Skip to main content

Mechanistic Insight of Mycotoxin-Induced Neurological Disorders and Treatment Strategies

  • Chapter
  • First Online:
Environmental Contaminants and Neurological Disorders

Abstract

Numerous fungal species are fabricated into several paradigms of mycotoxins as secondary metabolites notably Fusarium, Aspergillus, and Penicillium. These toxic metabolites have significant impact on the brain health of human beings if entered through the food chain or from the direct exposure through the modulation of myriad molecular mechanistic signaling pathways. T-2 toxin, macrocyclic trichothecenes, fumonisin B1, and ochratoxin A are recognized as neurotoxic metabolites among the other mycotoxins. T-2 toxins and macrocyclic trichothecenes induce neuronal apoptosis and neuroinflammation. Fumonisin B1 inhibits ceramide synthesis and neurodegeneration in cerebral cortex. Ochratoxin A persuades the dopaminergic neuronal loss and apoptosis in striatum, substantia nigra, and hippocampus. This chapter reviews the biotransformation and detoxification of these mycotoxins in relation to their degrading enzymes. The therapeutic roles of glutathione, sequestering agents, probiotics, and sweat induction to mitigate mycotoxin-induced neurotoxicity have also been overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crook M. In: Haschek WM, Rousseaux CG, Wallig MA, editors. Handbook of toxicologic pathology. New York: Academic; 2013, (£ 330.00.), 2001 ISBN 0 12 330215 3. J Clin Pathol. 2003;56(2):160.

    Google Scholar 

  2. Hassan YI, Zhou T. Promising detoxification strategies to mitigate mycotoxins in food and feed. Basel: Multidisciplinary Digital Publishing Institute; 2018.

    Book  Google Scholar 

  3. Barkai-Golan R, Paster N. Mycotoxins in fruits and vegetables. Amsterdam: Elsevier; 2011.

    Google Scholar 

  4. Zinedine A, Brera C, Elakhdari S, Catano C, Debegnach F, Angelini S, et al. Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food Control. 2006;17(11):868–74.

    Article  CAS  Google Scholar 

  5. Scudamore KA, Livesey CT. Occurrence and significance of mycotoxins in forage crops and silage: a review. J Sci Food Agric. 1998;77(1):1–17.

    Article  CAS  Google Scholar 

  6. Logrieco A, Bottalico A, Mulé G, Moretti A, Perrone G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Epidemiology of mycotoxin producing fungi. Berlin: Springer; 2003. p. 645–67.

    Book  Google Scholar 

  7. Chiotta M, Fumero M, Cendoya E, Palazzini J, Alaniz-Zanon M, Ramirez M, et al. Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina de Microbiología. 2020;52(4):339–47.

    Google Scholar 

  8. Ji C, Fan Y, Zhao L. Review on biological degradation of mycotoxins. Anim Nutr. 2016;2(3):127–33.

    Article  Google Scholar 

  9. Zain ME. Impact of mycotoxins on humans and animals. J Saudi Chem Soc. 2011;15(2):129–44.

    Article  CAS  Google Scholar 

  10. Marin S, Ramos A, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol. 2013;60:218–37.

    Article  CAS  Google Scholar 

  11. IAfRo Cancer. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Apresentado em: IARC working group on the evaluation of carcinogenic risks to humans: some naturally occurring substances: food items and constituents, Lyon; 1992.

    Google Scholar 

  12. De Boevre M, Jacxsens L, Lachat C, Eeckhout M, Di Mavungu JD, Audenaert K, et al. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicol Lett. 2013;218(3):281–92.

    Article  CAS  Google Scholar 

  13. Warth B, Sulyok M, Fruhmann P, Mikula H, Berthiller F, Schuhmacher R, et al. Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Commun Mass Spectrom. 2012;26(13):1533–40.

    Article  CAS  Google Scholar 

  14. Yiannikouris A, Jouany J-P. Mycotoxins in feeds and their fate in animals: a review. Anim Res. 2002;51(2):81–99.

    Article  CAS  Google Scholar 

  15. Richard JL. Some major mycotoxins and their mycotoxicoses—an overview. Int J Food Microbiol. 2007;119(1–2):3–10.

    Article  CAS  Google Scholar 

  16. Smith JE, Solomons G, Lewis C, Anderson JG. Role of mycotoxins in human and animal nutrition and health. Nat Toxins. 1995;3(4):187–92.

    Article  CAS  Google Scholar 

  17. Uetsuka K. Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int J Mol Sci. 2011;12(8):5213–37.

    Article  CAS  Google Scholar 

  18. Sweeney MJ, Dobson AD. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol. 1998;43(3):141–58.

    Article  CAS  Google Scholar 

  19. Plumlee KH, Galey FD. Neurotoxic mycotoxins: a review of fungal toxins that cause neurological disease in large animals. J Vet Intern Med. 1994;8(1):49–54.

    Article  CAS  Google Scholar 

  20. Peraica M, Radić B, Lucić A, Pavlović M. Toxic effects of mycotoxins in humans. Bull World Health Organ. 1999;77(9):754.

    CAS  Google Scholar 

  21. Gruber-Dorninger C, Novak B, Nagl V, Berthiller F. Emerging mycotoxins: beyond traditionally determined food contaminants. J Agric Food Chem. 2017;65(33):7052–70.

    Article  CAS  Google Scholar 

  22. Viegas C, Viegas S, Gomes A, Täubel M, Sabino R. Exposure to microbiological agents in indoor and occupational environments. Berlin: Springer; 2017.

    Book  Google Scholar 

  23. Degen G. Tools for investigating workplace-related risks from mycotoxin exposure. World Mycotoxin J. 2011;4(3):315–27.

    Article  Google Scholar 

  24. Creasia D, Thurman J, Wannemacher R Jr, Bunner D. Acute inhalation toxicity of T-2 mycotoxin in the rat and guinea pig. Fundam Appl Toxicol. 1990;14(1):54–9.

    Article  CAS  Google Scholar 

  25. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016:3164734.

    Article  CAS  Google Scholar 

  26. Shi W, Tan Y, Wang S, Gardiner DM, De Saeger S, Liao Y, et al. Mycotoxigenic potentials of Fusarium species in various culture matrices revealed by mycotoxin profiling. Toxins. 2017;9(1):6.

    Article  CAS  Google Scholar 

  27. Visconti A, Mirocha CJ, Logrieco A, Bottalico A, Solfrizzo M. Mycotoxins produced by Fusarium acuminatum. Isolation and characterization of acuminatin: a new trichothecene. J Agric Food Chem. 1989;37(5):1348–51.

    Article  CAS  Google Scholar 

  28. Wannemacher RW, Wiener SL. Trichothecene mycotoxins. In: Sidell FR, Takafuji ET, Franz DR, editors. Medical aspects of chemical and biological warfare. Textbook of military medicine series, vol. 6. Washington, DC: Office of the Surgeon General, Department of the Army, United States of America; 1997. p. 655–76.

    Google Scholar 

  29. Sirot V, Fremy J-M, Leblanc J-C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem Toxicol. 2013;52:1–11.

    Article  CAS  Google Scholar 

  30. Dai C, Xiao X, Sun F, Zhang Y, Hoyer D, Shen J, et al. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Arch Toxicol. 2019;93(11):3041–56.

    Article  CAS  Google Scholar 

  31. Zhang X, Wang Y, Velkov T, Tang S, Dai C. T-2 toxin-induced toxicity in neuroblastoma-2a cells involves the generation of reactive oxygen, mitochondrial dysfunction and inhibition of Nrf2/HO-1 pathway. Food Chem Toxicol. 2018;114:88–97.

    Article  CAS  Google Scholar 

  32. Chaudhary M, Rao PL. Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice. Food Chem Toxicol. 2010;48(12):3436–42.

    Article  CAS  Google Scholar 

  33. Agrawal M, Bhaskar A, Rao PL. Involvement of mitogen-activated protein kinase pathway in T-2 toxin-induced cell cycle alteration and apoptosis in human neuroblastoma cells. Mol Neurobiol. 2015;51(3):1379–94.

    Article  CAS  Google Scholar 

  34. Petri S, Körner S, Kiaei M. Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int. 2012;2012:878030.

    Article  Google Scholar 

  35. Li K, Cao Z, Guo Y, Tong C, Yang S, Long M, et al. Selenium yeast alleviates ochratoxin A-induced apoptosis and oxidative stress via modulation of the PI3K/AKT and Nrf2/Keap1 signaling pathways in the kidneys of chickens. Oxid Med Cell Longev. 2020;2020:4048706.

    Google Scholar 

  36. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12(5):913–22.

    Article  CAS  Google Scholar 

  37. Palanee T. The possible implication of selected Fusarium Mycotoxins in the aetiology of brain cancer; 2004.

    Google Scholar 

  38. Chaudhari M, Jayaraj R, Santhosh S, Rao PL. Oxidative damage and gene expression profile of antioxidant enzymes after T-2 toxin exposure in mice. J Biochem Mol Toxicol. 2009;23(3):212–21.

    Article  CAS  Google Scholar 

  39. Mueller BK, Mueller R, Schoemaker H. Stimulating neuroregeneration as a therapeutic drug approach for traumatic brain injury. Br J Pharmacol. 2009;157(5):675–85.

    Article  CAS  Google Scholar 

  40. James D, Parone PA, Terradillos O, Lucken-Ardjomande S, Montessuit S, Martinou J, editors. Mechanisms of mitochondrial outer membrane permeabilization. In: Novartis foundation symposium; 2007. New York: Wiley Online Library.

    Google Scholar 

  41. Oliveira JM, Lightowlers RN. Could successful (mitochondrial) networking help prevent Huntington’s disease? EMBO Mol Med. 2010;2(12):487–9.

    Article  CAS  Google Scholar 

  42. Wells WA. Cautious apoptosis. J Cell Biol. 2003;163(4):688.

    Google Scholar 

  43. Ayed-Boussema I, Bouaziz C, Rjiba K, Valenti K, Laporte F, Bacha H, et al. The mycotoxin Zearalenone induces apoptosis in human hepatocytes (HepG2) via p53-dependent mitochondrial signaling pathway. Toxicol In Vitro. 2008;22(7):1671–80.

    Article  CAS  Google Scholar 

  44. Lin P, Chen F, Sun J, Zhou J, Wang X, Wang N, et al. Mycotoxin zearalenone induces apoptosis in mouse Leydig cells via an endoplasmic reticulum stress-dependent signalling pathway. Reprod Toxicol. 2015;52:71–7.

    Article  CAS  Google Scholar 

  45. Islam Z, Amuzie CJ, Harkema JR, Pestka JJ. Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin a: kinetics and potentiation by bacterial lipopolysaccharide coexposure. Toxicol Sci. 2007;98(2):526–41.

    Article  CAS  Google Scholar 

  46. Martins IJ. Overnutrition determines LPS regulation of mycotoxin induced neurotoxicity in neurodegenerative diseases. Int J Mol Sci. 2015;16(12):29554–73.

    Article  CAS  Google Scholar 

  47. Yu J-Y, Zheng Z-H, Son Y-O, Shi X, Jang Y-O, Lee J-C. Mycotoxin zearalenone induces AIF- and ROS-mediated cell death through p53-and MAPK-dependent signaling pathways in RAW264.7 macrophages. Toxicol In Vitro. 2011;25(8):1654–63.

    Article  CAS  Google Scholar 

  48. Ito M, Sato I, Ishizaka M, Yoshida S-I, Koitabashi M, Yoshida S, et al. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol. Appl Environ Microbiol. 2013;79(5):1619–28.

    Article  CAS  Google Scholar 

  49. Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem. 2003;278(48):47905–14.

    Article  CAS  Google Scholar 

  50. Zhang X, Boesch-Saadatmandi C, Lou Y, Wolffram S, Huebbe P, Rimbach G. Ochratoxin A induces apoptosis in neuronal cells. Genes Nutr. 2009;4(1):41–8.

    Article  CAS  Google Scholar 

  51. Loi M, Fanelli F, Liuzzi VC, Logrieco AF, Mulè G. Mycotoxin biotransformation by native and commercial enzymes: present and future perspectives. Toxins. 2017;9(4):111.

    Article  CAS  Google Scholar 

  52. Abrunhosa L, Santos L, Venâncio A. Degradation of ochratoxin A by proteases and by a crude enzyme of Aspergillus niger. Food Biotechnol. 2006;20(3):231–42.

    Article  CAS  Google Scholar 

  53. Liu X, Fan L, Yin S, Chen H, Hu H. Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon. 2019;167:1–5.

    Article  CAS  Google Scholar 

  54. Duvick J, Rood T, Maddox J, Gilliam J. Detoxification of mycotoxins in planta as a strategy for improving grain quality and disease resistance: identification of fumonisin-degrading microbes from maize. In: Kohmoto K, Yoder O, editors. Molecular genetics of host-specific toxins in plant disease. Dordrecht: Springer; 1998. p. 369–81.

    Chapter  Google Scholar 

  55. Heinl S, Hartinger D, Moll W, Schatzmayr G, Grabherr R. Identification of a fumonisin B1 degrading gene cluster in Sphingomonas spp. MTA144. N Biotechnol. 2009;25:S61–S2.

    Article  Google Scholar 

  56. Pavanasasivam G, Jarvis BB. Microbial transformation of macrocyclic trichothecenes. Appl Environ Microbiol. 1983;46(2):480–3.

    Article  CAS  Google Scholar 

  57. Desjardins AE, Hohn TM, McCormick SP. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Mol Biol Rev. 1993;57(3):595–604.

    CAS  Google Scholar 

  58. Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev. 1994;7(4):479–504.

    Article  CAS  Google Scholar 

  59. Eriksen GS, Pettersson H. Toxicological evaluation of trichothecenes in animal feed. Anim Feed Sci Technol. 2004;114(1–4):205–39.

    Article  CAS  Google Scholar 

  60. Shifrin VI, Anderson P. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem. 1999;274(20):13985–92.

    Article  CAS  Google Scholar 

  61. Wang J, Fitzpatrick D, Wilson J. Effect of dietary T-2 toxin on biogenic monoamines in discrete areas of the rat brain. Food Chem Toxicol. 1993;31(3):191–7.

    Article  CAS  Google Scholar 

  62. Ishigami N, Shinozuka J, Katayama K, Uetsuka K, Nakayama H, Doi K. Apoptosis in the developing mouse embryos from T-2 toxin-inoculated dams. Histol Histopathol. 1999;14(3):729–33.

    CAS  Google Scholar 

  63. Rousseaux C, Schiefer H. Maternal toxicity, embryolethality and abnormal fetal development in CD-1 mice following one oral dose of T-2 toxin. J Appl Toxicol. 1987;7(4):281–8.

    Article  CAS  Google Scholar 

  64. Sehata S, Kiyosawa N, Makino T, Atsumi F, Ito K, Yamoto T, et al. Morphological and microarray analysis of T-2 toxin-induced rat fetal brain lesion. Food Chem Toxicol. 2004;42(11):1727–36.

    Article  CAS  Google Scholar 

  65. Galtier P, Paulin F, Eeckhoutte C, Larrieu G. Comparative effects of T-2 toxin and diacetoxyscirpenol on drug metabolizing enzymes in rat tissues. Food Chem Toxicol. 1989;27(4):215–20.

    Article  CAS  Google Scholar 

  66. Guerre P, Eeckhoutte C, Burgat V, Galtier P. The effects of T-2 toxin exposure on liver drug metabolizing enzymes in rabbit. Food Addit Contam. 2000;17(12):1019–26.

    Article  CAS  Google Scholar 

  67. Jarpe MB, Widmann C, Knall C, Schlesinger TK, Gibson S, Yujiri T, et al. Anti-apoptotic versus pro-apoptotic signal transduction: checkpoints and stop signs along the road to death. Oncogene. 1998;17(11):1475–82.

    Article  CAS  Google Scholar 

  68. Boldt S, Weidle UH, Kolch W. The kinase domain of MEKK1 induces apoptosis by dysregulation of MAP kinase pathways. Exp Cell Res. 2003;283(1):80–90.

    Article  CAS  Google Scholar 

  69. Boutin-Forzano S, Charpin-Kadouch C, Chabbi S, Bennedjai N, Dumon H, Charpin D. Wall relative humidity: a simple and reliable index for predicting Stachybotrys chartarum infestation in dwellings. Indoor Air. 2004;14(3):196–9.

    Article  CAS  Google Scholar 

  70. Pestka JJ, Yike I, Dearborn DG, Ward MD, Harkema JR. Stachybotrys chartarum, trichothecene mycotoxins, and damp building–related illness: new insights into a public health enigma. Toxicol Sci. 2008;104(1):4–26.

    Article  CAS  Google Scholar 

  71. Gordon WA, Cantor JB, Johanning E, Charatz HJ, Ashman TA, Breeze JL, et al. Cognitive impairment associated with toxigenic fungal exposure: a replication and extension of previous findings. Appl Neuropsychol. 2004;11(2):65–74.

    Article  Google Scholar 

  72. Gregory L, Pestka JJ, Dearborn DG, Rand TG. Localization of satratoxin-G in Stachybotrys chartarum spores and spore-impacted mouse lung using immunocytochemistry. Toxicol Pathol. 2004;32(1):26–34.

    Article  CAS  Google Scholar 

  73. Iordanov MS, Pribnow D, Magun JL, Dinh T-H, Pearson JA, Chen S, et al. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol Cell Biol. 1997;17(6):3373–81.

    Article  CAS  Google Scholar 

  74. Iordanov MS, Pribnow D, Magun JL, Dinh T-H, Pearson JA, Magun BE. Ultraviolet radiation triggers the ribotoxic stress response in mammalian cells. J Biol Chem. 1998;273(25):15794–803.

    Article  CAS  Google Scholar 

  75. Cundliffe E, Davies JE. Inhibition of initiation, elongation, and termination of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob Agents Chemother. 1977;11(3):491–9.

    Article  CAS  Google Scholar 

  76. Islam Z, Harkema JR, Pestka JJ. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect. 2006;114(7):1099–107.

    Article  CAS  Google Scholar 

  77. Nusuetrong P, Yoshida M, Tanitsu M-A, Kikuchi H, Mizugaki M, Shimazu K-I, et al. Involvement of reactive oxygen species and stress-activated MAPKs in satratoxin H-induced apoptosis. Eur J Pharmacol. 2005;507(1–3):239–46.

    Article  CAS  Google Scholar 

  78. Thrasher JD, Crawley S. The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes. Toxicol Ind Health. 2009;25(9–10):583–615.

    Article  CAS  Google Scholar 

  79. Calderón-Garcidueñas L, Franco-Lira M, Henríquez-Roldán C, Osnaya N, González-Maciel A, Reynoso-Robles R, et al. Urban air pollution: influences on olfactory function and pathology in exposed children and young adults. Exp Toxicol Pathol. 2010;62(1):91–102.

    Article  Google Scholar 

  80. Calderon-Garciduenas L, Azzarelli B, Acuna H, Garcia R, Gambling TM, Osnaya N, et al. Air pollution and brain damage. Toxicol Pathol. 2002;30(3):373–89.

    Article  CAS  Google Scholar 

  81. Dutton MF. Fumonisins, mycotoxins of increasing importance: their nature and their effects. Pharmacol Ther. 1996;70(2):137–61.

    Article  CAS  Google Scholar 

  82. Desai K, Sullards MC, Allegood J, Wang E, Schmelz EM, Hartl M, et al. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim Biophys Acta. 2002;1585(2–3):188–92.

    Article  CAS  Google Scholar 

  83. Zitomer NC, Mitchell T, Voss KA, Bondy GS, Pruett ST, Garnier-Amblard EC, et al. Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem. 2009;284(8):4786–95.

    Article  CAS  Google Scholar 

  84. Merrill AH Jr, Sullards MC, Wang E, Voss KA, Riley RT. Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect. 2001;109(Suppl 2):283–9.

    Article  CAS  Google Scholar 

  85. Wilson T, Ross P, Owens D, Rice L, Green S, Jenkins S, et al. Experimental reproduction of ELEM. Mycopathologia. 1992;117(1–2):115–20.

    Article  CAS  Google Scholar 

  86. Ross PF, Rice LG, Osweiler GD, Nelson PE, Richard JL, Wilson TM. A review and update of animal toxicoses associated with fumonisin-contaminated feeds and production of fumonisins by Fusarium isolates. Mycopathologia. 1992;117(1–2):109–14.

    Article  CAS  Google Scholar 

  87. Marasas WF, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, et al. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr. 2004;134(4):711–6.

    Article  CAS  Google Scholar 

  88. Sadler T, Merrill AH, Stevens VL, Sullards MC, Wang E, Wang P. Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology. 2002;66(4):169–76.

    Article  CAS  Google Scholar 

  89. Stevens VL, Tang J. Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor. J Biol Chem. 1997;272(29):18020–5.

    Article  CAS  Google Scholar 

  90. Kwon O-S, Slikker W Jr, Davies DL. Biochemical and morphological effects of fumonisin B1 on primary cultures of rat cerebrum. Neurotoxicol Teratol. 2000;22(4):565–72.

    Article  CAS  Google Scholar 

  91. Monnet-Tschudi F, Zurich M, Sorg O, Matthieu J, Honegger P, Schilter B. The naturally occurring food mycotoxin fumonisin B1 impairs myelin formation in aggregating brain cell culture. Neurotoxicology. 1999;20(1):41.

    CAS  Google Scholar 

  92. Kovačić S, Pepeljnjak S, Pertinec Z, Šegvić KM. Fumonisin B1 neurotoxicity in young carp (Cyprinus carpio L.). Arh Hig Rada Toksikol. 2009;60(4):419–25.

    Article  CAS  Google Scholar 

  93. Poersch AB. Efeito da exposição aguda À fumonisina B1 nas convulsões induzidas por pentilenotetrazol em camundongos; 2014.

    Google Scholar 

  94. Bouhet S, Hourcade E, Loiseau N, Fikry A, Martinez S, Roselli M, et al. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol Sci. 2004;77(1):165–71.

    Article  CAS  Google Scholar 

  95. Ramasamy S, Wang E, Hennig B, Merrill A. Fumonisin B1 alters sphingolipid metabolism and disrupts the barrier function of endothelial cells in culture. Toxicol Appl Pharmacol. 1995;133(2):343–8.

    Article  CAS  Google Scholar 

  96. Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta. 2002;1585(2–3):114–25.

    Article  CAS  Google Scholar 

  97. Buccoliero R, Futerman AH. The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacol Res. 2003;47(5):409–19.

    Article  CAS  Google Scholar 

  98. Hussein S, El-hamid A, El-tawil O, Laz E, Taha W. The potential protective effect of spirulina platensis against mycotoxin induced oxidative stress and liver damage in rats. Benha Vet Med J. 2018;35(2):375–83.

    Article  Google Scholar 

  99. Mobio TA, Anane R, Baudrimont I, Carratú M-R, Shier TW, Dano SD, et al. Epigenetic properties of fumonisin B1: cell cycle arrest and DNA base modification in C6 glioma cells. Toxicol Appl Pharmacol. 2000;164(1):91–6.

    Article  CAS  Google Scholar 

  100. Wang E, Norred W, Bacon C, Riley R, Merrill AH. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem. 1991;266(22):14486–90.

    Article  CAS  Google Scholar 

  101. Tolleson WH, Melchior WB Jr, Morris SM, McGarrity LJ, Domon OE, Muskhelishvili L, et al. Apoptotic and anti-proliferative effects of fumonisin B1 in human keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma cells. Carcinogenesis. 1996;17(2):239–49.

    Article  CAS  Google Scholar 

  102. Galtier P. Pharmacokinetics of ochratoxin A in animals. IARC Sci Publ. 1991;115:187.

    CAS  Google Scholar 

  103. Pfohl-Leszkowicz A, Manderville RA. Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res. 2007;51(1):61–99.

    Article  CAS  Google Scholar 

  104. Sava V, Reunova O, Velasquez A, Harbison R, Sanchez-Ramos J. Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology. 2006;27(1):82–92.

    Article  CAS  Google Scholar 

  105. Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci. 2004;101(12):4308–13.

    Article  CAS  Google Scholar 

  106. Aleo MD, Wyatt RD, Schnellmann RG. Mitochondrial dysfunction is an early event in ochratoxin A but not oosporein toxicity to rat renal proximal tubules. Toxicol Appl Pharmacol. 1991;107(1):73–80.

    Article  CAS  Google Scholar 

  107. Wangikar P, Dwivedi P, Sinha N. Effect in rats of simultaneous prenatal exposure to ochratoxin A and aflatoxin B1. I. Maternal toxicity and fetal malformations. Birth Defects Res B Dev Reprod Toxicol. 2004;71(6):343–51.

    Article  CAS  Google Scholar 

  108. Belmadani A, Tramu G, Betbeder A, Steyn P, Creppy E. Regional selectivity to ochratoxin A, distribution and cytotoxicity in rat brain. Arch Toxicol. 1998;72(10):656–62.

    Article  CAS  Google Scholar 

  109. Sanchez-Pamos J. A marker of oxyradical-mediated DNA damage (oxo8dG) is increased in nigrostriatum of Parkinson’s disease brain. Neurodegeneration (Exp Neurol). 1994;3:197–204.

    Google Scholar 

  110. Belmadani A, Tramu G, Betbeder A, Creppy E. Subchronic effects of ochratoxin A on young adult rat brain and partial prevention by aspartame, a sweetener. Hum Exp Toxicol. 1998;17(7):380–6.

    Article  CAS  Google Scholar 

  111. Creppy E, Chakor K, Fisher M, Dirheimer G. The mycotoxin ochratoxin A is a substrate for phenylalanine hydroxylase in isolated rat hepatocytes and in vivo. Arch Toxicol. 1990;64(4):279–84.

    Article  CAS  Google Scholar 

  112. Alexander P, editor. The role of DNA lesions in the processes leading to aging in mice. In: Symposia of the society for experimental biology; 1967.

    Google Scholar 

  113. Delibas N, Altuntas I, Yonden Z, Ozcelik N. Ochratoxin A reduces NMDA receptor subunits 2A and 2B concentrations in rat hippocampus: partial protective effect of melatonin. Hum Exp Toxicol. 2003;22(6):335–9.

    Article  CAS  Google Scholar 

  114. Sato A, Hiramoto A, Uchikubo Y, Miyazaki E, Satake A, Naito T, et al. Gene expression profiles of necrosis and apoptosis induced by 5-fluoro-2′-deoxyuridine. Genomics. 2008;92(1):9–17.

    Article  CAS  Google Scholar 

  115. Lei T, He QY, Cai Z, Zhou Y, Wang YL, Si LS, et al. Proteomic analysis of chromium cytotoxicity in cultured rat lung epithelial cells. Proteomics. 2008;8(12):2420–9.

    Article  CAS  Google Scholar 

  116. Zurich M-G, Lengacher S, Braissant O, Monnet-Tschudi F, Pellerin L, Honegger P. Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience. 2005;134(3):771–82.

    Article  CAS  Google Scholar 

  117. Park KS, Da Lee R, Kang S-K, Han SY, Park KL, Yang KH, et al. Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res. 2004;297(2):424–33.

    Article  CAS  Google Scholar 

  118. Boudergue C, Burel C, Dragacci S, Favrot MC, Fremy JM, Massimi C, et al. Review of mycotoxin-detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. EFSA Support Publ. 2009;6(9):22E.

    Google Scholar 

  119. Hassan YI, Zhou T, Bullerman LB. Sourdough lactic acid bacteria as antifungal and mycotoxin-controlling agents. Food Sci Technol Int. 2016;22(1):79–90.

    Article  CAS  Google Scholar 

  120. Hassan YI, Bullerman LB. Cell-surface binding of deoxynivalenol to Lactobacillus paracasei subsp. tolerans isolated from sourdough starter culture. J Microbiol Biotechnol Food Sci. 2020;9(6):2323–5.

    Google Scholar 

  121. Heussner AH, Bingle LE. Comparative ochratoxin toxicity: a review of the available data. Toxins. 2015;7(10):4253–82.

    Article  CAS  Google Scholar 

  122. Höhler D, Südekum K-H, Wolffram S, Frohlich A, Marquardt R. Metabolism and excretion of ochratoxin A fed to sheep. J Anim Sci. 1999;77(5):1217–23.

    Article  Google Scholar 

  123. Madhyastha M, Marquardt R, Frohlich A. Hydrolysis of ochratoxin A by the microbial activity of digesta in the gastrointestinal tract of rats. Arch Environ Contam Toxicol. 1992;23(4):468–72.

    Article  CAS  Google Scholar 

  124. Xiao H, Madhyastha S, Marquardt RR, Li S, Vodela JK, Frohlich A, et al. Toxicity of ochratoxin A, its opened lactone form and several of its analogs: structure–activity relationships. Toxicol Appl Pharmacol. 1996;137(2):182–92.

    Article  CAS  Google Scholar 

  125. Zepnik H, Pähler A, Schauer U, Dekant W. Ochratoxin A-induced tumor formation: is there a role of reactive ochratoxin A metabolites? Toxicol Sci. 2001;59(1):59–67.

    Article  CAS  Google Scholar 

  126. Knasmuller S, Cavin C, Chakraborty A, Darroudi F, Majer BJ, Huber WW, et al. Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: implications for risk assessment. Nutr Cancer. 2004;50(2):190–7.

    Article  Google Scholar 

  127. Tozlovanu M, Canadas D, Pfohl-Leszkowicz A, Frenette C, Paugh RJ, Manderville RA. Glutathione conjugates of ochratoxin a as biomarkers of exposure/Glutationski Konjugati Okratoksina A Kao Biomarkeri Izloženosti. Arch Ind Hyg Toxicol. 2012;63(4):417–27.

    CAS  Google Scholar 

  128. Pfohl-Leszkowicz A, Pinelli E, Bartsch H, Mohr U, Castegnaro M. Sex and strain differences in ochratoxin A metabolism and DNA adduction in two strains of rats. Mol Carcinog. 1998;23(7):76–83.

    Article  CAS  Google Scholar 

  129. Ringot D, Chango A, Schneider Y-J, Larondelle Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem Biol Interact. 2006;159(1):18–46.

    Article  CAS  Google Scholar 

  130. Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, et al. Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 2001;69(18):2123–35.

    Article  CAS  Google Scholar 

  131. Bahnemann E, Kerling H-P, Ensminger S, Schwerdt G, Silbernagl S, Gekle M. Renal transepithelial secretion of ochratoxin A in the non-filtering toad kidney. Toxicology. 1997;120(1):11–7.

    Article  CAS  Google Scholar 

  132. Leier I, Hummel-Eisenbeiss J, Cui Y, Keppler D. ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000;57(4):1636–42.

    Article  CAS  Google Scholar 

  133. Dahlmann A, Dantzler WH, Silbernagl S, Gekle M. Detailed mapping of ochratoxin A reabsorption along the rat nephron in vivo: the nephrotoxin can be reabsorbed in all nephron segments by different mechanisms. J Pharmacol Exp Ther. 1998;286(1):157–62.

    CAS  Google Scholar 

  134. Berger V, Gabriel A-F, Sergent T, Trouet A, Larondelle Y, Schneider Y-J. Interaction of ochratoxin A with human intestinal Caco-2 cells: possible implication of a multidrug resistance-associated protein (MRP2). Toxicol Lett. 2003;140:465–76.

    Article  CAS  Google Scholar 

  135. Schrickx J, Lektarau Y, Fink-Gremmels J. Ochratoxin A secretion by ATP-dependent membrane transporters in Caco-2 cells. Arch Toxicol. 2006;80(5):243–9.

    Article  CAS  Google Scholar 

  136. Micco C, Miraglia M, Brera C, Corneli S, Ambruzzi A. Evaluation of ochratoxin A level in human milk in Italy. Food Addit Contam. 1995;12(3):351–4.

    Article  CAS  Google Scholar 

  137. Skaug MA, Helland I, Solvoll K, Saugstad OD. Presence of ochratoxin A in human milk in relation to dietary intake. Food Addit Contam. 2001;18(4):321–7.

    Article  CAS  Google Scholar 

  138. Muñoz K, Blaszkewicz M, Campos V, Vega M, Degen G. Exposure of infants to ochratoxin A with breast milk. Arch Toxicol. 2014;88(3):837–46.

    Google Scholar 

  139. Corley RA, Swanson SP, Gullo GJ, Johnson L, Beasley VR, Buck WB. Disposition of T-2 toxin, a trichothecene mycotoxin, in intravascularly dosed swine. J Agric Food Chem. 1986;34(5):868–75.

    Article  CAS  Google Scholar 

  140. Schothorst RC, van Egmond HP. Report from SCOOP task 3.2. 10 “collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states”: subtask: trichothecenes. Toxicol Lett. 2004;153(1):133–43.

    Article  CAS  Google Scholar 

  141. Biselli S, Hummert C. Development of a multicomponent method for Fusarium toxins using LC-MS/MS and its application during a survey for the content of T-2 toxin and deoxynivalenol in various feed and food samples. Food Addit Contam. 2005;22(8):752–60.

    Article  CAS  Google Scholar 

  142. Chain EPoCitF. Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011;9(12):2481.

    Article  CAS  Google Scholar 

  143. Aly SE, Abdel-Galil MM, Abdel-Wahhab MA. Application of adsorbent agents technology in the removal of aflatoxin B1 and fumonisin B1 from malt extract. Food Chem Toxicol. 2004;42(11):1825–31.

    Article  CAS  Google Scholar 

  144. Robinson A, Johnson NM, Strey A, Taylor JF, Marroquin-Cardona A, Mitchell N, et al. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans. Food Addit Contam Part A. 2012;29(5):809–18.

    Article  CAS  Google Scholar 

  145. Duvick J. Prospects for reducing fumonisin contamination of maize through genetic modification. Environ Health Perspect. 2001;109(Suppl 2):337–42.

    Article  CAS  Google Scholar 

  146. Sivasankar S, Helentjaris TJ, Xu D. Transcriptional activators involved in abiotic stress tolerance. Google patents; 2007.

    Google Scholar 

  147. English JJ, Grant SL, Pollack JS, Ritland JL, Sandahl GA. Defensin variants and methods of use. Google patents; 2014.

    Google Scholar 

  148. Rocha O, Ansari K, Doohan F. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam. 2005;22(4):369–78.

    Article  CAS  Google Scholar 

  149. Thompson WL, Wannemacher RW Jr. Structure-function relationships of 12,13-epoxytrichothecene mycotoxins in cell culture: comparison to whole animal lethality. Toxicon. 1986;24(10):985–94.

    Article  CAS  Google Scholar 

  150. Cundliffe E, Cannon M, Davies J. Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proc Natl Acad Sci. 1974;71(1):30–4.

    Article  CAS  Google Scholar 

  151. He J, Zhou T, Young JC, Boland GJ, Scott PM. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends Food Sci Technol. 2010;21(2):67–76.

    Article  CAS  Google Scholar 

  152. Heseltine E, Rosen J. WHO guidelines for indoor air quality: dampness and mould. Copenhagen: WHO Regional Office Europe; 2009.

    Google Scholar 

  153. Peitzsch M, Bloom E, Haase R, Must A, Larsson L. Remediation of mould damaged building materials—efficiency of a broad spectrum of treatments. J Environ Monit. 2012;14(3):908–15.

    Article  CAS  Google Scholar 

  154. Rao C, Cox-Ganser J, Chew G, Doekes G, White S. Use of surrogate markers of biological agents in air and settled dust samples to evaluate a water-damaged hospital. Indoor Air. 2005;15(1):89–97.

    Article  Google Scholar 

  155. Prousky J. The treatment of pulmonary diseases and respiratory-related conditions with inhaled (nebulized or aerosolized) glutathione. Evid Based Complement Alternat Med. 2008;5(1):27–35.

    Article  Google Scholar 

  156. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000;267(16):4904–11.

    Article  CAS  Google Scholar 

  157. Vojdani A, Mumper E, Granpeesheh D, Mielke L, Traver D, Bock K, et al. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J Neuroimmunol. 2008;205(1–2):148–54.

    Article  CAS  Google Scholar 

  158. Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 1991;51(2):155–94.

    Article  CAS  Google Scholar 

  159. Ali J, Ali M, Baboota S, Kaur Sahni J, Ramassamy C, Dao L. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des. 2010;16(14):1644–53.

    Article  CAS  Google Scholar 

  160. Avantaggiato G, Havenaar R, Visconti A. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food Chem Toxicol. 2004;42(5):817–24.

    Article  CAS  Google Scholar 

  161. Steczko J, Ash SR, Blake DE, Carr DJ, Bosley RH. Cytokines and endotoxin removal by sorbents and its application in push–pull sorbent-based pheresis: the biologic-DTPF system. Artif Organs. 1999;23(4):310–8.

    Article  CAS  Google Scholar 

  162. Abdel-Aziem SH, Hassan AM, Abdel-Wahhab MA. Dietary supplementation with whey protein and ginseng extract counteracts oxidative stress and DNA damage in rats fed an aflatoxin-contaminated diet. Mutat Res. 2011;723(1):65–71.

    Article  CAS  Google Scholar 

  163. Bounous G. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res. 2000;20(6):4785–92.

    CAS  Google Scholar 

  164. Malekinejad H, Mirzakhani N, Razi M, Cheraghi H, Alizadeh A, Dardmeh F. Protective effects of melatonin and Glycyrrhiza glabra extract on ochratoxin A—induced damages on testes in mature rats. Hum Exp Toxicol. 2011;30(2):110–23.

    Article  CAS  Google Scholar 

  165. Yenilmez A, Isikli B, Aral E, Degirmenci I, Sutken E, Baycu C. Antioxidant effects of melatonin and coenzyme Q10 on oxidative damage caused by single-dose ochratoxin A in rat kidney. Chin J Physiol. 2010;53(5):310–7.

    Article  CAS  Google Scholar 

  166. Alpsoy L, Yildirim A, Agar G. The antioxidant effects of vitamin A, C, and E on aflatoxin B1-induced oxidative stress in human lymphocytes. Toxicol Ind Health. 2009;25(2):121–7.

    Article  CAS  Google Scholar 

  167. Hope J. A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. Sci World J. 2013;2013:767482.

    Article  CAS  Google Scholar 

  168. Kumar M, Verma V, Nagpal R, Kumar A, Behare P, Singh B, et al. Anticarcinogenic effect of probiotic fermented milk and chlorophyllin on aflatoxin-B 1-induced liver carcinogenesis in rats. Br J Nutr. 2012;107(7):1006–16.

    Article  CAS  Google Scholar 

  169. Gross-Steinmeyer K, Eaton DL. Dietary modulation of the biotransformation and genotoxicity of aflatoxin B1. Toxicology. 2012;299(2–3):69–79.

    Article  CAS  Google Scholar 

  170. Gao SS, Chen XY, Zhu RZ, Choi BM, Kim SJ, Kim BR. Dual effects of phloretin on aflatoxin B1 metabolism: activation and detoxification of aflatoxin B1. Biofactors. 2012;38(1):34–43.

    Article  CAS  Google Scholar 

  171. Cechetti F, Worm PV, Elsner VR, Bertoldi K, Sanches E, Ben J, et al. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem. 2012;97(1):90–6.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

Author declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhdary, Z., Rehman, K., Akash, M.S.H. (2021). Mechanistic Insight of Mycotoxin-Induced Neurological Disorders and Treatment Strategies. In: Akash, M.S.H., Rehman, K. (eds) Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-66376-6_7

Download citation

Publish with us

Policies and ethics