Skip to main content

Physiological and Molecular Responses to Salinity Due to Excessive Na+ in Plants

  • Chapter
  • First Online:
Harsh Environment and Plant Resilience

Abstract

Salinity due to excessive sodium ions in plants is amongst one such abiotic stresses that are severely hampering crop productivity. Most plants are severely affected by excess sodium ions in soil. This abiotic stress creates relatively more problems in plants belonging to glycophytes group than the ones to halophytes group by interrupting their physiological and molecular processes. Salt-stress-affected plants have reduced water content and decreased photosynthesis rate. Increase in solute accumulation, hormonal imbalance, ionic imbalance, etc., are some of the physiological responses in plants exposed to salt-stress condition. Salt stress also augments other ionic, osmotic and secondary stresses in plants. This in turn causes more losses in productivity and more severe impact on plant growth. Adaptation by plants to this stress is possible via salt-avoidance mechanism or salt-tolerance mechanism which is particularly seen in plants belonging to halophyte group. Furthermore, several genes are known to be expressed in plants to tolerate salt-stress condition by regulating the transcriptional and post-transcriptional processes. This chapter describes several physiological and molecular responses in plants exposed to salt stress, when sodium ions are more in soil. Moreover, salt oversensitive signalling pathway and tolerance mechanism of halophytes under salt-stress condition have also been illustrated in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari MI, Silva da JAT (2012) Molecular analysis of TLP18.3gene in response to the abiotic stress in Arabidopsis thaliana. Plant Stress 6:22–24

    Google Scholar 

  • Ariyarathna HA, Oldach KH, Francki MG (2016) A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na+ concentration in bread wheat. BMC Plant Biol 16:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Asins MJ, Villalta I, Aly MM, Olıas R, Alvarez DE, Morales P, Huertas R, Li J, Jaime-Perez N, Haro R, Raga V, Carbonell EA, Blever A (2013) Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis. Plant Cell Environ 36:1171–1191

    Article  CAS  PubMed  Google Scholar 

  • Aslam R, Bostan N, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118

    CAS  Google Scholar 

  • Balsamo RA, Adams ME, Thomson WW (1995) Electrophysiology of the salt glands of Avicennia germinans. Int J Plant Sci 156:658–667

    Article  Google Scholar 

  • Barbieri G, Vallone S, Orsini F, Paradiso R, Pascale SD, Negre-Zakhrov F, Maggio A (2012) Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.). J Plant Physiol 169:1737–1746

    Article  CAS  PubMed  Google Scholar 

  • Booth WA, Beardall J (1991) Effect of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant algae Dunaliella salina (Chlorophyta). Phycologia 30:220–225

    Article  Google Scholar 

  • Capriotti AL, Borrelli GM, Colapicchioni V, Papa R, Piovesana S, Samperi R, Stampachiacchiere S, Lagana A (2014) Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions. Anal Bioanal Chem 406:1423–1435

    Article  CAS  PubMed  Google Scholar 

  • Chaitanya KV, Krishna CR, Ramana GV, Beebi SKK (2014) Salinity stress and sustainable agriculture: a review. Agric Rev 35(1):34–41

    Article  Google Scholar 

  • Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206:557–570

    Article  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava RKV, Raghavendra AS, Janardhan RK (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 41–100

    Chapter  Google Scholar 

  • Dantas BF, De Sa Ribeiro L, Aragao CA (2007) Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Rev Bras Sementes 29:106–110

    Article  Google Scholar 

  • Datta KK, De Jong C (2002) Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India. Agric Water Manag 57:223–238

    Article  Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  CAS  PubMed  Google Scholar 

  • Dong HZ, Li WJ, Tang W, Zhang DM (2009) Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res 111:269–275

    Article  Google Scholar 

  • Epstein E (1983) Crops tolerant of salinity and other mineral stresses. Better Crops Food 2:61–82

    Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffari A, Gharechahi J, Nakhoda B, Salekdeh GH (2014) Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. J Plant Physiol 171:31–44

    Article  CAS  PubMed  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Gomes-Filho E, Machado Lima CRF, Costa JH, da Silva AC, da Guia Silva Lima M, de Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27:147–157

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Qiu Q, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu J-K (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449

    Google Scholar 

  • Harris BN, Sadras VO, Tester M (2010) A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil 336:377–389

    Article  CAS  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bresan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:4632–4499

    Article  Google Scholar 

  • Higbie SM, Wang E, Mc D, Stewart J, Sterling TM, Lindemann WC, Hughs E, Zhang J (2010) Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. Int J Agron 1:1–12

    Article  CAS  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr and Soil Sci 168(4):541–549

    Google Scholar 

  • Isayenkov SV (2012) Physiological and molecular aspects of salt stress in plants. Cytol Genet 46(5):50–71

    Article  CAS  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12(9):1667–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalil SU, Ansari MI (2018) Plant microbiome and its functional mechanism in response to environmental stress. Int J Green Pharm 12(1):S81–S92

    CAS  Google Scholar 

  • Jalil SU, Ansari MI (2019) Role of phytohormones in recuperating salt stress. In: Akhtar MS (ed) Salt stress, microbes, and plant interaction: mechanism and molecular approaches. Springer Nature Singapore, pp 91–104

    Google Scholar 

  • Jalil SU, Ansari MI (2020a) Physiological role of gamma-aminobutyric acid in salt stress tolerance. In: Hasanuzzaman M, Tanveer M (eds) Salt and drought stress tolerance in plants, signaling and communication in plants. Springer Nature Switzerland AG, pp 337–350

    Google Scholar 

  • Jalil SU, Ansari MI (2020b) Stress implication and crop productivity, (ed 1) Plant ecophysiology and adaptation under climate change: mechanism and perspectives 1st ed. Springer Nature Singapore 73–86

    Google Scholar 

  • Karimi G, Ghorbanli M, Heidari H, Khavarinejad RA, Assareh MH (2005) The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrate. Biol Plant 49:301–304

    Article  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40(2):482–487

    Article  CAS  Google Scholar 

  • Khan MA, Weber DJ (2008) Ecophysiology of high salinity tolerant plants (tasks for vegetation science), 1st edn. Springer, Amsterdam, p 404

    Google Scholar 

  • Khorsandi E, Anagholi A (2009) Reproductive compensation of cotton after salt stress relief at different growth stages. J Agron Crop Sci 195:278–283

    Article  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    Article  CAS  PubMed  Google Scholar 

  • Lacerda CF, Cambraia J, Cano MAO, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120

    Article  CAS  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734

    Google Scholar 

  • Lokhande VH, Suprasanna P (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Parvaiz A, Prasad MNV (eds) Environmental adaptations to changing climate: metabolism, productivity and sustainability. Springer, New York, pp 29–56

    Google Scholar 

  • Long R, Li M, Zhang T, Kang J, Sun Y, Yang Q (2020) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. In: de Bruijin FJ (ed) The model legume Medicago trunculatula. Wiley-Blackwell, John Wiley & Sons Inc, USA, pp 1102–1111

    Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  • Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes : potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra V, Solomon S, Ahmed A, Elsayed FA, Mall AK, Prajapati CP, Ansari MI (2020a) Minimization of post-harvest sucrose losses in drought affected sugarcane using chemical formulation. Saudi J of Biological Sci 27(1):309–317

    Google Scholar 

  • Misra V, Mall AK, Pathak AD (2020b) Sugarbeet: a sustainable crop for salt stress conditions. In: Hasaanzuman M (ed) Agronomic crops. Springer Nature Singapore Pte Ltd. Publications, pp 40–62. https://doi.org/10.1007/978-981-15-0025-1_10

  • Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 217:2163–2178

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Experimental Bot 57:1025–1043

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–668

    Article  CAS  PubMed  Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 3(34):5475–5480

    Google Scholar 

  • Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otoch MDLO, Sobreira ACM, de Aragao MEF, Orellano EG, Lima MDGS, de Melo DF (2001) Salt modulation of vacuolar H+ ATPase and H+ pyrophosphate activities in Vigina unguiculata. J Plant Physiol 158(5):545–551

    Article  CAS  Google Scholar 

  • Parvaiz A, Satyavati S (2008) Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ 54:89–99

    Article  CAS  Google Scholar 

  • Patel MK, Mishra A, Jha B (2016) Untargeted metabolomics of halophytes. In: Kim S (ed) Marine omics: principles and applications. CRC Press, Boca Raton, pp 309–325

    Google Scholar 

  • Piotr S, Giles NJ (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    Article  CAS  Google Scholar 

  • Polash MAS, Hossain MA (2019) Plant response and their physiological and biochemical defense mechanisms against salinity: a review. Trop Plant Res 6(2):250–274

    Article  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci 99(13):9061–9066

    Article  CAS  PubMed  Google Scholar 

  • Rani S, Sharma MK, Kumar N, Neelam (2019) Impact of salinity and zinc application on growth, physiological and yield traits in wheat. Curr Sci 116(8):1324–1330

    Article  CAS  Google Scholar 

  • Rogers CE, McCarty JP (2000) Climate change and ecosystems of the Mid-Atlantic Region. Clim Res 14:235–244

    Google Scholar 

  • Rozeff N (1995) Sugarcane and salinity – a review paper. Sugarcane 5:8–19

    Google Scholar 

  • Rozema J, Gude H, Pollack G (1981) An eco-physiological study of the salt secretion of four halophytes. New Phytol 89:207–217

    Article  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155

    Article  CAS  PubMed  Google Scholar 

  • Rus A, Lee BH, Muñoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Oshima Y, Mitsuda N, Ohmetakagi M (2014) A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant Cell Environ 37:2024–2035

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19:687–691

    Article  CAS  PubMed  Google Scholar 

  • Sharma DK, Singh A (2015) Salinity research in India – achievements, challenges and future prospects. Water Resources Section, pp 35–45

    Google Scholar 

  • Sharma DK, Singh A, Sharma PC (2014) CSSRI Vision 2050. Central Soil Salinity Research Institute, Karnal, pp 34

    Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14(2):465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Redoña ED, Refuerzo L (2010) Varietal improvement for abiotic stress tolerance in crop plants: Special reference to salinity in rice. In: Pareek A, Sopory SK, Bohnert HJ (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Netherland, pp 387–415

    Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehanspour AA, Jazii FR, Motamed N, Komatsu S 2010. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Science 8 Article 19. https://doi.org/10.1186/1477-5956-8-19

  • Sreeshan A, Meera SP, Augustine A (2014) A review on transporters in salt tolerant mangroves. Trees 28:957–960

    Article  CAS  Google Scholar 

  • Szabolcs I (1998) Salt buildup as a factor of soil degradation. In: Lal R, Blum WH, Valentine C, Stewart BA (eds) Methods for assessment of soil. CRC press, pp 253–264

    Google Scholar 

  • Tahir MA, Aziz T, Farooq M, Sarwar G (2012) Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Arch Agron Soil Sci 58(3):247–256

    Article  CAS  Google Scholar 

  • Vasantha S, Rajlakshmi R (2009) Progressive changes in biochemical characters of sugarcane genotypes under salinity stress. Ind J Plant Physiol 14:34–38

    CAS  Google Scholar 

  • Waisel Y, Eshel A, Agami M (1986) Salt balance of leaves of the mangrove Avicennia marina. Physiol Plant 67:67–72

    Article  CAS  Google Scholar 

  • Wu HJ, Zhang Z, Wang JY, Oh DH, Dasanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang YN, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Eang S, Zhang J, Wang Y, Zhang I, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of the Uungiella salsuginea. Proc Natl Acad Sci U S A 109:12219–12224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant stress responses. New Phytol 217:523–539

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Wang W, Wang B (2012) Recent progress of salinity tolerance research in plants. Rev Theor Articles 48(5):497–505

    CAS  Google Scholar 

  • Yupsanis T, Moustakas M, Domiandou K (1994) Protein phosphorylation-dephosphorylation in alfalfa seeds germinating under salt stress. J Plant Physiol 143:234–240

    Article  CAS  Google Scholar 

  • Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integ Plant Biol 50:1–7

    Article  CAS  Google Scholar 

  • Zakharin AA, Panichkin LA (2009) Glycophyte salt resistance. Russ J Plant Physiol 56:94–103. https://doi.org/10.1134/S1021443709010142

  • Zhao GQ, Ma BL, Ren CZ (2007) Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci 47(1):123–131

    Google Scholar 

  • Zhifang G, Loescher WH (2003) Expression of a celery mannose-6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell Environ 26:275–283

    Article  CAS  Google Scholar 

  • Zhou YH, Wu JX, Zhu LJ, Shi K, Yu JQ (2009) Effects of phosphorus and chilling under low irradiance on photosynthesis and growth of tomato plants. Biol Plant 53:378–382

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Meinzer FC (1999) Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Aust J Plant Physiol 26:79–86

    Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Israil Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, V., Mall, A.K., Ansari, M.I. (2021). Physiological and Molecular Responses to Salinity Due to Excessive Na+ in Plants. In: Husen, A. (eds) Harsh Environment and Plant Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-65912-7_11

Download citation

Publish with us

Policies and ethics