Skip to main content

Natural Selection, Morphoprocess and a Logical Field of Evolutionary Concepts

  • Chapter
  • First Online:
Natural Selection

Part of the book series: Evolutionary Biology – New Perspectives on Its Development ((EBNPD,volume 3))

Abstract

Since the publication of The Origin of Species by Charles Darwin (1859), the mechanism of natural selection has invariably been considered as the main force of transformism. This tradition culminated in the paradigm of the Modern Synthesis. This study invites the reader to critically examine the precept that selectogenesis is the only possible framework for an evolutionary synthesis. Abundant data on the organisation of living systems at all levels, from molecules to ecosystems, indicate that various evolutionary mechanisms are possible, including those in which natural selection is not the main driving force. Time has come to take a broader look and develop a “logical field” of approaches allowing the explanation of evolution in all its diversity.

We will begin with the consideration of the mechanism of natural selection with its two main prerequisites, tychogenesis and selectogenesis. The first prerequisite, tychogenesis, seems a phantom in the light of the modern data on the canalised, limited, species-specific and dynamic range of the hereditary variation. The second prerequisite, selectogenesis, is extremely difficult to test. Further, the model of natural selection has several grave flaws. It underestimates the conditional nature of the importance of hereditary characters in the context of the organism’s interaction with the environment; makes an unfounded extrapolation that the vector of selectogenetic impact is the same in the series of generations; misjudges the possibilities of the organism as a regulatory, self-organising system; and dismisses the possibility of transgenerational transfer of structural, dynamic and epigenetic information. Last but not least, it lacks the mechanism responsible for an increasing complexity of the morphofunctional features of organisms. Thus, overwhelming evidence indicates that the model of natural selection cannot be realistically considered as the major mechanism of transformism. Numerous diverse approaches to the explanation of evolutionary mechanisms have been suggested during the last two centuries. It is their combination rather than the elaboration of the selectogenetic narrative alone that should underlie the new evolutionary thinking. “Evolutionary syntheses” based on selectogenesis are no longer productive. What is needed is a total reset of evolutionary thought or, one may say, the development of the platform Evolution 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agassiz L (1874) Evolution and permanence of type. Atl Mon 33:92–101

    Google Scholar 

  • Allis CD, Jenuwein T, Reinberg D (eds) (2007) Epigenetics. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Artigiani R (1987) Revolution and evolution: applying Prigogine’s dissipative structures model. J Soc Biol Struct 10(3):249–264

    Article  Google Scholar 

  • Asis RA, Kondrashov EV, Koonin EV, Kondrashov FA (2008) Nested genes and increasing organisational complexity of metazoan genomes. Trends Genet 24:475–478

    Article  CAS  Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4(1):289–331

    Article  CAS  PubMed  Google Scholar 

  • Baillie-Johnson P, Van den Brink SC, Balayo T, Turner DA, Arias AM (2015) Generation of aggregates of mouse embryonic stem cells that show symmetry breaking, polarization and emergent collective behavior in vitro. J Vis Exp 105:e53252

    Google Scholar 

  • Baldwin JM (1896) A new factor in evolution. Am Nat 30(354):441–451

    Article  Google Scholar 

  • Barros DB (2008) Natural selection as a mechanism. Philos Sci 75:306–322

    Article  Google Scholar 

  • Bateson W (1894) Materials for the study of variation. Macmillan, London

    Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427(6969):72–74

    Article  CAS  PubMed  Google Scholar 

  • Bedzhov I, Bialecka M, Zielinska A et al (2015) Development of the anterior-posterior axis is a self-organizing process in the absence of maternal cues in the mouse embryo. Cell Res 25(12):1368–1371

    Article  PubMed  PubMed Central  Google Scholar 

  • Beklemishev VN (1970) On general principles of organization of life. In: Beklemishev VN (ed) Biocenological basics of comparative parasitology. Nauka, Moscow, pp 7–25. (in Russian)

    Google Scholar 

  • Beklemishev VN (1994) Methodology of systematics. KMK Scientific Press, Moscow. (in Russian)

    Google Scholar 

  • Berg LS (1977) Works on the theory of evolution. Nauka, Leningrad. (in Russian)

    Google Scholar 

  • Beverley SM, Coderre JA, Santi DV, Schimke RT (1984) Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. Cell 38:431–439

    Article  CAS  PubMed  Google Scholar 

  • Bickford D, Lohman DL, Sodhi NS et al (2006) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155

    Article  PubMed  Google Scholar 

  • Bizzarri M, Masiello MG, Giuliani A, Cucina A (2018) Gravity constraints drive biological systems toward specific organization patterns: commitment of cell specification is constrained by physical cues. BioEssays 40(1):1700138

    Article  Google Scholar 

  • Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13(8):e1002226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boschetti C, Pouchkina-Stantcheva N, Hoffmann P, Tunnacliffe A (2011) Foreign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae. J Exp Biol 214(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Bowler PJ (2017) Alternatives to Darwinism in the early twentieth century. In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 195–217

    Google Scholar 

  • Brakefield PM (2010) Radiations of mycalesine butterflies and opening up their exploration of morphospace. Am Nat 176(S1):S77–S87

    Article  PubMed  Google Scholar 

  • Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341(6146):667–669

    Article  CAS  PubMed  Google Scholar 

  • Capy P, Gasperi G, Biemont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85(2):101–106

    Article  CAS  PubMed  Google Scholar 

  • Carazo-Salas RE, Nurse P (2006) Self-organization of interphase microtubule arrays in fission yeast. Nat Cell Biol 8(10):1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Chandler VL (2010) Paramutation’s properties and puzzles. Science 330(6004):628–629

    Article  CAS  PubMed  Google Scholar 

  • Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18(2):71–86

    Article  CAS  PubMed  Google Scholar 

  • Clark AD, Deffner D, Laland K, Odling-Smee J, Endler J (2020) Niche construction affects the variability and strength of natural selection. Am Nat 195(1):16–30

    Article  PubMed  Google Scholar 

  • Constant A, Ramstead MJ, Veissiere SP, Campbell JO, Friston KJ (2018) A variational approach to niche construction. J R Soc Interface 15(141):20170685

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58(2):455–476

    Article  CAS  PubMed  Google Scholar 

  • Cope ED (1887) The origin of the fittest: essays on evolution. D. Appleton, New York

    Book  Google Scholar 

  • Cordaux R, Michel-Salzat A, Frelon-Raimond M, Rigaud T, Bouchon D (2004) Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications. Heredity 93(1):78–84

    Article  CAS  PubMed  Google Scholar 

  • Cortes S, Glade N, Chartier I, Tabony J (2006) Microtubule self-organisation by reaction-diffusion processes in miniature cell-sized containers and phospholipid vesicles. Biophys Chem 120(3):168–177

    Article  CAS  PubMed  Google Scholar 

  • Cramer F, Prigogine I (1993) Chaos and order: the complex structure of living systems. Weinheim, VCH

    Google Scholar 

  • Cuvier GJLNFD (1817) Le Règne animal distribué d’aprés son organisation pour servir de base a l'histoire naturelle des animaux et d'introduction a l’anatomie comparé, tome 1. Imprimérie de A, Berlin

    Google Scholar 

  • Danchin E, Charmantier A, Champagne FA et al (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  CAS  PubMed  Google Scholar 

  • Darwin CR (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London. 6th edition; with additions and corrections. Eleventh thousand

    Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, New York

    Google Scholar 

  • Dawkins R (1982) The extended phenotype. Oxford University Press, New York

    Google Scholar 

  • Dayel MJ, Alegado RA, Fairclough SR et al (2011) Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357(1):73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Paoli H, van der Heide T, van den Berg A, Silliman BR, Herman PMJ, van de Koppel J (2017) Behavioral self-organization underlies the resilience of a coastal ecosystem. Proc Nat Acad Sci U S A 114:8035–8040

    Article  CAS  Google Scholar 

  • Delisle RG (2017) From Charles Darwin to the evolutionary synthesis: weak and diffused connections only. In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 133–167

    Google Scholar 

  • Delisle RG (2021) Natural selection as a mere auxiliary hypothesis in Charles Darwin’s origin of species. In: Delisle RG (ed) Natural selection - revisiting its explanatory role in evolutionary biology. Springer, Cham, pp 73–104

    Chapter  Google Scholar 

  • Denton MJ, Dearden PK, Sowerby SJ (2003) Physical law not natural selection as the major determinant of biological complexity in the subcellular realm: new support for the pre-Darwinian conception of evolution by natural law. Biosystems 71(3):297–303

    Article  PubMed  Google Scholar 

  • Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    Article  CAS  PubMed  Google Scholar 

  • Duarte S, Nunes L, Borges PA, Fossdal CG, Nobre T (2017) Living inside termites: an overview of symbiotic interactions, with emphasis on flagellate protists. Arquipelago Life Mar Sci 34:21–43

    Google Scholar 

  • Dunbar HE, Wilson AC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5(5):e96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dye BR, Hill DR, Ferguson MAH et al (2015) In vitro generation of human pluripotent stem cell derived lung organoids. elife 4:e05098

    Article  PubMed Central  Google Scholar 

  • Echols H (1981) SOS functions, cancer and inducible evolution. Cell 25(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Eimer GHT (1890) Organic evolution as the result of the inheritance of acquired characters according to the laws of organic growth. Macmillan, London

    Book  Google Scholar 

  • Ellison AM, Niklas KJ (1988) Branching patterns of Salicornia europea (Chenopodiaceae) at different succession stages: a comparison of theoretical and real plants. Am J Bot 75(4):501–512

    Article  Google Scholar 

  • Esposito M (2017) The organismal synthesis: holistic science and developmental evolution in the English-speaking world, 1915–1954. In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 219–241

    Google Scholar 

  • Fedoroff N, Schlappi M, Raina R (1995) Epigenetic regulation of the maize Spm transposon. BioEssays 17(4):291–297

    Article  CAS  PubMed  Google Scholar 

  • Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton

    Book  Google Scholar 

  • Gavrilets S, Gravner J (1997) Percolation on the fitness hypercube and the evolution of reproductive isolation. J Theor Biol 184:51–64

    Google Scholar 

  • Geoffroy Saint-Hilaire E (1818) Philosophie anatomique: des organes respiratoires sous le rapport de la détermination et de l'identité de leurs pièces osseuses. J.-B. Bailliere, Paris

    Book  Google Scholar 

  • Gerhart J, Kirschner M (1997) Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Blackwell science, Malden

    Google Scholar 

  • Gierl A (1990) How maize transposable elements escape negative selection. Trends Genet 6:155–158

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF, Tauber AI (2016) Rethinking individuality: the dialectics of the holobiont. Biol Philos 31(6):839–853

    Article  Google Scholar 

  • Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87(4):325–341

    Article  PubMed  Google Scholar 

  • Gilbert SF, Bosch TCG, Ledon-Rettig C (2015) Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 16:611–622

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev EA, Arkhipova IR (2010) Genome structure of bdelloid rotifers: shaped by asexuality or desiccation? J Hered 101(S1):S85–S93

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Golubovskii MD (2000) The age of genetics: evolution of ideas and concepts. Borei Art, Saint Petersburg. (in Russian)

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. The Belknap Press of Harvard University Press, Cambridge

    Book  Google Scholar 

  • Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3(2):115–151

    Article  Google Scholar 

  • Granovitch AI (2018) Is natural selection still have to be regarded a foundation stone of evolutionary process? J Evol Sci 1:14–30

    Article  Google Scholar 

  • Granovitch AI, Ostrovsky AN, Dobrovolsky AA (2010) Morphoprocess and life cycles of organisms. Zh Obshch Biol 71(6):514–522. (in Russian)

    Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  CAS  PubMed  Google Scholar 

  • Grebelnyi SD (2008) Cloning in nature. A part playing by gene recombination stoppage in fauna and flora formation. Gelicon, Saint Petersburg. (in Russian)

    Google Scholar 

  • Guye P, Ebrahimkhani MR, Kipniss N et al (2016) Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun 7:10243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haacke W (1893) Gestaltung und verebung: eine entwickelungsmechanik der organismen. Weigel Nachfolger, Leipzig

    Google Scholar 

  • Haegeman A, Jones JT, Danchin EGJ (2011) Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol Plant-Microbe Interact 24:879–887

    Article  CAS  PubMed  Google Scholar 

  • Hall B (1990) Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall B (1991) Adaptive evolution that requires multiple spontaneous mutations: mutations involving base substitutions. Proc Natl Acad Sci USA 88:5882–5886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halley JD, Winkler DA (2008) Consistent concepts of self-organization and self-assembly. Complexity 14(2):10–17

    Article  Google Scholar 

  • Hastings PJ, Rosenberg SM, Slack A (2004) Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol 12(9):401–404

    Article  CAS  PubMed  Google Scholar 

  • Hausmann K, Hülsmann N, Radek R (2003) Protistology. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller). Stuttgart, Berlin

    Google Scholar 

  • Havstad JC (2011) Problems for natural selection as a mechanism. Philos Sci 78(3):512–523

    Article  Google Scholar 

  • Hollick JB (2010) Paramutation and development. Annu Rev Cell Dev Biol 26:557–579

    Article  CAS  PubMed  Google Scholar 

  • Hollick JB (2017) Paramutation and related phenomena in diverse species. Nat Rev Genet 18(1):5–23

    Article  CAS  PubMed  Google Scholar 

  • Horenko I, Dittmer E, Lankas F, Maddocks J, Metzner P, Schütte C (2008) Macroscopic dynamics of complex metastable systems: theory, algorithms, and application to B-DNA. SIAM J Appl Dyn Syst 7(2):532–560

    Article  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of Bacteria and Archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Husnik F, Nikoh N, Koga R et al (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153(7):1567–1578

    Article  CAS  PubMed  Google Scholar 

  • Hyatt A (1897) Cycle in the life of the individual (ontogeny) and in the evolution of its own group (phylogeny). Science 5(109):161–171

    Article  CAS  PubMed  Google Scholar 

  • Inagaki N, Katsuno H (2017) Actin waves: origin of cell polarization and migration? Trends Cell Biol 27:515–526

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E (2013) Epigenetic inheritance and plasticity: the responsive germline. Prog Biophys Mol Biol 111(2–3):99–107

    Article  PubMed  Google Scholar 

  • Jablonka E (2017) The evolutionary implications of epigenetic inheritance. Interface Focus 7(5):20160135

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonka E, Lamb MJ (2010) Transgenerational epigenetic inheritance. In: Pigliucci M, Muller GB (eds) Evolution. The extended synthesis. MIT Press, Cambridge, pp 137–174

    Chapter  Google Scholar 

  • Jablonka E, Lamb MJ (2014) Evolution in four dimensions, revised edition: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT press, Cambridge

    Book  Google Scholar 

  • Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci U S A 101(9):2864–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jangam D, Feschotte C, Betran E (2017) Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet 33(11):817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BR, Lam SK (2010) Self-organization, natural selection, and evolution: cellular hardware and genetic software. BioOne 60(11):879–885

    Google Scholar 

  • Karen GH, Hawley RS (2007) Epigenetic regulation of chromosome inheritance. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbour Laboratory Press, New York, pp 263–286

    Google Scholar 

  • Karsenti E (2008) Self-organization in cell biology: a brief history. Nat Rev Mol Cell Biol 9(3):255–262

    Article  CAS  PubMed  Google Scholar 

  • Kellogg VL (1907) Darwinism today. G. Bell & Sons, London

    Google Scholar 

  • Khesin RB (1984) The inconstancy of genome. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  • Koehler KR, Nie J, Longworth-Mills E et al (2017) Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol 35:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (2010) Taming of the shrewd: novel eukaryotic genes from RNA viruses. BMC Biol 8(1):2. https://doi.org/10.1186/1741-7007-8-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (2011) Logic of chance, the nature and origin of biological evolution. FT Press Science, Upper Saddle River, NJ

    Google Scholar 

  • Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4(1):42. https://doi.org/10.1186/1745-6150-4-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Wolf YI (2010) Constraints and plasticity in genome and molecular-phenome evolution. Nat Rev Genet 11:487–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Kull K (2014) Adaptive evolution without natural selection. Biol J Linn Soc 112:287–294

    Article  Google Scholar 

  • Kurakin A (2005) Self-organization versus Watchmaker: stochastic dynamics of cellular organization. Biol Chem 386:247–254

    Article  CAS  PubMed  Google Scholar 

  • Kurakin A (2007) Self-organization versus Watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry. J Mol Recognit 20:205–214

    Article  CAS  PubMed  Google Scholar 

  • Laland K, Uller T, Feldman M et al (2014) Does evolutionary theory need a rethink? Nature 514(7521):161–164

    Article  CAS  PubMed  Google Scholar 

  • Laland K, Matthews B, Feldman MW (2016) An introduction to niche construction theory. Evol Ecol 30(2):191–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Laland K, Odling-Smee J, Endler J (2017) Niche construction, sources of selection and trait coevolution. Interface Focus 7(5):20160147

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamarck JB (1809) Philosophy of zoology. In: Lamarck JB (1955) Selected works.1. Academy of Science Print, Moscow

    Google Scholar 

  • Landman OE (1991) The inheritance of acquired characteristics. Annu Rev Genet 25:1–20

    Article  CAS  PubMed  Google Scholar 

  • Laos R, Thomson JM, Benner SA (2014) DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Front Microbiol 5:565. https://doi.org/10.3389/fmicb.2014.00565

    Article  PubMed  PubMed Central  Google Scholar 

  • Levit GS, Hossfeld U (2021) When Panpsychism met Monism: why a philosopher Theodor Ziehen (1862–1950) became a crucial figure for the evolutionary biologist Bernhard Rensch? In: Delisle RG (ed) Natural selection - revisiting its explanatory role in evolutionary biology. Springer, Cham, pp 231–260

    Chapter  Google Scholar 

  • Levit GS, Scholz J (2002) The biosphere as a morphoprocess and a new look at the concepts of organism and individuality. Senckenb Lethaea 82:367–372

    Article  Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Liao B-K, Oates AC (2017) Delta-Notch signalling in segmentation. Arthropod Struct Dev 46:429–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Loison L, Herring E (2017) Lamarckian research programs in French biology (1900–1970). In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 243–269

    Google Scholar 

  • Loose M, Fischer-Friedrich M, Ries J, Kruse K, Schwille P (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792

    Article  CAS  PubMed  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M (2010) Evolution of the mutation rate. Trends Genet 26(8):345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyubishchev AA (1982) Problems of form, systematics and evolution of organisms. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Margulis L, Fester R (eds) (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge

    Google Scholar 

  • Markov A (2010) The birth of complexity. Astrel Publisher; Korpus Publisher, Moscow. (in Russian)

    Google Scholar 

  • McCauley HA, Wells JM (2017) Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144(6):958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 26(4676):792–801

    Article  Google Scholar 

  • McFall-Ngai M (2008) Are biologists in “future shock”? Symbiosis integrates biology across domains. Nat Rev Microbiol 6(10):789–792

    Article  CAS  PubMed  Google Scholar 

  • McGhee GR (1980) Shell form in the biconvex articulate Brachiopoda: a geometric analysis. Paleobiology 6(1):57–76

    Article  Google Scholar 

  • McGhee GR (2007) The geometry of evolution. adaptive landscapes and theoretical morphospaces. Cambridge University Press, Cambridge

    Google Scholar 

  • McShea DW (2001) The hierarchical structure of organisms: a scale and documentation of a trend in the maximum. Paleobiology 27(2):405–423

    Article  Google Scholar 

  • Meyen SV (2007) The morphology of Plants in the nomothetic aspect. In: Ignatiev IA (ed) S.V. Meyen: paleobotanist, evolutionist, thinker. Geos, Moscow, pp 162–222. (in Russian)

    Google Scholar 

  • Millstein RL (2013) Natural selection and causal productivity. In: Chao H-K, Chen S-T, Millstein RL (eds) Mechanism and causality in biology and economics, history, philosophy and theory of life science. Springer Science + Business Media, Dordrecht, pp 147–163

    Google Scholar 

  • Misteli T (2001) The concept of self-organization in cellular architecture. J Cell Biol 155(2):181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  CAS  PubMed  Google Scholar 

  • Mitchison TJ (1992) Self-organization of polymer-motor systems in the cytoskeleton. Philos Trans R Soc Lond B 336(1276):99–106

    Article  CAS  Google Scholar 

  • Moran NA, Yun Y (2015) Experimental replacement of an obligate insect symbiont. Proc Natl Acad Sci U S A 112(7):2093–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nägeli C (1884) Mechanisch-physiologische theorie der abstammungslehre. R. Oldenbourg, München, Leipzig

    Book  Google Scholar 

  • Nazarov VI (2005) Evolution is not according to Darwin: a change in the evolutionary model. KomKniga, Moscow. (in Russian)

    Google Scholar 

  • Nedelec F, Surrey T, Karsenti E (2003) Self-organisation and forces in the microtubule cytoskeleton. Curr Opin Cell Biol 15(1):118–124

    Article  CAS  PubMed  Google Scholar 

  • Newman SA (2010) Dynamical patterning modules. In: Pigliucci M, Muller GB (eds) Evolution. The extended synthesis. MIT Press, Cambridge, pp 281–306

    Chapter  Google Scholar 

  • Ochoa C (2021) G. G. Simpson, an Orthogeneticist?: Simpson’s parallelism? In: Delisle RG (ed) Natural selection - revisiting its explanatory role in evolutionary biology. Springer, Cham, pp 261–290

    Chapter  Google Scholar 

  • Odling-Smee JF (2010) Niche inheritance. In: Pigliucci M, Muller GB (eds) Evolution – the extended synthesis. MIT press, Cambridge, pp 175–207

    Chapter  Google Scholar 

  • Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325(5943):992–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onimaru K, Marcon L, Musy M, Tanaka M, Sharpe J (2016) The fin-to-limb transition as the re-organization of a Turing pattern. Nat Commun 7:11582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn HF (1929) The titanotheres of ancient Wyoming, Dakota, and Nebraska. Dept. of the Interior, U.S. Geological Survey, Washington

    Google Scholar 

  • Ozone C, Suga H, Eiraku M et al (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:10351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paez-Espino D, Morovic W, Sun CL et al (2013) Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun 4:1430

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1983) Membrane biogenesis: an overview. Methods Enzymol 96:XXIX–LV

    Article  CAS  PubMed  Google Scholar 

  • Papanikou E, Glick BS (2009) The yeast Golgi apparatus: insights and mysteries. FEBS Lett 583(23):3746–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigliucci M (2007) Do we need an extended evolutionary synthesis? Evolution 61(12):2743–2749

    Article  PubMed  Google Scholar 

  • Pigliucci M (2010) Phenotypic plasticity. In: Pigliucci M, Muller GB (eds) Evolution. The extended synthesis. MIT Press, Cambridge, pp 281–306

    Chapter  Google Scholar 

  • Pocheville A, Danchin E (2017) Genetic assimilation and the paradox of blind variation. In: Walsh DM, Huneman P (eds) Challenging the modern synthesis. Oxford University Press, Oxford, pp 111–136

    Google Scholar 

  • Ponder RG, Fonville NC, Rosenberg SM (2005) A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19(6):791–804

    Article  CAS  PubMed  Google Scholar 

  • Ponomarenko AG (2005) Paleontological data on the origin of arthropods. In: Vorobyova EI, Striganova BR (eds) Evolutionary factors of animal diversity formation. KMK Scientific Press, Moscow, pp 146–155. (in Russian)

    Google Scholar 

  • Ponomarenko AG (2008) Early stages of the arthropods’ evolution. In: Mamkaev YV (ed) Evolutional morphology of animals. SPbSU Publishing, Saint Petersburg, pp 43–57. (in Russian)

    Google Scholar 

  • Popov I (2018) Orthogenesis versus Darwinism. Springer, Cham

    Book  Google Scholar 

  • Popper K (2009) Darwinism as a metaphysical research programme. In: Ruse M (ed) Philosophy after Darwin: classic and contemporary readings. Princeton University Press, Princeton, pp 167–174

    Google Scholar 

  • Prigogine I (1978) Time, structure, and fluctuations. Science 201(4358):777–785

    Article  CAS  PubMed  Google Scholar 

  • Prigogine I, Stengers I (2018) Order out of chaos: man's new dialogue with nature. Verso Books, London

    Google Scholar 

  • Radman M (1974) Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In: Prakash L, Miller FSM, Lawrence C, Tabor HW (eds) Molecular and environmental aspects of mutagenesis. Charles C. Thomas Publisher, Springfield, pp 128–142

    Google Scholar 

  • Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345(6196):566–570

    Article  CAS  PubMed  Google Scholar 

  • Raup D (1966) Geometric analysis of shell coiling: general problems. J Paleontol 40:1178–1190

    Google Scholar 

  • Raup D (1967) Geometric analysis of shell coiling: coiling in ammonoids. J Paleontol 41:43–65

    Google Scholar 

  • Raup D, David M, Stanley SM (1978) Principles of paleontology. Macmillan, London

    Google Scholar 

  • Rio DC (1990) Molecular mechanisms regulating Drosophila P-element transposition. Annu Rev Genet 24:5430–5478

    Article  Google Scholar 

  • Rissman EF, Adli M (2014) Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology 155:2770–2780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. mBio 7(2):e01395–e01315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozanov AY (1973) Morphological evolution of Archeocyathids and questions of the definition of Lower Cambrian stages. Nauka, Moskow. (in Russian)

    Google Scholar 

  • Rozhnov SV (2005) Morphological patterns of formation and evolution of higher taxa echinoderms. In: Vorobieva EI, Striganova BR (eds) Evolutionary factors of wildlife diversity. KMK Scientific Press, Мoscow, pp 156–170. (in Russian)

    Google Scholar 

  • Sakaguchi H, Kadoshima T, Soen M et al (2015) Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 6:8896

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Canizares C, Jorrin B, Poole PS, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196

    Article  CAS  PubMed  Google Scholar 

  • Sarton G (1953) A history of science: ancient science through the golden age of Greece. Harvard University Press, Cambridge

    Google Scholar 

  • Sazer S, Schiessel H (2018) The biology and polymer physics underlying large-scale chromosome organization. Traffic 19(2):87–104

    Google Scholar 

  • Schindewolf OH (1993) Basic questions in paleontology: geologic time, organic evolution, and biological systematics. University of Chicago Press, Chicago

    Google Scholar 

  • Schmalhausen II (1982) The organism as a whole in its individual and historical development. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Serzhantov VF (1972) Introduction to the methodology of modern biology. Nauka, Leningrad. (in Russian)

    Google Scholar 

  • Shapiro JA (2009) Revisiting the central dogma in the 21st century. Ann N Y Acad Sci 1178(1):6–28

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA (2016) The basic concept of the read-write genome: mini-review on cell-mediated DNA modification. Biosystems 140:35–37

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA, Sternberg R (2005) Why repetitive DNA is essential to genome function. Biol Rev Camb Philos Soc 80:227–250

    Article  PubMed  Google Scholar 

  • Sharon G, Segal D, Ringo JM et al (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107(46):20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharov AA, Igamberdiev AU (2014) Inferring directions of evolution from patterns of variation: the legacy of Sergei Meyen. Biosystems 123:67–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheth R, Marcon L, Bastida MF et al (2012) Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338(6113):1476–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic M, Brivanlou AH (2017) Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144(6):976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skippington E, Ragan MA (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 35:707–735

    Article  CAS  PubMed  Google Scholar 

  • Sorek M, Schnytzer Y, Ben-Asher HW et al (2018) Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome 6(1):83

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer H (1893) The inadequacy of “natural selection”. Contemp Theatr Rev 63:152–166

    Google Scholar 

  • Stahl FW (1988) A unicorn in the garden. Nature 335(6186):112–113

    Article  CAS  PubMed  Google Scholar 

  • Suter CM, Martin DIK (2010) Paramutation: the tip of an epigenetic iceberg? Trends Genet 26(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Svetina S (2009) Vesicle budding and the origin of cellular life. ChemPhysChem 10(16):2769–2776

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14(1):53–67

    Article  CAS  PubMed  Google Scholar 

  • Tai V, Carpenter KJ, Weber PK et al (2016) Genome evolution and nitrogen fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches. Appl Environ Microbiol 82(15):4682–4695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasato M, Er PX, Chiu HS et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568

    Article  CAS  PubMed  Google Scholar 

  • Tatarinov LP (1976) Morphological evolution of Theriodonts and general questions of phylogenetics. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Taylor MJ, Bandi C, Hoerauf A (2005) Wolbachia. Bacterial endosymbionts of filarial nematodes. Adv Parasitol 60:245–284

    Article  PubMed  Google Scholar 

  • Thomas RDK, Reif WE (1993) The skeleton space: a finite set of organic designs. Evolution 47:341–360

    Article  CAS  PubMed  Google Scholar 

  • Thompson D (1961) On growth and form (abridged edition edited by Bonner JT). Cambridge University Press, Cambridge

    Google Scholar 

  • Tikhodeyev ON (2018) The mechanisms of epigenetic inheritance: how diverse are they? Biol Rev 93:1987–2005

    Article  PubMed  Google Scholar 

  • Tsiairis CD, Aulehla A (2016) Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164(4):656–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchida T, Koga R, Horikawa M et al (2010) Symbiotic bacterium modifies aphid body color. Science 330(6007):1102–1104

    Article  CAS  PubMed  Google Scholar 

  • Turing AM (1952) The chemical theory of morphogenesis. Philos T Roy Soc B 237(641):37–72

    Google Scholar 

  • Turner DA, Baillie-Johnson P, Martinez Arias A (2016) Organoids and the genetically encoded self-assembly of embryonic stem cells. BioEssays 38(2):181–191

    Article  PubMed  Google Scholar 

  • Ubukata T (2005) Theoretical morphology of bivalve shell sculptures. Paleobiology 31:643–655

    Article  Google Scholar 

  • Van de Water JAJM, Allemand D, Ferrier-Pages C (2018) Host-microbe interactions in octocoral holobionts – recent advances and perspectives. Microbiome 6(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  • Van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis A-K, Nowotschin S, Turner DA, Martinez Arias A (2014) Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141(22):4231–4242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vavilov NI (1987) Theoretical basis of selection. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Vorontsov NN (2004) The development of evolution idea in biology. KMK Scientific Press, Moscow. (in Russian)

    Google Scholar 

  • Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  • Waidele L, Korb J, Kuenzel S, Dedeine F, Staubach F (2016) Bacterial but not protist gut microbiota align with ecological specialization in a set of lower termite species. bioRxiv. https://doi.org/10.1101/083683

  • Wallace AR (1889) Darwinism: an exposition of the theory of natural selection, with some of the applications. Macmillan and Company, London

    Google Scholar 

  • Walton KD, Freddo AM, Wang S, Gumucio DL (2016) Generation of intestinal surface: an absorbing tale. Development 143(13):2261–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren G, Wickner W (1996) Organelle inheritance. Cell 84(3):395–400

    Article  CAS  PubMed  Google Scholar 

  • Weismann A (1883) Ueber die vererbung. Fischer, Jena

    Google Scholar 

  • Werner S, Vu HT-K, Rink JC (2017) Self-organization in development, regeneration and organoids. Curr Opin Cell Biol 44:102–109

    Article  CAS  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A 102(1):6543–6549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the 6th international congress of genetics, vol 1, pp 356–366

    Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am extremely grateful to Natalia Lentsman for the neat and thoughtful translation of the manuscript. This study was supported by a grant from the Russian Science Foundation (RSF) no. 19-14-00321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Granovitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Granovitch, A.I. (2021). Natural Selection, Morphoprocess and a Logical Field of Evolutionary Concepts. In: Delisle, R.G. (eds) Natural Selection. Evolutionary Biology – New Perspectives on Its Development, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-65536-5_13

Download citation

Publish with us

Policies and ethics