scholar 

  • Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28:5381–5389

    Article  Google Scholar 

  • Ammar HAM, El-Desouky TA (2016) Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 121:89

    Article  Google Scholar 

  • Anusuya S, Sathiyabama M (2013) Effect of chitosan on rhizome rot disease of turmeric caused by Pythium aphanidermatum. ISRN Biotechnol 305349:1–5

    Google Scholar 

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5(26):977–999

    Article  Google Scholar 

  • Arakaki A, Masuda F, Amemiya Y, Tanaka T, Matsunaga T (2010a) Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria. J Colloid Interf Sci 343(1):65–70

    Article  Google Scholar 

  • Arakaki A, Shibusawa M, Hosokawa M, Matsunaga T (2010b) Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification. Appl Environ Microbiol 76(5):1480–1485

    Article  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles 2014:689419. https://doi.org/10.1155/2014/689419

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  Google Scholar 

  • Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9–10):764–766

    Article  Google Scholar 

  • Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139

    Article  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70(1):142–146

    Article  Google Scholar 

  • Bailey KL, Boyetchko SM, Langle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229

    Article  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303–3305

    Article  Google Scholar 

  • Bansal V, Rautaray D, Bharde A et al (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589

    Article  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963

    Article  Google Scholar 

  • Bao H, Lu Z, Cui X et al (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6(9):3534–3541

    Article  Google Scholar 

  • Barabadi H, Honary S, Mohammadi MA, Ahmadpour E, Rahimi MT, Alizadeh A, Naghibi F, Saravanan M (2017) Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ Sci Pollut Res Int 24:5800

    Article  Google Scholar 

  • Bazylinski DA, Frankel RB, Heywood BR et al (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61(9):3232–3239

    Article  Google Scholar 

  • Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Ferard C (2010) Significance, mechanisms and environmental implications of microbial biomineralization. Compt Rendus Geosci 343(2–3):160–167

    Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces 47:160–164

    Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of naked metal nanoparticles. Adv Drug Deliv Rev 60(11):1289–1306

    Article  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  Google Scholar 

  • Bose S, Hochella MF, Gorby YA et al (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta 73(4):962–976

    Article  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos- Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83(1):42–48

    Article  Google Scholar 

  • Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59(1):7–14

    Article  Google Scholar 

  • Dada AO, Adekola FA, Dada FE, Adelani-Akande AT et al (2019) Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon 5:10

    Article  Google Scholar 

  • De Matteis V, Rizzello L, Ingrosso C, Liatsi-Douvitsa E, De Giorgi ML, De Matteis G, Rinaldi R (2019) Cultivar-dependent anticancer and antibacterial properties of silver nanoparticles synthesized using leaves of different Olea europaea trees. Nano 9:1544

    Google Scholar 

  • Deepa K, Panda T (2014) Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum. J Nanosci Nanotechnol 14:345–3463

    Article  Google Scholar 

  • DeWindt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dichlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Article  Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170

    Article  Google Scholar 

  • Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208

    Article  Google Scholar 

  • El-Moslamy SH, Elkady MF, Rezk AH, Abdel-Fattah YR (2017) Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci Rep 7:45297

    Article  Google Scholar 

  • Fan TX, Chow S.K, Zhang D (2009) Biomorphic mineralization: from biology to materials. Progress in Materials Science 54(5): 542–659

    Google Scholar 

  • Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62(3):362–374

    Article  Google Scholar 

  • Farkas B, Terranova U, de Leeuw NH (2020) Binding modes of carboxylic acids on cobalt nanoparticles. Phys Chem Chem Phys 22:985–996

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles—an effect of temperature on the size of particles. Colloids Surf B Biointerfaces 74(1):123–126

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Medicine 6(1):e103–e109

    Article  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Figueiredo EP, Ribeiro JM, Nishio EK, Scandorieiro S, Costa AF et al (2019) New approach for simvastatin as an antibacterial: synergistic effect with bio-synthesized silver nanoparticles against multidrug-resistant bacteria. Int J Nanomedicine 14:7975–7985

    Article  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140

    Article  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R et al (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74(1):328–335

    Article  Google Scholar 

  • Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS (2019) Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 9:1–17

    Article  Google Scholar 

  • Hassan SE, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El-Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24:377–393

    Article  Google Scholar 

  • Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic Press, San Diego

    Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61(18):3984–3987

    Article  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2010) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  Google Scholar 

  • Hossain A, Hong X, Ibrahim E, Li B, Sun G, Meng Y, Wang Y, An Q (2019) Green synthesis of silver nanoparticles with culture supernatant of a bacterium Pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen Dickeya dadantii. Molecules 24:2303

    Article  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67(3–4):1003–1006

    Article  Google Scholar 

  • Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, Li B, Mo J, Chen J (2019) Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv 9:29293–29299

    Article  Google Scholar 

  • Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun G, Li B (2020) Green-synthesization of silver nanoparticles using endophytic Bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen Fusarium graminearum. Nanomaterials (Basel) 10:219

    Article  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    Article  Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf B Biointerfaces 75(1):330–334

    Article  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306

    Article  Google Scholar 

  • Jha AK, Prasad K (2010a) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf. B Biointerfaces 75(1): 330–334

    Google Scholar 

  • Jha AK, Prasad K (2010b) Synthesis of BaTiO3 nanoparticles: A new sustainable green approach. Integrated Ferroelectrics 117(1): 49–54

    Google Scholar 

  • Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65(6):1014–1017

    Article  Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65(1):150–153

    Article  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413

    Article  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S et al (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77(2):257–262

    Article  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66(3):1050–1056

    Article  Google Scholar 

  • Kasprowicz MJ, Kozio M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  Google Scholar 

  • Kaur P, Thakur R, Duhan JS, Chaudhury A (2018) Management of wilt disease of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (Cicer arietinum). J Chem Technol Biotechnol 93:3233–3243

    Article  Google Scholar 

  • Khan JN, Jameel N (2016) Antifungal activity of silver nanoparticles produced from fungus, Penicillium fellutanum at different pH. J Microb Biochem Technol 8:440

    Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silverbased crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96(24):13611–13614

    Article  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N et al (2007a) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    Article  Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007b) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53(1):186–192

    Article  Google Scholar 

  • Kulkarni SA, Ghormade V, Kulkarni G, Kapoor M, Chavan SB, Rajendran A et al (2008) Comparison of Metarhizium isolates for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Biocontrol Sci Tech 18:809–828

    Article  Google Scholar 

  • Kumar SA, Ansary AA, Abroad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194

    Article  Google Scholar 

  • Lee JH, Han J, Choi H, Hur HG (2007) Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68(10):1898–1905

    Article  Google Scholar 

  • Lefevre CT, Abreu F, Lins U, Bazylinski DA (2010a) Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol 76(10):3220–3227

    Article  Google Scholar 

  • Lefevre CT, Abreu F, Schmidt ML et al (2010b) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76(11):3740–3743

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22(6):2780–2787

    Article  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40(20):6304–6309

    Article  Google Scholar 

  • Li W, Zhou L, Yu P, Zhu M (2007) A Magnetospirillum strain WM-1 from a freshwater sediment with intracellular magnetosomes. World J Microbiol Biotechnol 23(10):1489–1492

    Article  Google Scholar 

  • Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443

    Article  Google Scholar 

  • Liu Y, Page Z, Ferdous S, Liu F, Kim P, Emrick T, Russell T (2015) Dual functional zwitterionic fullerene interlayer for efficient inverted polymer solar cells. Adv Energy Mater 5(14):1500405

    Article  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64(11):4607–4609

    Article  Google Scholar 

  • Lover T, Henderson W, Bowmaker GA, Seakins JM, Cooney RP (1997) Functionalization and capping of a cds nanocluster: a study of ligand exchange by electrospray mass spectrometry. Chem Mater 9(8):1878–1886

    Article  Google Scholar 

  • Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q (2018) Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation. J Hazard Mater 347:141–149

    Article  Google Scholar 

  • Ma L, Su W, Liu JX, Zeng XX, Huang Z., Li W, Liu ZC, Tang JX (2017) Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Materials Science and Engineering C: Mat Biol Appl 77:963–971

    Google Scholar 

  • Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A (2016) Biochemical synthesis of silver nanoparticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin J Nat Med 14:615

    Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2013) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004

    Article  Google Scholar 

  • Maliszewska I, Lisiak B, Popko K, Matczyszyn K (2017) Enhancement of the efficacy of photodynamic inactivation of candida albicans with the use of biogenic gold nanoparticles. J Photochem Photobiol 93:1081

    Article  Google Scholar 

  • Manceau A, Nagy K, Marcus M, Lanson M, Geoffroy N, Jacquet T et al (2008) Formation of metallic copper nanoparticles at the soil-root Interface. Environ Sci Technol 42:1766–1772

    Article  Google Scholar 

  • Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. J Microbiol 62:45–48

    Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Cryst Growth Des 2(4):293–298

    Article  Google Scholar 

  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2010) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF, the process and optimization. J Nanopart Res 13:3129–3137

    Article  Google Scholar 

  • Ngan CL, Basri M, Tripathy M, Karjiban RA, Abdul-Malek E (2015) Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. Eur J Pharm Sci 70:22–28

    Article  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980. https://doi.org/10.1021/nn4034794

    Article  Google Scholar 

  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of ag and Ag-SiO2 nanoparticles by y-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar Typhimurium and Botrytis cinerea. Colloids Surf A 275:228–233

    Article  Google Scholar 

  • Osman ME, Eid MM, Khattab OH, Abd-El All SM, El-Hallouty SM, Mahmoud DA (2015) Spectroscopic characterization of the effect of gamma radiation on the physical parameters of biosynthesized silver/chitosan nano-particles and their antimicrobial activity. J Chem Biol Phys Sci 5:2643

    Google Scholar 

  • Oves M, Rauf MA, Hussain A, Qari AH, Parwaz Khan AA et al (2019) Antibacterial silver nanomaterial synthesis from mesoflavibacter zeaxanthinifaciens and targeting biofilm formation. Front Pharmacol 10:80

    Article  Google Scholar 

  • Palmqvist NGM, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146

    Article  Google Scholar 

  • Panacek A, Kvitek L, Prucek R et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  Google Scholar 

  • Pandian SRK, Deepak V, Kalishwaralal K, Muniyandi J, Rameshkumar N, Gurunathan S (2009) Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach. Colloids Surf B Biointerfaces 74(1):266–273

    Article  Google Scholar 

  • Parak WJ, Boudreau R, Le Gros M et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882–885

    Article  Google Scholar 

  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Scientific World J. https://doi.org/10.1155/2014/829894

  • Perez-Gonzalez T, Jimenez-Lopez C, Neal AL et al (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta 74(3):967–979

    Article  Google Scholar 

  • Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polymers 2:229–251

    Article  Google Scholar 

  • Piao MJ, Kang KA, Lee IK et al (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100

    Article  Google Scholar 

  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesized copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci 11:1019–1031

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269

    Chapter  Google Scholar 

  • Ragaei M, Sabry KH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545

    Google Scholar 

  • Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir 20(16):6827–6833

    Article  Google Scholar 

  • Reith F, Lengke MF, Falconer D, Craw D, Southam G (2007) The geomicrobiology of gold. ISME J 1(7):567–584

    Article  Google Scholar 

  • Sánchez-LĂłpez E, Gomes D, Esteruelas G, Bonilla L et al (2020) Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10(292):1–39. https://doi.org/10.3390/nano10020292

    Article  Google Scholar 

  • Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CDs nanoparticles by immobilized fungus. Chem Eng J 155(3):886–891

    Article  Google Scholar 

  • Sanyal A, Rautaray D, Bansal V, Ahmad A, Sastry M (2005) Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir 21(16):7220–7224

    Article  Google Scholar 

  • Sarsar V, Selwal MK, Selwal KK (2015) Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KMJ. Saudi Chem Soc 19:682

    Article  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):1–6. Article ID 035012

    Google Scholar 

  • Saxena J, Sharma P, Singh A (2017) Biomimetic synthesis of silver nanoparticles from Penicillium chrysogenum strain FGCC/BLS1 by optimizing physico-cultural conditions and assessment of their antimicrobial potential. IET Nanobiotechnol 11:576

    Article  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1(5):517–520

    Article  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Article  Google Scholar 

  • Sheet S, Sathishkumar Y, Sivakumar AS, Shim KS, Lee YS (2017) Low-shear-modeled microgravity-grown Penicillium chrysogenum-mediated biosynthesis of silver nanoparticles with enhanced antimicrobial activity and its anticancer effect in human liver cancer and fibroblast cells. Bioprocess Biosyst Eng 40:1529–1542

    Article  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 57(1):97–101

    Article  Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014:408021. https://doi.org/10.1155/2014/408021

    Article  Google Scholar 

  • Sinha A, Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol 102:4281–4284

    Article  Google Scholar 

  • Smith K, Evans DA, El-Hiti GA (2008) Role of modern chemistry in sustainable arable crop protection. Phil Trans R Soc B 363:623–637

    Article  Google Scholar 

  • Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162(3):989–996

    Article  Google Scholar 

  • Solanki BD, Ramani HR, Garaniya NH, Parmar DV (2016) Biosynthesis of silver nanoparticles using fungus Penicillium Brevicompactum and evaluation of their anti-bacterial activity against some human pathogens. Res J Biotechnol 11:44

    Google Scholar 

  • Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2(1):112–121

    Google Scholar 

  • Southam G, Beveridge TJ (1996) The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60(22):4369–4376

    Article  Google Scholar 

  • Spring S, Schleifer KH (1995) Diversity of magnetotactic bacteria. Syst Appl Microbiol 18(2):147–153

    Article  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W et al (2011) Biofabrication of discrete spherical gold nanoparticles using the metal reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152

    Article  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137

    Article  Google Scholar 

  • Sweeney RY, Mao C, Gao X et al (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559

    Article  Google Scholar 

  • Tanase C, Berta L, Coman NA, Ros ca I, Man A, Toma F, Mocan A, Nicolescu A, Jakab-Farkas L, BirĂł D et al (2019) Antibacterial and antioxidant potential of silver nanoparticles biosynthesized using the spruce bark extract. Nanomaterials 9:11

    Article  Google Scholar 

  • Tang H, Yan M, Zhang H, Xia M, Yang D (2005) Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine. Mater Lett 59(8–9):1024–1027

    Article  Google Scholar 

  • Thornhill RH, Burgess JG, Matsunaga T (1995) PCR for direct detection of indigenous uncultured magnetic cocci in sediment and phylogenetic analysis of amplified 16S ribosomal DNA. Appl Environ Microbiol 61(2):495–500

    Article  Google Scholar 

  • Tian F, Prina-Mello A, Estrada G et al (2008) A novel assay for the quantification of internalized nanoparticles in macrophages. Nanotoxicology 2(4):232–242

    Article  Google Scholar 

  • Vazquez-Muñoz R, Meza-Villezcas AP, Fournier GJ, Soria-Castro E et al (2019) Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One 14(11):e0224904. https://doi.org/10.1371/journal.pone.0224904

    Article  Google Scholar 

  • Verma S, Abirami S, Mahalakshmi V (2013) Anticancer and antibacterial activity of silver nanoparticles biosynthesized by Penicillium spp. and its synergistic effect with antibiotic. Microbiol Biotechnol Res 3:54

    Google Scholar 

  • Vijayakumar PS, Abhilash OU, Khan BM, Prasad BLV (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20:2416–2423

    Article  Google Scholar 

  • Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203(1–3):69–72

    Article  Google Scholar 

  • Yan S, He W, Sun C et al (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigments 80(2):254–258

    Article  Google Scholar 

  • Yang H, Santra S, Holloway PH (2005) Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals. J Nanosci Nanotechnol 5(9):1364–1375

    Article  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  Google Scholar 

  • Yassin MA, El-Samawaty A, Dawoud TM, Abd-Elkader OH, Al Maary KS, Hatamleh AA, Elgorban AM (2017) Characterization and anti-Aspergillus flavus impact of nanoparticles synthesized by Penicillium citrinum. Saudi J Biol Sci 24:1243

    Article  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494

    Article  Google Scholar 

  • Zhang P, Zhang R, Fang X, Song T, Cai X, Liu H, Du S (2016) Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short- and long-term exposure studies. J Hazard Mater 317:543–551

    Article  Google Scholar 

  • Zhou W, He W, Zhang X et al (2009a) Biosynthesis of iron phosphate nanopowders. Powder Technol 194(1–2):106–108

    Article  Google Scholar 

  • Zhou W, He W, Zhong S et al (2009b) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321(8):1025–1028

    Article  Google Scholar 

  • Zhu K, Pan H, Li J et al (2010) Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol 161(4):276–283

    Article  Google Scholar 

  • Zheng D, Hu C, Gan T, Dang X, Hu, S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors and Actuators B: Chemical 148: 247–252

    Google Scholar 

  • Zong X, Wang W, Wei H, Wang J, Chen X, Xu L, Zhu D, Tan Y, Liu Q (2014) Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification. J Virol Methods 208:85–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. A. Ramadan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadan, K.M.A., El-Beltagi, H.S. (2021). Biosynthesis of Nanoparticles by Microorganisms and Applications in Plant Stress Control. In: Mohamed, H.I., El-Beltagi, H.ED.S., Abd-Elsalam, K.A. (eds) Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Springer, Cham. https://doi.org/10.1007/978-3-030-66587-6_12

Download citation

Publish with us

Policies and ethics