Skip to main content
Log in

Effects of phosphorus and chilling under low irradiance on photosynthesis and growth of tomato plants

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

To determine the effects of phosphorus nutrition on chilling tolerance of photosynthetic apparatus, tomato (Lycopersicon esculentum Mill. cv. Kenfengxin 2002) plants were raised under different P contents and subjected to 7 d of chilling at 9/7 °C. After chilling (2 h or 7 d) plant growth, P content in tissue, gas exchange and chlorophyll fluorescence were measured. Decreasing P concentration [P] in the nutrient solution markedly reduced plant growth and the chilled plants exhibiting higher optimum [P] than the unchilled plants. Decreasing [P] significantly decreased light saturated net photosynthetic rate (PNsat), maximum carboxylation velocity of Rubisco (Vcmax), maximum potential rate of electron transport contributed to Rubisco regeneration (Jmax), quantum efficiency of photosystem (PS) 2 (ΠPS2) and O2 sensitivity of PNsat (PSO2) and this trend was especially apparent in chilled plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ci :

intercellular CO2 concentration

Fv/Fm :

maximum photochemical efficiency of PS 2

Fv′/Fm′:

efficiency of excitation capture by open PS 2 centers

gs :

stomatal conductance

Jmax :

maximum potential rate of electron transport contributed to Rubisco regeneration

[P]:

phosphorus concentration

PNsat :

light saturated net photosynthetic rate

PSO2 :

O2 sensitivity of photosynthesis

qp :

photochemical quenching coefficient

S/R:

shoot to root ratio

TPDM:

total plant dry mass

Vcmax :

maximum carboxylation velocity of Rubisco

ΠPS2 :

quantum efficiency of PS 2

References

  • Allen, D.J., Ort, D.R.: Impact of chilling temperatures on photosynthesis in warm climate plants.-Trends Plant Sci. 6: 36–42, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bertamini, M., Zulini, L., Muthuchelian, K., Nedunchezhian, N.: Low night temperature effects on photosynthetic performance on two grapevine genotypes.-Biol. Plant. 51: 381–385, 2007.

    Article  CAS  Google Scholar 

  • Campbell, C.D., Sage, R.F.: Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.).-Plant Cell Environ. 29: 844–853, 2006.

    Article  PubMed  CAS  Google Scholar 

  • De Groot, C.C., Marcelis, L.F.M., Van den Boogaard, R., Lambers, H.: Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light.-Plant Cell Environ. 24: 1309–1317, 2001.

    Article  Google Scholar 

  • Ethier, G.J., Livingston, N.J.: On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-Von Caemmerer-Berry leaf photosynthesis model.-Plant Cell Environ. 27: 137–153, 2004.

    Article  CAS  Google Scholar 

  • Harrison, E.P., Willingham, N.M., Lloyd, J.C., Raines, C.A.: Reduced sedoheptulose-1,7-bisphosphate levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation.-Planta 204: 27–36, 1998.

    Article  CAS  Google Scholar 

  • Hermans, C., Hammond, J.P., White, P.J., Verbruggen, N.: How do plants respond to nutrient shortage by biomass allocation?-Trends Plant Sci. 11: 610–617, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hu, W.H., Zhou, Y.H., Du, Y.S., Xia, X.J., Yu, J.Q.: Differential response of photosynthesis in greenhouse-and field-ecotypes of tomato to long-term chilling under low light.-J. Plant Physiol. 163: 1238–1246, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M.L. (ed.): Soil Chemical Analysis.-Prentice-Hall Inc., Englewood Cliffs 1958.

    Google Scholar 

  • Jacob, J., Lawlor, D.W.: Dependence of photosynthesis of sunflower and maize leaves on phosphate supply, ribulose-1,5-biphosphate carboxylase/oxygenase activity and ribulose-1,5-bisphosphate pool size.-Plant Physiol. 98: 801–807, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kaya, C., Kirnak, H., Higgs, D.: Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity.-J. Plant Nutr. 24: 357–367, 2001.

    Article  CAS  Google Scholar 

  • Leegood, R.C., Furbank, R.T.: Stimulation of photosynthesis by 2 % oxygen at low temperatures is restored by phosphate.-Planta 168: 84–93, 1986.

    Article  CAS  Google Scholar 

  • Paul, M.J., Driscoll, S.P., Lawlor, D.W.: Sink regulation of photosynthesis in relation to temperature in sunflower and rape.-J. exp. Bot. 43:147–153, 1992.

    Article  Google Scholar 

  • Rao, I.M., Terry, N.: Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. IV. Changes with time following increased supply of phosphate to low-phosphate to low-phosphate plants.-Plant Physiol. 107: 1313–1321, 1995.

    PubMed  CAS  Google Scholar 

  • Sawada, S., Usuda, H., Tsukui, T.: Participation of inorganic orthophosphate in regulation of the ribulose-1,5-biphosphate carboxylase activity in response to changes in the photosynthetic source-sink balance.-Plant Cell Physiol. 33: 943–949, 1992.

    CAS  Google Scholar 

  • Schmülling, T., Schäfer, S., Ramanov, G.: Cytokinins as regulators of gene expression.-Physiol. Plant 100: 505–519, 1997.

    Article  Google Scholar 

  • Shibli, R.A., Sawwan, J., Swaidat, B., Tahat, M.: Increased phosphorus mitigates the adverse effects of salinity in tissue culture.-Commun. Soil Sci. Plant Anal. 32: 429–440, 2001.

    Article  CAS  Google Scholar 

  • Shinano, T., Nanamori, M., Dohi, M., Wasaki, J., Osaki, M.: Evaluation of phosphorus starvation inducible genes relating to efficient phosphorus utilization in rice.-Plant Soil 269: 81–87, 2005.

    Article  CAS  Google Scholar 

  • Starck, Z., Niemyska, B., Bogdan, J., Akour Tawalbeh, R.N.: Response of tomato plants to chilling stress association with nutrient or phosphorus starvation.-Plant Soil 226: 99–106, 2000.

    Article  CAS  Google Scholar 

  • Stępień, P., Kłobus, G.: Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress.-Biol. Plant. 50: 610–616, 2006.

    Article  Google Scholar 

  • Weng, X.Y., Xu, H.X., Yang, Y., Peng, H.H.: Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves.-Biol. Plant. 52: 307–313, 2008.

    Article  CAS  Google Scholar 

  • Wissuwa, M., Gamat, G., Ismail, A.M.: Is root growth under phosphorus deficiency affected by source or sink limitations?-J. exp. Bot. 56: 1943–1950, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Woodrow, I.E., Berry, J.A.: Enzymatic regulation of photosynthetic CO2 fixation in C3 plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 39:533–594, 1988.

    CAS  Google Scholar 

  • Zhou, Y.H., Peng, Y.H., Lei, J.L., Zou, L.Y., Zheng, J.H., Yu, J.Q.: Effects of potato virus Y-NTN infection on gas exchange and photosystem 2 function in leaves of Solanum tuberosum L.-Photosynthetica 42: 417–423, 2004a.

    Article  CAS  Google Scholar 

  • Zhou, Y.H., Yu, J.Q., Huang, L.F., Nogués, S.: The relationship between CO2 assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery.-Plant Cell Environ. 27: 1503–1514, 2004b.

    Article  Google Scholar 

  • Zhou, Y.H., Yu, J.Q., Mao, W.H., Huang, L.F., Song, X.S., Nogués, S.: Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants.-Plant Cell Physiol. 47: 192–199, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Q. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y.H., Wu, J.X., Zhu, L.J. et al. Effects of phosphorus and chilling under low irradiance on photosynthesis and growth of tomato plants. Biol Plant 53, 378–382 (2009). https://doi.org/10.1007/s10535-009-0071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0071-6

Additional key words

Navigation