Skip to main content

Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants

  • Chapter
  • First Online:
Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities
  • 350 Accesses

Abstract

There is an urgent need to address the societal and sustainability challenges in the food, energy, and water (FEW) nexus at the global level. Research on improving the efficiency and sustainability of lignocellulosic conversion technologies and development of biomass feedstocks that are amenable to pretreatments has become a focus of the research community over the past few years. Genetic manipulation of lignin is a promising approach to generate biomass feedstocks with favorable properties. However, it is relatively unexplored in the area of understanding the effects of lignin modification on fractionation, characterization, and upgrading of lignin streams from engineered biomass feedstocks. There is a knowledge gap in linking the chemical complexity of lignin with its biological, spatial, and functional deposition with respect to how to separate and utilize the feedstock in a biorefinery. This knowledge is necessary for development of lignin-engineered plants and downstream processing technologies. This review recapitulates recent progress in lignin genetic modification and the leading technologies to fractionate and characterize lignin streams. Possible lignin valorization pathways including oxidative and reductive catalysis, electrocatalysis, and biological upgrading, in particular for use with engineered biomass feedstocks, are also discussed. Challenges and the outlook for future development are also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obama, B. (2017). The irreversible momentum of clean energy. Science, 355(6321), 126–129.

    Article  Google Scholar 

  2. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallett, J. P., Leak, D. J., & Liotta, C. L. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489.

    Article  Google Scholar 

  3. Chundawat, S. P., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2, 121–145.

    Article  Google Scholar 

  4. Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: Deriving more value from waste. Science, 337(6095), 695–699.

    Article  Google Scholar 

  5. Hisano, H., Nandakumar, R., & Wang, Z.-Y. (2011). Genetic modification of lignin biosynthesis for improved biofuel production. In Biofuels (pp. 223–235). New York: Springer.

    Chapter  Google Scholar 

  6. Carroll, A., & Somerville, C. (2009). Cellulosic biofuels. Annual Review of Plant Biology, 60, 165–182.

    Article  Google Scholar 

  7. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966.

    Article  Google Scholar 

  8. Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass & Bioenergy, 26(4), 361–375.

    Article  Google Scholar 

  9. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., & Sheehan, J. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169.

    Article  Google Scholar 

  10. Lynd, L. R., Van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16(5), 577–583.

    Article  Google Scholar 

  11. Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.

    Article  Google Scholar 

  12. Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tuskan, G. A., & Wyman, C. E. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344(6185), 1246843.

    Article  Google Scholar 

  13. Azadi, P., Inderwildi, O. R., Farnood, R., & King, D. A. (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 21, 506–523.

    Article  Google Scholar 

  14. Linger, J. G., Vardon, D. R., Guarnieri, M. T., Karp, E. M., Hunsinger, G. B., Franden, M. A., Johnson, C. W., Chupka, G., Strathmann, T. J., & Pienkos, P. T. (2014). Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12013–12018.

    Article  Google Scholar 

  15. Xu, C., Arancon, R. A. D., Labidi, J., & Luque, R. (2014). Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chemical Society Reviews, 43(22), 7485–7500.

    Article  Google Scholar 

  16. Behling, R., Valange, S., & Chatel, G. (2016). Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: What results? What limitations? What trends? Green Chemistry, 18(7), 1839–1854.

    Article  Google Scholar 

  17. Sathitsuksanoh, N., Holtman, K. M., Yelle, D. J., Morgan, T., Stavila, V., Pelton, J., Blanch, H., Simmons, B. A., & George, A. (2014). Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chemistry, 16(3), 1236–1247.

    Article  Google Scholar 

  18. Shi, J., Pattathil, S., Parthasarathi, R., Anderson, N. A., Im Kim, J., Venketachalam, S., Hahn, M. G., Chapple, C., Simmons, B. A., & Singh, S. (2016). Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry, 18(18), 4884–4895.

    Article  Google Scholar 

  19. Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K., & Ragauskas, A. J. (2014). Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 8(6), 836–856.

    Article  Google Scholar 

  20. Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62–70.

    Article  Google Scholar 

  21. Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124.

    Article  Google Scholar 

  22. Carpita, N. C., & McCann, M. C. (2008). Maize and sorghum: Genetic resources for bioenergy grasses. Trends in Plant Science, 13(8), 415–420.

    Article  Google Scholar 

  23. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.

    Article  Google Scholar 

  24. Liu, E., Das, L., Zhao, B., Crocker, M., & Shi, J. (2017). Impact of dilute sulfuric acid, ammonium hydroxide, and ionic liquid pretreatments on the fractionation and characterization of engineered switchgrass. Bioenergy Research, 10(4), 1079–1093.

    Article  Google Scholar 

  25. Simmons, B. A., Loque, D., & Ralph, J. (2010). Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology, 13(3), 312–319.

    Article  Google Scholar 

  26. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.

    Article  Google Scholar 

  27. Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.

    Article  Google Scholar 

  28. Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S., & Li, C. (2016). Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Research, 9(1), 1–14.

    Article  Google Scholar 

  29. Pordesimo, L., Hames, B., Sokhansanj, S., & Edens, W. (2005). Variation in corn stover composition and energy content with crop maturity. Biomass & Bioenergy, 28(4), 366–374.

    Article  Google Scholar 

  30. Keshwani, D. R., & Cheng, J. J. (2009). Switchgrass for bioethanol and other value-added applications: A review. Bioresource Technology, 100(4), 1515–1523.

    Article  Google Scholar 

  31. Brosse, N., Dufour, A., Meng, X., Sun, Q., & Ragauskas, A. (2012). Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 6(5), 580–598.

    Article  Google Scholar 

  32. Kreuger, E., Sipos, B., Zacchi, G., Svensson, S.-E., & Björnsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresource Technology, 102(3), 3457–3465.

    Article  Google Scholar 

  33. Fernández-Fueyo, E., Ruiz-Dueñas, F. J., Ferreira, P., Floudas, D., Hibbett, D. S., Canessa, P., Larrondo, L., James, T. Y., Seelenfreund, D., Lobos, S., Polanco, R., Tello, M., Honda, Y., Watanabe, T., Watanabe, T., Ryu, J. S., Kubicek, C. P., Schmoll, M., Gaskell, J., Hammel, K. E., St. John, F. J., Vanden Wymelenberg, A., Sabat, G., Bondurant, S. S., Syed, K., Yadav, J., Doddapaneni, H., Subramanian, V., Lavín, J. L., & Oguiza, J. A. (2012). Comparative genomics of Ceriporiopisis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 109(14), 5458–5463.

    Article  Google Scholar 

  34. McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46.

    Article  Google Scholar 

  35. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology, 74(1), 69–80.

    Article  Google Scholar 

  36. Adler, E. (1977). Lignin chemistry—Past, present and future. Wood Science and Technology, 11(3), 169–218.

    Article  Google Scholar 

  37. McCarthy, J. L., & Islam, A. (2000). Lignin chemistry, technology, and utilization: A brief history. In W. G. Glasser, R. A. Northey, & T. P. Schuultz (Eds.), Lignin: Historical, biological, and material perspectives (ACS symposium series 742). Washington, DC: American Chemical Society.

    Google Scholar 

  38. Lu, F., & Ralph, J. (1997). Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: Protocol for analysis of DFRC monomers. Journal of Agricultural and Food Chemistry, 45(7), 2590–2592.

    Article  Google Scholar 

  39. Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–546.

    Article  Google Scholar 

  40. Hatakeyama, H., & Hatakeyama, T. (2009). Lignin structure, properties, and applications. In Biopolymers (pp. 1–63). Berlin/Heidelberg: Springer.

    Google Scholar 

  41. Vanholme, R., Morreel, K., Ralph, J., & Boerjan, W. (2008). Lignin engineering. Current Opinion in Plant Biology, 11(3), 278–285.

    Article  Google Scholar 

  42. Rencoret, J., Gutierrez, A., Nieto, L., Jimenez-Barbero, J., Faulds, C. B., Kim, H., Ralph, J., Martinez, A. T., & Del Rio, J. C. (2011). Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiology, 155(2), 667–682.

    Article  Google Scholar 

  43. Pandey, M. P., & Kim, C. S. (2011). Lignin depolymerization and conversion: A review of thermochemical methods. Chemical Engineering and Technology, 34(1), 29–41.

    Article  Google Scholar 

  44. Li, C., Zhao, X., Wang, A., Huber, G. W., & Zhang, T. (2015). Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 115(21), 11559–11624.

    Article  Google Scholar 

  45. Chung, H., & Washburn, N. R. (2016). Extraction and types of lignin. In Lignin in polymer composites (pp. 13–25). New York City: William Andrew Publishing.

    Chapter  Google Scholar 

  46. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153(3), 895–905.

    Article  Google Scholar 

  47. Kuang, D., Walter, P., Nuesch, F., Kim, S., Ko, J., Comte, P., Zakeeruddin, S. M., Nazeeruddin, M. K., & Gratzel, M. (2007). Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir, 23(22), 10906–10909.

    Article  Google Scholar 

  48. Weng, J. K., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. The New Phytologist, 187(2), 273–285.

    Article  Google Scholar 

  49. Vogel, K. P., & Jung, H.-J. G. (2001). Genetic modification of herbaceous plants for feed and fuel. Critical Reviews in Plant Sciences, 20(1), 15–49.

    Article  Google Scholar 

  50. McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass & Bioenergy, 28(6), 515–535.

    Article  Google Scholar 

  51. Sticklen, M. B. (2007). Feedstock crop genetic engineering for alcohol fuels. Crop Science, 47(6), 2238.

    Article  Google Scholar 

  52. Hisano, H., Nandakumar, R., & Wang, Z.-Y. (2009). Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cellular & Developmental Biology. Plant, 45(3), 306–313.

    Article  Google Scholar 

  53. Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews. Genetics, 9(6), 433–443.

    Article  Google Scholar 

  54. Xu, B., Escamilla-Treviño, L. L., Sathitsuksanoh, N., Shen, Z., Shen, H., Percival Zhang, Y. H., Dixon, R. A., & Zhao, B. (2011). Silencing of 4-coumarate: Coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. The New Phytologist, 192(3), 611–625.

    Article  Google Scholar 

  55. Baucher, M., Halpin, C., Petit-Conil, M., & Boerjan, W. (2003). Lignin: Genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology, 38(4), 305–350.

    Article  Google Scholar 

  56. Nakashima, J., Chen, F., Jackson, L., Shadle, G., & Dixon, R. A. (2008). Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): Effects on lignin composition in specific cell types. The New Phytologist, 179(3), 738–750.

    Article  Google Scholar 

  57. Bjurhager, I., Olsson, A.-M., Zhang, B., Gerber, L., Kumar, M., Berglund, L. A., Burgert, I., Sundberg, B. R., & Salmén, L. (2010). Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules, 11(9), 2359–2365.

    Article  Google Scholar 

  58. Chabannes, M., Barakate, A., Lapierre, C., Marita, J. M., Ralph, J., Pean, M., Danoun, S., Halpin, C., Grima-Pettenati, J., & Boudet, A. M. (2001). Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. The Plant Journal, 28(3), 257–270.

    Article  Google Scholar 

  59. Kawaoka, A., Nanto, K., Ishii, K., & Ebinuma, H. (2006). Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genetica, 55(6), 269–277.

    Article  Google Scholar 

  60. Li, Y., Kajita, S., Kawai, S., Katayama, Y., & Morohoshi, N. (2003). Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. Journal of Plant Research, 116(3), 175–182.

    Article  Google Scholar 

  61. Moura, J. C., Bonine, C. A., de Oliveira Fernandes Viana, J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52(4), 360–376.

    Article  Google Scholar 

  62. Scully, E. D., Gries, T., Funnell-Harris, D. L., Xin, Z., Kovacs, F. A., Vermerris, W., & Sattler, S. E. (2016). Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. Journal of Integrative Plant Biology, 58(2), 136–149.

    Article  Google Scholar 

  63. Sattler, S. E., Funnell-Harris, D. L., & Pedersen, J. F. (2010). Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Science, 178(3), 229–238.

    Article  Google Scholar 

  64. Biemelt, S., Tschiersch, H., & Sonnewald, U. (2004). Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology, 135(1), 254–265.

    Article  Google Scholar 

  65. Kishimoto, T., Chiba, W., Saito, K., Fukushima, K., Uraki, Y., & Ubukata, M. (2010). Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. Journal of Agricultural and Food Chemistry, 58(2), 895–901.

    Article  Google Scholar 

  66. Bonawitz, N. D., Im Kim, J., Tobimatsu, Y., Ciesielski, P. N., Anderson, N. A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B. S., & Ladisch, M. (2014). Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature, 509(7500), 376–380.

    Article  Google Scholar 

  67. Sewalt, V. J., Ni, W., Blount, J. W., Jung, H. G., Masoud, S. A., Howles, P. A., Lamb, C., & Dixon, R. A. (1997). Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiology, 115(1), 41–50.

    Article  Google Scholar 

  68. Xu, B., Sathitsuksanoh, N., Tang, Y., Udvardi, M. K., Zhang, J.-Y., Shen, Z., Balota, M., Harich, K., Zhang, P. Y.-H., & Zhao, B. (2012). Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS One, 7(12), e47399.

    Article  Google Scholar 

  69. Coleman, H. D., Park, J.-Y., Nair, R., Chapple, C., & Mansfield, S. D. (2008). RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4501–4506.

    Article  Google Scholar 

  70. Voelker, S. L., Lachenbruch, B., Meinzer, F. C., Jourdes, M., Ki, C., Patten, A. M., Davin, L. B., Lewis, N. G., Tuskan, G. A., & Gunter, L. (2010). Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiology, 154(2), 874–886.

    Article  Google Scholar 

  71. Ziebell, A., Gracom, K., Katahira, R., Chen, F., Pu, Y., Ragauskas, A., Dixon, R. A., & Davis, M. (2010). Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. The Journal of Biological Chemistry, 285(50), 38961–38968.

    Article  Google Scholar 

  72. Li, X., Weng, J. K., & Chapple, C. (2008). Improvement of biomass through lignin modification. The Plant Journal, 54(4), 569–581.

    Article  Google Scholar 

  73. Hibino, T., Takabe, K., Kawazu, T., Shibata, D., & Higuchi, T. (2014). Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Bioscience, Biotechnology, and Biochemistry, 59(5), 929–931.

    Article  Google Scholar 

  74. Reddy, M. S., Chen, F., Shadle, G., Jackson, L., Aljoe, H., & Dixon, R. A. (2005). Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16573–16578.

    Article  Google Scholar 

  75. Scullin, C., Cruz, A. G., Chuang, Y. D., Simmons, B. A., Loque, D., & Singh, S. (2015). Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment. Biotechnology for Biofuels, 8, 95.

    Article  Google Scholar 

  76. Bonawitz, N. D., & Chapple, C. (2013). Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Current Opinion in Biotechnology, 24(2), 336–343.

    Article  Google Scholar 

  77. Rogers, L. A., & Campbell, M. M. (2004). The genetic control of lignin deposition during plant growth and development. The New Phytologist, 164(1), 17–30.

    Article  Google Scholar 

  78. Yang, F., Mitra, P., Zhang, L., Prak, L., Verhertbruggen, Y., Kim, J. S., Sun, L., Zheng, K., Tang, K., Auer, M., Scheller, H. V., & Loque, D. (2013). Engineering secondary cell wall deposition in plants. Plant Biotechnology Journal, 11(3), 325–335.

    Article  Google Scholar 

  79. Franke, R., Hemm, M. R., Denault, J. W., Ruegger, M. O., Humphreys, J. M., & Chapple, C. (2002). Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. The Plant Journal, 30(1), 47–59.

    Article  Google Scholar 

  80. Casler, M. D., Jung, H. G., & Coblentz, W. K. (2008). Clonal selection for lignin and etherified ferulates in three perennial grasses. Crop Science, 48(2), 424.

    Article  Google Scholar 

  81. Grabber, J. H., Mertens, D. R., Kim, H., Funk, C., Lu, F., & Ralph, J. (2009). Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. Journal of Science and Food Agriculture, 89(1), 122–129.

    Article  Google Scholar 

  82. Hatfield, R. D., & Chaptman, A. K. (2009). Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin. Journal of Agricultural and Food Chemistry, 57(10), 4243–4249.

    Article  Google Scholar 

  83. Wilkerson, C., Mansfield, S., Lu, F., Withers, S., Park, J.-Y., Karlen, S., Gonzales-Vigil, E., Padmakshan, D., Unda, F., & Rencoret, J. (2014). Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science, 344(6179), 90–93.

    Article  Google Scholar 

  84. Karlen, S. D., Zhang, C., Peck, M. L., Smith, R. A., Padmakshan, D., Helmich, K. E., Free, H. C., Lee, S., Smith, B. G., & Lu, F. (2016). Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances, 2(10), e1600393.

    Article  Google Scholar 

  85. Ralph, J. (2010). Hydroxycinnamates in lignification. Phytochemistry Reviews, 9(1), 65–83.

    Article  Google Scholar 

  86. Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52.

    Article  Google Scholar 

  87. Ma, X., Zhu, Q., Chen, Y., & Liu, Y.-G. (2016). CRISPR/Cas9 platforms for genome editing in plants: Developments and applications. Molecular Plant, 9(7), 961–974.

    Article  Google Scholar 

  88. Rani, R., Yadav, P., Barbadikar, K. M., Baliyan, N., Malhotra, E. V., Singh, B. K., Kumar, A., & Singh, D. (2016). CRISPR/Cas9: A promising way to exploit genetic variation in plants. Biotechnology Letters, 38(12), 1991–2006.

    Article  Google Scholar 

  89. Luo, M., Gilbert, B., & Ayliffe, M. (2016). Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Reports, 35(7), 1439–1450.

    Article  Google Scholar 

  90. Zhou, X., Jacobs, T. B., Xue, L. J., Harding, S. A., & Tsai, C. J. (2015). Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. The New Phytologist, 208(2), 298–301.

    Article  Google Scholar 

  91. Park, J.-J., Yoo, C. G., Flanagan, A., Pu, Y., Debnath, S., Ge, Y., Ragauskas, A. J., & Wang, Z.-Y. (2017). Defined tetra-allelic gene disruption of the 4-coumarate: Coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnology for Biofuels, 10(1), 284.

    Article  Google Scholar 

  92. Haddad, M., Mikhaylin, S., Bazinet, L., Savadogo, O., & Paris, J. (2017). Electrochemical acidification of Kraft black liquor by electrodialysis with bipolar membrane: Ion exchange membrane fouling identification and mechanisms. Journal of Colloid and Interface Science, 488, 39–47.

    Article  Google Scholar 

  93. Wyman, C. E., Balan, V., Dale, B. E., Elander, R. T., Falls, M., Hames, B., Holtzapple, M. T., Ladisch, M. R., Lee, Y., & Mosier, N. (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 102(24), 11052–11062.

    Article  Google Scholar 

  94. Tao, L., Aden, A., Elander, R. T., Pallapolu, V. R., Lee, Y. Y., Garlock, R. J., Balan, V., Dale, B. E., Kim, Y., Mosier, N. S., Ladisch, M. R., Falls, M., Holtzapple, M. T., Sierra, R., Shi, J., Ebrik, M. A., Redmond, T., Yang, B., Wyman, C. E., Hames, B., Thomas, S., & Warner, R. E. (2011). Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology, 102(24), 11105–11114.

    Article  Google Scholar 

  95. Harmsen, P., Huijgen, W., Bermudez, L., & Bakker, R. (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen: Wageningen UR Food & Biobased Research.

    Google Scholar 

  96. Sidiras, D., & Koukios, E. (1989). Acid saccharification of ball-milled straw. Biomass, 19(4), 289–306.

    Article  Google Scholar 

  97. Tassinari, T., Macy, C., Spano, L., & Ryu, D. D. (1980). Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnology and Bioengineering, 22(8), 1689–1705.

    Article  Google Scholar 

  98. Alvo, P., & Belkacemi, K. (1997). Enzymatic saccharification of milled timothy (Phleum pratense L.) and alfalfa (Medicago sativa L.). Bioresource Technology, 61(3), 185–198.

    Article  Google Scholar 

  99. Fan, L., Lee, Y. H., & Beardmore, D. (1981). The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnology and Bioengineering, 23(2), 419–424.

    Article  Google Scholar 

  100. Jameel, H., & Keshwani, D. R. (2017). Thermochemical conversion of biomass to power and fuels. In Biomass to renewable energy processes (pp. 375–422). Boca Raton: CRC Press.

    Google Scholar 

  101. Ong, H. C., Chen, W.-H., Farooq, A., Gan, Y. Y., Lee, K. T., & Ashokkumar, V. (2019). Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 113, 109266.

    Article  Google Scholar 

  102. Pang, S. (2018). Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances, 37(4), 589–597.

    Article  Google Scholar 

  103. Ramos, L., Breuil, C., Kushner, D., & Saddler, J. (1992). Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of Eucalyptus viminalis wood chips. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 46(2), 149–154.

    Google Scholar 

  104. Grous, W. R., Converse, A. O., & Grethlein, H. E. (1986). Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme and Microbial Technology, 8(5), 274–280.

    Article  Google Scholar 

  105. Wyman, C. (1996). Handbook on bioethanol: Production and utilization. Boca Raton: CRC Press.

    Google Scholar 

  106. Himmel, M. E., Baker, J. O., & Overend, R. P. (1994). Enzymatic conversion of biomass for fuels production. Washington, DC: American Chemical Society.

    Book  Google Scholar 

  107. Weil, J., Sarikaya, A., Rau, S.-L., Goetz, J., Ladisch, C. M., Brewer, M., Hendrickson, R., & Ladisch, M. R. (1997). Pretreatment of yellow poplar sawdust by pressure cooking in water. Applied Biochemistry and Biotechnology, 68(1), 21–40.

    Article  Google Scholar 

  108. Baugh, K. D., Levy, J. A., & McCarty, P. L. (1988). Thermochemical pretreatment of lignocellulose to enhance methane fermentation: II. Evaluation and application of pretreatment model. Biotechnology and Bioengineering, 31(1), 62–70.

    Article  Google Scholar 

  109. Mosier, N. S., Ladisch, C. M., & Ladisch, M. R. (2002). Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering, 79(6), 610–618.

    Article  Google Scholar 

  110. van Walsum, G. P., & Shi, H. (2004). Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresource Technology, 93(3), 217–226.

    Article  Google Scholar 

  111. Luo, C., Brink, D. L., & Blanch, H. W. (2002). Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass & Bioenergy, 22(2), 125–138.

    Article  Google Scholar 

  112. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.

    Article  Google Scholar 

  113. Dien, B., Jung, H., Vogel, K., Casler, M., Lamb, J., Iten, L., Mitchell, R., & Sarath, G. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass & Bioenergy, 30(10), 880–891.

    Article  Google Scholar 

  114. Foston, M., & Ragauskas, A. J. (2010). Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass & Bioenergy, 34(12), 1885–1895.

    Article  Google Scholar 

  115. Jensen, J. R., Morinelly, J. E., Gossen, K. R., Brodeur-Campbell, M. J., & Shonnard, D. R. (2010). Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresource Technology, 101(7), 2317–2325.

    Article  Google Scholar 

  116. Zhou, X., Xu, J., Wang, Z., Cheng, J. J., Li, R., & Qu, R. (2012). Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production. Bioresource Technology, 104, 823–827.

    Article  Google Scholar 

  117. Cha, Y. L., Yang, J., Park, Y., An, G. H., Ahn, J. W., Moon, Y. H., Yoon, Y. M., Yu, G. D., & Choi, I. H. (2015). Continuous alkaline pretreatment of Miscanthus sacchariflorus using a bench-scale single screw reactor. Bioresource Technology, 181, 338–344.

    Article  Google Scholar 

  118. Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2010). Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology, 101(8), 2900–2903.

    Article  Google Scholar 

  119. Salvi, D. A., Aita, G. M., Robert, D., & Bazan, V. (2010). Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Applied Biochemistry and Biotechnology, 161(1–8), 67–74.

    Article  Google Scholar 

  120. Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I. G., Kim, T. H., & Kim, K. H. (2009). Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology, 100(19), 4374–4380.

    Article  Google Scholar 

  121. Gao, K., Boiano, S., Marzocchella, A., & Rehmann, L. (2014). Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresource Technology, 174, 176–181.

    Article  Google Scholar 

  122. Gupta, R., & Lee, Y. (2010). Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 101(21), 8185–8191.

    Article  Google Scholar 

  123. Qin, L., Liu, Z.-H., Jin, M., Li, B.-Z., & Yuan, Y.-J. (2013). High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresource Technology, 146, 504–511.

    Article  Google Scholar 

  124. Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S., & Viikari, L. (2004). Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Applied Biochemistry and Biotechnology, 117(1), 1–17.

    Article  Google Scholar 

  125. Varga, E., Klinke, H. B., Reczey, K., & Thomsen, A. B. (2004). High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88(5), 567–574.

    Article  Google Scholar 

  126. Garrote, G., Dominguez, H., & Parajo, J. (1999). Hydrothermal processing of lignocellulosic materials. European Journal of Wood and Wood Products, 57(3), 191–202.

    Article  Google Scholar 

  127. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568–577.

    Article  Google Scholar 

  128. Ahring, B. K., Jensen, K., Nielsen, P., Bjerre, A., & Schmidt, A. (1996). Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresource Technology, 58(2), 107–113.

    Article  Google Scholar 

  129. Martin, C., Klinke, H. B., & Thomsen, A. B. (2007). Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technology, 40(3), 426–432.

    Article  Google Scholar 

  130. Curreli, N., Fadda, M. B., Rescigno, A., Rinaldi, A. C., Soddu, G., Sollai, F., Vaccargiu, S., Sanjust, E., & Rinaldi, A. (1997). Mild alkaline/oxidative pretreatment of wheat straw. Process Biochemistry, 32(8), 665–670.

    Article  Google Scholar 

  131. Itoh, H., Wada, M., Honda, Y., Kuwahara, M., & Watanabe, T. (2003). Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. Journal of Biotechnology, 103(3), 273–280.

    Article  Google Scholar 

  132. Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., & Saddler, J. (2006). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 94(5), 851–861.

    Article  Google Scholar 

  133. Rolz, C., de Arriola, M., Valladares, J., & de Cabrera, S. (1986). Effects of some physical and chemical pretreatments on the composition and enzymatic hydrolysis and digestibility of lemon grass and citronella bagasse. Agricultural Wastes, 18(2), 145–161.

    Article  Google Scholar 

  134. Lora, J. H., & Aziz, S. (1985). Organosolv pulping: A versatile approach to wood refining. Tappi (United States), 68(8), 94–97.

    Google Scholar 

  135. Zhao, X. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815.

    Article  Google Scholar 

  136. Dale, B. E. (1986). Method for increasing the reactivity and digestibility of cellulose with ammonia. United States Patent.

    Google Scholar 

  137. Dale, B. E., Leong, C., Pham, T., Esquivel, V., Rios, I., & Latimer, V. (1996). Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technology, 56(1), 111–116.

    Article  Google Scholar 

  138. Chundawat, S. P., Venkatesh, B., & Dale, B. E. (2007). Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering, 96(2), 219–231.

    Article  Google Scholar 

  139. Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Hemicellulose biorefineries: A review on biomass pretreatments. Journal of Scientific and Industrial Research, 67, 849–864.

    Google Scholar 

  140. Lin, L., Yan, R., Liu, Y., & Jiang, W. (2010). In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresource Technology, 101(21), 8217–8223.

    Article  Google Scholar 

  141. Yoon, H., Wu, Z., & Lee, Y. (1995). Ammonia-recycled percolation process for pretreatment of biomass feedstock. Applied Biochemistry and Biotechnology, 51(1), 5–19.

    Article  Google Scholar 

  142. Shi, J., Balamurugan, K., Parthasarathi, R., Sathitsuksanoh, N., Zhang, S., Stavila, V., Subramanian, V., Simmons, B. A., & Singh, S. (2014). Understanding the role of water during ionic liquid pretreatment of lignocellulose: Co-solvent or anti-solvent? Green Chemistry, 16(8), 3830–3840.

    Article  Google Scholar 

  143. Liu, E., Li, M., Das, L., Pu, Y., Frazier, T., Zhao, B., Crocker, M., Ragauskas, A. J., & Shi, J. (2018). Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid. ACS Sustainable Chemistry & Engineering, 6(5), 6612–6623.

    Article  Google Scholar 

  144. Kirk, T. K., & Chang, H.-M. (1981). Potential applications of bio-ligninolytic systems. Enzyme and Microbial Technology, 3(3), 189–196.

    Article  Google Scholar 

  145. Hatakka, A. I. (1983). Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Applied Microbiology and Biotechnology, 18(6), 350–357.

    Article  Google Scholar 

  146. Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Microbial pretreatment of biomass. In Biotechnology for fuels and chemicals (pp. 27–41). Totowa: Springer.

    Chapter  Google Scholar 

  147. Yao, W., & Nokes, S. E. (2014). Phanerochaete chrysosporium pretreatment of biomass to enhance solvent production in subsequent bacterial solid-substrate cultivation. Biomass & Bioenergy, 62, 100–107.

    Article  Google Scholar 

  148. Chinn, M. S., & Nokes, S. E. (2006). Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Biotechnology Progress, 22(1), 53–59.

    Article  Google Scholar 

  149. Flythe, M. D., Elía, N. M., Schmal, M. B., & Nokes, S. E. (2015). Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium beijerinckii sequential culture: Effect of feedstock particle size on gas production. Advances in Microbiology, 5(05), 311.

    Article  Google Scholar 

  150. Bhandiwad, A., Shaw, A. J., Guss, A., Guseva, A., Bahl, H., & Lynd, L. R. (2014). Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metabolic Engineering, 21, 17–25.

    Article  Google Scholar 

  151. da Costa Sousa, L., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). ‘Cradle-to-grave’assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20(3), 339–347.

    Article  Google Scholar 

  152. Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162(7), 1872–1880.

    Article  Google Scholar 

  153. Zakaria, M. R., Fujimoto, S., Hirata, S., & Hassan, M. A. (2014). Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 173(7), 1778–1789.

    Article  Google Scholar 

  154. Li, J., Henriksson, G., & Gellerstedt, G. (2007). Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology, 98(16), 3061–3068.

    Article  Google Scholar 

  155. Ko, J. K., Kim, Y., Ximenes, E., & Ladisch, M. R. (2015). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2), 252–262.

    Article  Google Scholar 

  156. Samuel, R., Pu, Y., Raman, B., & Ragauskas, A. J. (2010). Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Applied Biochemistry and Biotechnology, 162(1), 62–74.

    Article  Google Scholar 

  157. Kang, S., Xiao, L., Meng, L., Zhang, X., & Sun, R. (2012). Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. International Journal of Molecular Sciences, 13(11), 15209–15226.

    Article  Google Scholar 

  158. Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82(1), 15–26.

    Article  Google Scholar 

  159. Li, M., Foster, C., Kelkar, S., Pu, Y., Holmes, D., Ragauskas, A., Saffron, C. M., & Hodge, D. B. (2012). Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. Biotechnology for Biofuels, 5(1), 38.

    Article  Google Scholar 

  160. Hu, G., Cateto, C., Pu, Y., Samuel, R., & Ragauskas, A. J. (2011). Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy & Fuels, 26(1), 740–745.

    Article  Google Scholar 

  161. Li, C., Cheng, G., Balan, V., Kent, M. S., Ong, M., Chundawat, S. P., daCosta, S. L., Melnichenko, Y. B., Dale, B. E., & Simmons, B. A. (2011). Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology, 102(13), 6928–6936.

    Article  Google Scholar 

  162. Lee, J.-W., Gwak, K.-S., Park, J.-Y., Park, M.-J., Choi, D.-H., Kwon, M., & Choi, I.-G. (2007). Biological pretreatment of softwood Pinus densiflora by three white rot fungi. Journal of Microbiology, 45(6), 485–491.

    Google Scholar 

  163. Suhara, H., Kodama, S., Kamei, I., Maekawa, N., & Meguro, S. (2012). Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. International Biodeterioration & Biodegradation, 75, 176–180.

    Article  Google Scholar 

  164. Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., & Ralph, J. (2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current Biology, 19(2), 169–175.

    Article  Google Scholar 

  165. Yeh, T.-F., Chang, H.-m., & Kadla, J. F. (2004). Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 52(6), 1435–1439.

    Article  Google Scholar 

  166. Easty, D. B., Berben, S. A., DeThomas, F. A., & Brimmer, P. J. (1990). Near-infrared spectroscopy for the analysis of wood pulp: Quantifying hardwood-softwood mixtures and estimating lignin content. Tappi Journal, 73(10), 257–261.

    Google Scholar 

  167. Hatfield, R., & Fukushima, R. S. (2005). Can lignin be accurately measured? Crop Science, 45(3), 832–839.

    Article  Google Scholar 

  168. Fukushima, R. S., & Hatfield, R. D. (2001). Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. Journal of Agricultural and Food Chemistry, 49(7), 3133–3139.

    Article  Google Scholar 

  169. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 1617(1), 1–16.

    Google Scholar 

  170. Freudenberg, K. (1965). Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols. Science, 148(3670), 595–600.

    Article  Google Scholar 

  171. Li, L., Zhou, Y., Cheng, X., Sun, J., Marita, J. M., Ralph, J., & Chiang, V. L. (2003). Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4939–4944.

    Article  Google Scholar 

  172. Pilate, G., Guiney, E., Holt, K., Petit-Conil, M., Lapierre, C., Leplé, J.-C., Pollet, B., Mila, I., Webster, E. A., & Marstorp, H. G. (2002). Field and pulping performances of transgenic trees with altered lignification. Nature Biotechnology, 20(6), 607.

    Article  Google Scholar 

  173. Holtman, K. M., Chang, H.-M., & Kadla, J. F. (2004). Solution-state nuclear magnetic resonance study of the similarities between milled wood lignin and cellulolytic enzyme lignin. Journal of Agricultural and Food Chemistry, 52(4), 720–726.

    Article  Google Scholar 

  174. Chang, H.-M., Cowling, E. B., & Brown, W. (1975). Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 29(5), 153–159.

    Google Scholar 

  175. Ralph, J., Hatfield, R. D., Piquemal, J., Yahiaoui, N., Pean, M., Lapierre, C., & Boudet, A. M. (1998). NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 12803–12808.

    Article  Google Scholar 

  176. Gosselink, R., Abächerli, A., Semke, H., Malherbe, R., Käuper, P., Nadif, A., & Van Dam, J. (2004). Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products, 19(3), 271–281.

    Article  Google Scholar 

  177. Jönsson, A.-S., Nordin, A.-K., & Wallberg, O. (2008). Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chemical Engineering Research and Design, 86(11), 1271–1280.

    Article  Google Scholar 

  178. Gidh, A. V., Decker, S. R., See, C. H., Himmel, M. E., & Williford, C. W. (2006). Characterization of lignin using multi-angle laser light scattering and atomic force microscopy. Analytica Chimica Acta, 555(2), 250–258.

    Article  Google Scholar 

  179. Evtuguin, D., Domingues, P., Amado, F., Neto, C. P., & Correia, A. (1999). Electrospray ionization mass spectrometry as a tool for lignins molecular weight and structural characterisation. Holzforschung, 53(5), 525–528.

    Article  Google Scholar 

  180. Gidh, A. V., Decker, S. R., Vinzant, T. B., Himmel, M. E., & Williford, C. (2006). Determination of lignin by size exclusion chromatography using multi angle laser light scattering. Journal of Chromatography. A, 1114(1), 102–110.

    Article  Google Scholar 

  181. Baumberger, S., Abaecherli, A., Fasching, M., Gellerstedt, G., Gosselink, R., Hortling, B., Li, J., Saake, B., & de Jong, E. (2007). Molar mass determination of lignins by size-exclusion chromatography: Towards standardisation of the method. Holzforschung, 61(4), 459–468.

    Article  Google Scholar 

  182. El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., & Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability, 94(10), 1632–1638.

    Article  Google Scholar 

  183. Joffres, B., Lorentz, C., Vidalie, M., Laurenti, D., Quoineaud, A.-A., Charon, N., Daudin, A., Quignard, A., & Geantet, C. (2014). Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Applied Catalysis B: Environmental, 145, 167–176.

    Article  Google Scholar 

  184. Salanti, A., Zoia, L., Orlandi, M., Zanini, F., & Elegir, G. (2010). Structural characterization and antioxidant activity evaluation of lignins from rice husk. Journal of Agricultural and Food Chemistry, 58(18), 10049–10055.

    Article  Google Scholar 

  185. Tejado, A., Pena, C., Labidi, J., Echeverria, J., & Mondragon, I. (2007). Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresource Technology, 98(8), 1655–1663.

    Article  Google Scholar 

  186. Baumberger, S., Dole, P., & Lapierre, C. (2002). Using transgenic poplars to elucidate the relationship between the structure and the thermal properties of lignins. Journal of Agricultural and Food Chemistry, 50(8), 2450–2453.

    Article  Google Scholar 

  187. Shen, H., Poovaiah, C. R., Ziebell, A., Tschaplinski, T. J., Pattathil, S., Gjersing, E., Engle, N. L., Katahira, R., Pu, Y., & Sykes, R. (2013). Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels, 6(1), 71.

    Article  Google Scholar 

  188. Chen, C. (1991). Lignins: Occurrence in woody tissues, isolation, reactions, and structure. New York: Wood Structure and Composition.

    Google Scholar 

  189. Crews, P., Rodriquez, J., Jaspars, M., & Crews, R. J. (2010). Organic structure analysis (Vol. 636). New York: Oxford University Press.

    Google Scholar 

  190. Robert, D., & Gagnaire, D. (1981). Quantitative analysis of lignins by 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 1, 9–12.

    Google Scholar 

  191. Xia, Z., Akim, L. G., & Argyropoulos, D. S. (2001). Quantitative 13C NMR analysis of lignins with internal standards. Journal of Agricultural and Food Chemistry, 49(8), 3573–3578.

    Article  Google Scholar 

  192. Ralph, J., Marita, J. M., Ralph, S. A., Hatfield, R. D., Lu, F., Ede, R. M., Peng, J., Quideau, S., Helm, R. F., & Grabber, J. H. (1999). Solution-state NMR of lignins. In Advances in lignocellulosics characterization (pp. 55–108). Atlanta: TAPPI Press.

    Google Scholar 

  193. Marita, J. M., Ralph, J., Hatfield, R. D., & Chapple, C. (1999). NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12328–12332.

    Article  Google Scholar 

  194. Ralph, J., Lapierre, C., Marita, J. M., Kim, H., Lu, F., Hatfield, R. D., Ralph, S., Chapple, C., Franke, R., & Hemm, M. R. (2001). Elucidation of new structures in lignins of CAD-and COMT-deficient plants by NMR. Phytochemistry, 57(6), 993–1003.

    Article  Google Scholar 

  195. Pu, Y., Cao, S., & Ragauskas, A. J. (2011). Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy & Environmental Science, 4(9), 3154–3166.

    Article  Google Scholar 

  196. Yuan, T.-Q., Sun, S.-N., Xu, F., & Sun, R.-C. (2011). Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. Journal of Agricultural and Food Chemistry, 59(19), 10604–10614.

    Article  Google Scholar 

  197. Del Río, J. C., Rencoret, J., Prinsen, P., Martínez, A. T., Ralph, J., & Gutiérrez, A. (2012). Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agricultural and Food Chemistry, 60(23), 5922–5935.

    Article  Google Scholar 

  198. Cao, S., Pu, Y., Studer, M., Wyman, C., & Ragauskas, A. J. (2012). Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances, 2(29), 10925–10936.

    Article  Google Scholar 

  199. Shi, J., Gladden, J. M., Sathitsuksanoh, N., Kambam, P., Sandoval, L., Mitra, D., Zhang, S., George, A., Singer, S. W., & Simmons, B. A. (2013). One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 15(9), 2579–2589.

    Article  Google Scholar 

  200. Hou, X. D., Li, N., & Zong, M. H. (2013). Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: Visualization of changes in composition and cell wall structure. Biotechnology and Bioengineering, 110(7), 1895–1902.

    Article  Google Scholar 

  201. Sun, N., Parthasarathi, R., Socha, A. M., Shi, J., Zhang, S., Stavila, V., Sale, K. L., Simmons, B. A., & Singh, S. (2014). Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chemistry, 16(5), 2546–2557.

    Article  Google Scholar 

  202. Trajano, H. L., Engle, N. L., Foston, M., Ragauskas, A. J., Tschaplinski, T. J., & Wyman, C. E. (2013). The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, 6(1), 110.

    Article  Google Scholar 

  203. Ben, H., & Ragauskas, A. J. (2011). NMR characterization of pyrolysis oils from kraft lignin. Energy and Fuels, 25(5), 2322–2332.

    Article  Google Scholar 

  204. Eudes, A., Sathitsuksanoh, N., Baidoo, E. E., George, A., Liang, Y., Yang, F., Singh, S., Keasling, J. D., Simmons, B. A., & Loqué, D. (2015). Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnology Journal, 13(9), 1241–1250.

    Article  Google Scholar 

  205. Mansfield, S. D., Kim, H., Lu, F., & Ralph, J. (2012). Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols, 7(9), 1579.

    Article  Google Scholar 

  206. Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectrometry (Vol. 171). Hoboken: Wiley.

    Book  Google Scholar 

  207. Müller, G., Schöpper, C., Vos, H., Kharazipour, A., & Polle, A. (2008). FTIR-ATR spectroscopic analyses of changes in wood properties during particle-and fibreboard production of hard-and softwood trees. BioResources, 4(1), 49–71.

    Article  Google Scholar 

  208. Sarkanen, K. V., & Ludwig, C. H. (1971). Liguins. Occurrence, formation, structure, and reactions. New York: Wiley-Interscience.

    Google Scholar 

  209. Faix, O. (1986). Investigation of lignin polymer models (DHP’s) by FTIR spectroscopy. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 40(5), 273–280.

    Google Scholar 

  210. Freer, J., Ruiz, J., Peredo, M. A., Rodríguez, J., & Baeza, J. (2003). Estimating the density and pulping yield of E. globulus wood by DRIFT-MIR spectroscopy and principal components regression (PCR). Journal of the Chilean Chemical Society, 48(3), 19–22.

    Article  Google Scholar 

  211. Kim, T. H., & Lee, Y. Y. (2005). Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technology, 96(18), 2007–2013.

    Article  Google Scholar 

  212. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., Vogel, K. P., Simmons, B. A., & Singh, S. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101(13), 4900–4906.

    Article  Google Scholar 

  213. Caballero, J., Conesa, J., Font, R., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159–175.

    Article  Google Scholar 

  214. Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel, 83(11), 1469–1482.

    Article  Google Scholar 

  215. Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin—A review. Cellulose Chemistry and Technology, 44(9), 353.

    Google Scholar 

  216. Fierro, V., Torné-Fernández, V., Montané, D., & Celzard, A. (2005). Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochimica Acta, 433(1), 142–148.

    Article  Google Scholar 

  217. Erä, V., & Mattila, A. (1976). Thermal analysis of thermosetting resins. Journal of Thermal Analysis and Calorimetry, 10(3), 461–469.

    Article  Google Scholar 

  218. Coats, A., & Redfern, J. (1963). Thermogravimetric analysis. A review. Analyst, 88(1053), 906–924.

    Article  Google Scholar 

  219. Wunderlich, B. (2005). Thermal analysis of polymeric materials. New York: Springer.

    Google Scholar 

  220. Ma, R., Xu, Y., & Zhang, X. (2015). Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem, 8(1), 24–51.

    Article  Google Scholar 

  221. Li, C., Zhao, X., Wang, A., Huber, G. W., & Zhang, T. (2015). Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 115(21), 11559–11624.

    Article  Google Scholar 

  222. Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 110(6), 3552–3599.

    Article  Google Scholar 

  223. Luo, H., & Abu-Omar, M. M. (2018). Lignin extraction and catalytic upgrading from genetically modified poplar. Green Chemistry, 20(3), 745–753.

    Article  Google Scholar 

  224. Parsell, T., Yohe, S., Degenstein, J., Jarrell, T., Klein, I., Gencer, E., Hewetson, B., Hurt, M., Im Kim, J., & Choudhari, H. (2015). A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chemistry, 17(3), 1492–1499.

    Article  Google Scholar 

  225. Feghali, E., Carrot, G., Thuéry, P., Genre, C., & Cantat, T. (2015). Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy & Environmental Science, 8(9), 2734–2743.

    Article  Google Scholar 

  226. Parsell, T. H., Owen, B. C., Klein, I., Jarrell, T. M., Marcum, C. L., Haupert, L. J., Amundson, L. M., Kenttämaa, H. I., Ribeiro, F., & Miller, J. T. (2013). Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chemical Science, 4(2), 806–813.

    Article  Google Scholar 

  227. Milczarek, G. (2009). Lignosulfonate-modified electrodes: Electrochemical properties and electrocatalysis of NADH oxidation. Langmuir, 25(17), 10345–10353.

    Article  Google Scholar 

  228. Reichert, E., Wintringer, R., Volmer, D. A., & Hempelmann, R. (2012). Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Physical Chemistry Chemical Physics, 14(15), 5214–5221.

    Article  Google Scholar 

  229. Wen, X., Jia, Y., & Li, J. (2009). Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus. Chemosphere, 75(8), 1003–1007.

    Article  Google Scholar 

  230. Nousiainen, P., Kontro, J., Manner, H., Hatakka, A., & Sipila, J. (2014). Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genetics and Biology, 72, 137–149.

    Article  Google Scholar 

  231. Hirai, H., Sugiura, M., Kawai, S., & Nishida, T. (2005). Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiology Letters, 246(1), 19–24.

    Article  Google Scholar 

  232. Thanh Mai Pham, L., Eom, M. H., & Kim, Y. H. (2014). Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium. Enzyme and Microbial Technology, 61–62, 48–54.

    Article  Google Scholar 

  233. Sitarz, A. K., Mikkelsen, J. D., Hojrup, P., & Meyer, A. S. (2013). Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Enzyme and Microbial Technology, 53(6–7), 378–385.

    Article  Google Scholar 

  234. Shleev, S., Persson, P., Shumakovich, G., Mazhugo, Y., Yaropolov, A., Ruzgas, T., & Gorton, L. (2006). Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme and Microbial Technology, 39(4), 841–847.

    Article  Google Scholar 

  235. Bugg, T. D., & Rahmanpour, R. (2015). Enzymatic conversion of lignin into renewable chemicals. Current Opinion in Chemical Biology, 29, 10–17.

    Article  Google Scholar 

  236. Bugg, T. D., Ahmad, M., Hardiman, E. M., & Singh, R. (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 22(3), 394–400.

    Article  Google Scholar 

  237. Sato, Y., Moriuchi, H., Hishiyama, S., Otsuka, Y., Oshima, K., Kasai, D., Nakamura, M., Ohara, S., Katayama, Y., & Fukuda, M. (2009). Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-β-aryl ether by Sphingobium sp. strain SYK-6. Applied and Environmental Microbiology, 75(16), 5195–5201.

    Article  Google Scholar 

  238. Masai, E., Kamimura, N., Kasai, D., Oguchi, A., Ankai, A., Fukui, S., Takahashi, M., Yashiro, I., Sasaki, H., Harada, T., Nakamura, S., Katano, Y., Narita-Yamada, S., Nakazawa, H., Hara, H., Katayama, Y., Fukuda, M., Yamazaki, S., & Fujita, N. (2012). Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. Journal of Bacteriology, 194(2), 534–535.

    Article  Google Scholar 

  239. Meux, E., Prosper, P., Masai, E., Mulliert, G., Dumarçay, S., Morel, M., Didierjean, C., Gelhaye, E., & Favier, F. (2012). Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase omega class. FEBS Letters, 586(22), 3944–3950.

    Article  Google Scholar 

  240. Pereira, J. H., Heins, R. A., Gall, D. L., McAndrew, R. P., Deng, K., Holland, K. C., Donohue, T. J., Noguera, D. R., Simmons, B. A., & Sale, K. L. (2016). Structural and biochemical characterization of the early and late enzymes in the lignin β-aryl ether cleavage pathway from Sphingobium sp. SYK-6. The Journal of Biological Chemistry, 291(19), 10228–10238.

    Article  Google Scholar 

  241. Mori, K., Kamimura, N., & Masai, E. (2018). Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite. Applied Microbiology and Biotechnology, 102(11), 4807–4816.

    Article  Google Scholar 

  242. McAndrew, R. P., Sathitsuksanoh, N., Mbughuni, M. M., Heins, R. A., Pereira, J. H., George, A., Sale, K. L., Fox, B. G., Simmons, B. A., & Adams, P. D. (2016). Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14324–14329.

    Article  Google Scholar 

  243. Kosa, M., & Ragauskas, A. J. (2012). Bioconversion of lignin model compounds with oleaginous Rhodococci. Applied Microbiology and Biotechnology, 93(2), 891–900.

    Article  Google Scholar 

  244. Wei, Z., Zeng, G., Huang, F., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 17(5), 2784–2789.

    Article  Google Scholar 

  245. Le, R. K., Wells, T., Jr., Das, P., Meng, X., Stoklosa, R. J., Bhalla, A., Hodge, D. B., Yuan, J. S., & Ragauskas, A. J. (2017). Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Advances, 7(7), 4108–4115.

    Article  Google Scholar 

  246. He, Y., Li, X., Xue, X., Swita, M. S., Schmidt, A. J., & Yang, B. (2017). Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. Bioresource Technology, 224, 457–464.

    Article  Google Scholar 

  247. He, Y., Li, X., Ben, H., Xue, X., & Yang, B. (2017). Lipids production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering, 5(3), 2302–2311.

    Article  Google Scholar 

  248. Kohlstedt, M., Starck, S., Barton, N., Stolzenberger, J., Selzer, M., Mehlmann, K., Schneider, R., Pleissner, D., Rinkel, J., & Dickschat, J. S. (2018). From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metabolic Engineering, 47, 279–293.

    Article  Google Scholar 

  249. Granja-Travez, R. S., & Bugg, T. D. (2018). Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation. Archives of Biochemistry and Biophysics, 660, 97–107.

    Article  Google Scholar 

  250. Lin, L., Wang, X., Cao, L., & Xu, M. (2019). Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida. Environmental Microbiology, 21(5), 1847–1863.

    Article  Google Scholar 

  251. Kumar, M., Singhal, A., Verma, P. K., & Thakur, I. S. (2017). Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. ACS Omega, 2(12), 9156–9163.

    Article  Google Scholar 

  252. Li, M., Eskridge, K., Liu, E., & Wilkins, M. (2019). Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett-Burman and central composite designs. Bioresource Technology, 281, 99–106.

    Article  Google Scholar 

  253. Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J., & Mansfield, S. D. (2016). Designer lignins: Harnessing the plasticity of lignification. Current Opinion in Biotechnology, 37, 190–200.

    Article  Google Scholar 

  254. Das, L., Kolar, P., & Sharma-Shivappa, R. (2012). Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels, 3(2), 155–166.

    Article  Google Scholar 

  255. Stärk, K., Taccardi, N., Bösmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. ChemSusChem, 3(6), 719–723.

    Article  Google Scholar 

  256. Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.

    Article  Google Scholar 

  257. Li, X., Ximenes, E., Kim, Y., Slininger, M., Meilan, R., Ladisch, M., & Chapple, C. (2010). Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnology for Biofuels, 3(1), 27.

    Article  Google Scholar 

  258. Fu, C., Mielenz, J. R., Xiao, X., Ge, Y., Hamilton, C. Y., Rodriguez, M., Chen, F., Foston, M., Ragauskas, A., & Bouton, J. (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3803–3808.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the National Science Foundation under Cooperative Agreement No. 1355438 and 1632854 and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch-Multistate project under accession number 1018315 and the Sustainability Challenge Area grant under accession number 1015068 for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, E., Li, W., DeBolt, S., Nokes, S.E., Shi, J. (2021). Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants. In: Liu, ZH., Ragauskas, A. (eds) Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities. Springer, Cham. https://doi.org/10.1007/978-3-030-65584-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65584-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65583-9

  • Online ISBN: 978-3-030-65584-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics