Skip to main content

PET Chemistry: Radiopharmaceuticals

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine

Abstract

PET radiopharmaceuticals are essential for PET Imaging. Their novelty and innovation, but also their availability and route of production, have a direct and great impact on the field of PET imaging. Several PET radiopharmaceuticals have found their way into clinical routine, but still many new approaches and compounds are part of ongoing research and development.

In this chapter, we give an overview of the most important and clinically established PET radiopharmaceuticals and their production routes. In addition, we discuss the importance of GMP compliant production, automated synthesis modules, quality control aspects and their use in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer GJ. Current availability of radiopharmaceuticals in Germany. Nuklearmedizin. 2018;41:386–92.

    Google Scholar 

  2. Cardinale J, Schäfer M, Benešová M, Bauder-Wüst U, Leotta K, Eder M, Neels OC, Haberkorn U, Giesel FL, Kopka K. Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J Nucl Med. 2017;58:425–31.

    Article  CAS  PubMed  Google Scholar 

  3. Volker JF, Hodge HC, Wilson HJ, Van Voorhis SN. The adsorpton of fluorides by enamel, dentin, bone and hydroxyapatite as shown by the radioactive isotope. J Biol Chem. 1940;134:543–8.

    Article  CAS  Google Scholar 

  4. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.

    CAS  PubMed  Google Scholar 

  5. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-Fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.

    Article  PubMed  Google Scholar 

  6. Kumar R, Alavi A. Clinical applications of Fluorodeoxyglucose—positron emisson tomography in the management of malignant melanoma. Curr Opin Oncol. 2005;17:154–9.

    Article  PubMed  Google Scholar 

  7. Coleman RE. FDG imaging. Nucl Med Biol. 2000;27:689–90.

    Article  CAS  PubMed  Google Scholar 

  8. Reske SN, Kotzerke J. FDG-PET for clinical use. Eur J Nucl Med. 2001;28:1707–23.

    Article  CAS  PubMed  Google Scholar 

  9. Gambhir SS, Czerni J, Schwimmer J, Silverman DHS, Coleman RE, Phelps ME. A tabulated summary of FDG PET literature. J Nucl Med. 2001;42:1S–93S.

    CAS  PubMed  Google Scholar 

  10. Adam MJ. Radiohalogenated carbohydrates for use in PET and SPECT. J Label Compd Radiopharm. 2002;45:167–80.

    Article  CAS  Google Scholar 

  11. Ido T, Wan C-N, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Label Compd Radiopharm. 1978;14:175–82.

    Article  CAS  Google Scholar 

  12. Hamacher K, Coenen HH, Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–8.

    CAS  PubMed  Google Scholar 

  13. Füchtner FF, Steinbach J, Mäding P, Johannsen B. Basic hydrolysis of 2-[18F]fluoro-1,3,4,6-tetra-O-acetyl-D-glucose in the preparation of 2-[18F]fluoro-2-deoxy-D-glucose. Appl Radiat Isot. 1996;47:61–6.

    Article  Google Scholar 

  14. Meyer G-J, Matzke KH, Hamacher K, Füchtner FF, Steinbach P, Notohamiprodjo G, Zijlstra S. Stability of 2-[18]f9fluoro-deoxy-D-glucose towards epimerisation under alkaline conditions. Appl Radiat Isot. 1999;51:37–41.

    Article  CAS  Google Scholar 

  15. Beuthien-Baumann B, Hamacher K, Oberdorfer F, Steinbach J. Preparation of fluorine-18 labelled sugars and derivatives and their application as tracer for positron-emission-tomography. Carbohydr Res. 2000;327:107–18.

    Article  CAS  PubMed  Google Scholar 

  16. Lutje S, Heskamp S, Cornelissen AS, Poeppel TD, van den Broek SA, Rosenbaum-Krumme S, Bockisch A, Gotthardt M, Rijpkema M, Boerman OC. PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics. 2015;5:1388–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schmuck S, Nordlohne S, von Klot CA, Henkenberens C, Sohns JM, Christiansen H, Wester HJ, Ross TL, Bengel FM, Derlin T. Comparison of standard and delayed imaging to improve the detection rate of [68Ga]PSMA I&T PET/CT in patients with biochemical recurrence or prostate-specific antigen persistence after primary therapy for prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:960–8.

    Article  CAS  PubMed  Google Scholar 

  18. Werner RA, Derlin T, Lapa C, Sheikbahaei S, Higuchi T, Giesel FL, Behr S, Drzezga A, Kimura H, Buck AK, Bengel FM, Pomper MG, Gorin MA, Rowe SP. 18F-labeled, PSMA-targeted radiotracers: leveraging the advantages of Radiofluorination for prostate cancer molecular imaging. Theranostics. 2020;10:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, Prideaux A, Fox JJ, Sgouros G, Kozikowski AP, Pomper MG. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC. Pomper MG (2011) 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 17:7645–53.

    Google Scholar 

  21. Cardinale J, Martin R, Remde Y, Schäfer M, Hienzsch A, Hübner S, Zerges AM, Marx H, Hesse R, Weber K, Smits R, Hoepping A, Müller M, Neels OC, Kopka K. Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals. 2017;10:E77.

    Article  PubMed  CAS  Google Scholar 

  22. Malik N, Zlatopolskiy B, Machulla HJ, Reske SN, Solbach C. One pot radiofluorination of a new potential PSMA ligand [Al18F]NOTA-DUPA-pep. J Label Compd Radiopharm. 2012;55:320–5.

    Article  CAS  Google Scholar 

  23. Graham K, Lesche R, Gromov AV, Böhnke N, Schäfer M, Hassfeld J, Dinkelborg L, Kettschau G. Radiofluorinated derivatives of 2-(phosphonomethyl)pentanedioic acid as inhibitors of prostate specific membrane antigen (PSMA) for the imaging of prostate cancer. J Med Chem. 2012;55:9510–20.

    Article  CAS  PubMed  Google Scholar 

  24. Zlatopolskiy BD, Endepols H, Krapf P, Guliyev M, Urusova EA, Richarz R, Hohberg M, Dietlein M, Drzezga A, Neumaier B. Discovery of 18F-JK-PSMA-7, a PET Probe for the detection of small PSMA-positive lesions. J Nucl Med. 2019;60:817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eiber M, Krönke M, Wurzer A, Ulbrich L, Jooß L, Maurer T, Horn T, Schiller K, Langbein T, Buschner G, Wester HJ, Weber WA. 18F-rhPSMA-7 positron emission tomography for the detection of biochemical recurrence of prostate cancer following radical prostatectomy. J Nucl Med. 2019;61(5):696–701.

    Article  PubMed  CAS  Google Scholar 

  26. Namavari M, Bishop A, Satyamurthy N, Bida G, Barrio JR. Regioselective Radiofluorodestannylation with [18F ]F2, and [18F]CH3COOF: a high yield synthesis of 6-[18F]Fluoro-L-dopa. Appl Radiat Isot. 1992;43:989–96.

    Article  CAS  Google Scholar 

  27. De Vries EFJ, Luurtsema G, Brüssermann M, Elsinga PH, Vaalburg W. Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fuoro-L-DOPA. Appl Radiat Isot. 1999;51:389–94.

    Article  Google Scholar 

  28. Luxen A, Perlmutter M, Bida GT, Van Moffaert G, Cook JS, Satyamurthy N, Phelps ME, Barrio JR. Remote, semiautomated production of 6-[18F]Fluoro-L-dopa for human studies with PET. Appl Radiat Isot. 1990;41:275–81.

    Article  CAS  Google Scholar 

  29. Szajek LP, Channing MA, Eckelman WC. Automated synthesis 6-[18F]fluoro-L-DOPA using polystyrene supports with 6-mercuric of modified bound DOPA precursors. Appl Radiat Isot. 1998;49:795–804.

    Article  CAS  Google Scholar 

  30. Lemaire C, Gillet S, guillouet S, Plenevaux A, Aerts J, Luxen A. Highly enantioselective synthesis of no-carrier-added 6-[18F]Fluoro-L-dopa by chiral phase-transfer alkylation. Eur J Org Chem. 2004;2004:2899–904.

    Article  CAS  Google Scholar 

  31. Wagner FM, Ermert J, Coenen HH. Three-step, “one-pot” radiosynthesis of 6-fluoro-3,4-dihydroxy-L-phenylalanine by isotopic exchange. J Nucl Med. 2009;50:1724–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mossine AV, Tanzey SS, Brooks AF, Makaravage KJ, Ichiishi N, Miller JM, Henderson BD, Skaddan MB, Sanford MS, Scott PJH. One-pot synthesis of high molar activity 6-[18F]fluoro-l-DOPA by cu-mediated fluorination of a BPin precursor. Org Biomol Chem. 2019;17:8701–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. 1983;305:137–8.

    Article  CAS  PubMed  Google Scholar 

  34. Volkow ND, Fowler JS, Gatley SJ, Logan J, Wang G-J, Ding Y-S, Dewey S. PET evaluation of the dopamine system of the human brain. J Nucl Med. 1996;37:1242–56.

    CAS  PubMed  Google Scholar 

  35. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, De La Fuente-Fernandez R, Calne DB, Stoessl AJ. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol. 2000;47:493–503.

    Article  CAS  PubMed  Google Scholar 

  36. Becherer A, Szabó M, Karanikas G, Wunderbaldinger P, Angelberger P, Raderer M, Kurtaran A, Dudczak R, Kletter K. Imaging of advanced neuroendocrine tumors with 18F-FDOPA PET. J Nucl Med. 2004;45:1161–7.

    CAS  PubMed  Google Scholar 

  37. Lu MY, Liu YL, Chang HH, Jou ST, Yang YL. Characterization of neuroblastic tumors using 18F-FDOPA PET. J Nucl Med. 2013;54:42–9.

    Article  CAS  PubMed  Google Scholar 

  38. Langen K-J, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, Coenen HH, Pauleit D. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33:287–94.

    Article  CAS  PubMed  Google Scholar 

  39. Kaim AH, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalk J, von Schulthess GK, Buck A. 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging. 2002;29:648–54.

    Article  CAS  PubMed  Google Scholar 

  40. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller H-W, Zilles K, Coenen HH, Langen K-J. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128:678–87.

    Article  PubMed  Google Scholar 

  41. Wester H-J, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G. Synthesis and Radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med. 1999;40:205–12.

    CAS  PubMed  Google Scholar 

  42. Hamacher K, Coenen HH. Effcient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-L-tyrosine. Appl Radiat Isot. 2002;57:205–12.

    Article  Google Scholar 

  43. Krasikova RN, Kuznetsova OF, Fedorova OS, Maleev VI, Saveleva TF, Belokon YN. No carrier added synthesis of O-(2′-[18F]fluoroethyl)-l-tyrosine via a novel type of chiral enantiomerically pure precursor, NiII complex of a (S)-tyrosine Schiff base. Bioorg Med Chem. 2008;16:4994–5003.

    Article  CAS  PubMed  Google Scholar 

  44. Kong XB, Zhu QY, Vidal PM, Watanabe KA, Polsky B, Armstrong D, Ostrander M, Lang SA Jr, Muchmore E, Chou TC. Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother. 1992;36:808–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shields AF, Grierson JR, Dohmen BM, Machulla H-J, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4:1334–6.

    Article  CAS  PubMed  Google Scholar 

  46. Mier W, Haberkorn U, Eisenhut M. [F-18]FLT; portrait of a proliferation marker. Eur J Nucl Med Mol Imaging. 2002;29:165–9.

    Article  CAS  PubMed  Google Scholar 

  47. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, Mattfeldt T, Neumaier B, Reske SN, Hetzel M. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44:1426–31.

    CAS  PubMed  Google Scholar 

  48. Francis DL, Visvikis D, Costa DC, Arulampalam THA, Townsend C, Luthra SK, Taylor I, Ell PJ. Potential impact of [18F]3'-deoxy-3'-fluorothymidine versus [18F]fluoro-2-deoxy-d-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging. 2003;30:988–94.

    Article  CAS  PubMed  Google Scholar 

  49. Van Waarde A, Cobben DCP, Suurmeijer AJH, Maas B, Vaalburg W, de Vries EFJ, Jager PL, Hoekstra HJ, Elsinga PH. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med. 2004;45:695–700.

    PubMed  Google Scholar 

  50. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, Mischel P, Czernin J, Phelps ME, Silverman DHS. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.

    CAS  PubMed  Google Scholar 

  51. Shields AF. Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol. 2006;8:141–50.

    Article  PubMed  Google Scholar 

  52. Yamamoto Y, Nishiyama Y, Kimura N, Ishikawa S, Okuda M, Bandoh S, Kanaji N, Asakura M, Ohkawa M. Comparison of 18F-FLT PET and 18F-FDG PET for preoperative staging in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2008;35:236–45.

    Article  CAS  PubMed  Google Scholar 

  53. Wilson IK, Chatterjee S, Wolf W. Synthesis of 3′-fluoro-3′-deoxythymidine and studies of its 18F-radiolabeling, as a tracer for the noninvasive monitoring of the biodistribution of drugs against AIDS. J Fluor Chem. 1991;55:283–9.

    Article  CAS  Google Scholar 

  54. Kim DW, Ahn D-S, Oh Y-H, Lee S, Kil HS, Oh SJ, Lee SJ, Kim JS, Ryu JS, Moon DH, Chi SY. A new class of SN2 reactions catalyzed by Protic solvents: facile fluorination for isotopic labeling of diagnostic molecules. J Am Chem Soc. 2006;128:16394–7.

    Article  CAS  PubMed  Google Scholar 

  55. Martin SJ, Eisenbarth JA, Wagner-Utermann U, Mier W, Henze M, Pritzkow H, Haberkorn U, Eisenhut M. A new precursor for the radiosynthesis of [18F]FLT. Nucl Med Biol. 2002;29:263–73.

    Article  CAS  PubMed  Google Scholar 

  56. Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine: [18F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol. 2000;27:143–56.

    Article  CAS  PubMed  Google Scholar 

  57. Machulla H-J, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. Simplified labeling approach for synthesizing 3′-Deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem. 2000;243:843–6.

    Article  CAS  Google Scholar 

  58. Yun M, Oh SJ, Ha H-J, Ryu JS, Moon DH. High radiochemical yield synthesis of 3′-deoxy-3′-[18F]fluorothymidine using (5′-O-dimethoxytrityl-2′-deoxy-3′-O-nosyl-β-D-threo pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol. 2003;30:151–7.

    Article  CAS  PubMed  Google Scholar 

  59. Windhorst AD, Klein PJ, Eisenbarth J, Oeser T, Kruijer PS, Eisenhut M. 3’-Sulfonylesters of 2,5’-anhydro-1-(2-deoxy-β-D-threo-pentofuranosyl)thymine as precursors for the synthesis of [18F]FLT: syntheses and radiofluorination trials. Nucl Med Biol. 2008;35:413–23.

    Article  CAS  PubMed  Google Scholar 

  60. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA. Breast cancer: PET imaging of estrogen receptors. Radiology. 1988;169:45–8.

    Article  CAS  PubMed  Google Scholar 

  61. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, Detert DD, Cutler PD, Katzenellenbogen JA, Welch MJ. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med. 1995;36:1766–74.

    CAS  PubMed  Google Scholar 

  62. Sundararajan L, Linden HM, Link JM, Krohn KA, Mankoff DA. 18F-Fluoroestradiol. Semin Nucl Med. 2007;37:470–6.

    Article  PubMed  Google Scholar 

  63. Palmer AJ, Widdowson DA. The preparation of 18F-labelled 4-Fluoroestrone and 4-Fluoroestradiol. J Label Compd Radiopharm. 1979;16:14–6.

    CAS  Google Scholar 

  64. Eakins MN, Palmer AJ, Waters SL. Studies in the rat with 18F-4-Fluoro-oestradiol and 18F-4-Fluoro-oestrone as potential prostate scanning agents: comparison with 125I-2-Iodo-oestradiol and 125I-2,4-Di-iodo-oestradiol. Int J Appl Radiat Isot. 1979;30:695–700.

    Article  CAS  PubMed  Google Scholar 

  65. Heiman DF, Senderoff SG, Katzenellenbogen JA, Neeley RJ. Estrogen-receptor based imaging agents. 1. Synthesis and receptor-binding affinity of some aromatic and D-ring halogenated estrogens. J Nucl Med. 1980;23:994–1002.

    CAS  Google Scholar 

  66. Kiesewetter DO, Katzenellenbogen JA, Kilbourn MR, Welch MJ. Synthesis of 16-Fluoroestrogens by unusually facile fluoride ion displacement reactions: prospects for the preparation of fluorine-18 labeled estrogens. J Org Chem. 1984;49:4900–5.

    Article  CAS  Google Scholar 

  67. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med. 1984;25:1212–21.

    CAS  PubMed  Google Scholar 

  68. Van Brocklin HF, Carlson KE, Katzenellenbogen JA, Welch MJ. 16β-([18F]Fluoro)estrogens: systematic investigation of a new series of fluorine-18-labeled estrogens as potential imaging agents for estrogen-receptor-positive breast tumors. J Med Chem. 1993;36:1619–29.

    Article  Google Scholar 

  69. Benard F, Ahmed N, Beauregard JM, Rousseau J, Aliaga A, Dubuc C, Croteau E, van Lier JE. [F-18]fluorinated estradiol derivatives for oestrogen receptor imaging: impact of substituents, formulation and specific activity on the biodistribution in breast tumour-bearing mice. Eur J Nucl Med Mol Imaging. 2008;35:1473–9.

    Article  CAS  PubMed  Google Scholar 

  70. Römer J, Steinbach J, Kasch H. Studies on the synthesis of 16 alpha-[F-18]fluoroestradiol. Appl Radiat Isot. 1996;47:395–9.

    Article  Google Scholar 

  71. Römer J, Füchtner F, Steinbach J, Johanssen B. Automated production of 16α-[F-18]fluoroestradiol for breast cancer imaging. Nucl Med Biol. 1999;26:473–9.

    Article  PubMed  Google Scholar 

  72. Mori T, Kasamatsu S, Mosdzianowski C, Welch MJ, Yonekura Y, Fujibayashi Y. Automatic synthesis of 16α-[F-18]fluoro-17β-estradiol using a cassette-type [F-18]fluorodeoxyglucose synthesizer. Nucl Med Biol. 2006;33:281–6.

    Article  CAS  PubMed  Google Scholar 

  73. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, Reiman R, Price DT, Coleman RE. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.

    CAS  PubMed  Google Scholar 

  74. Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med. 1997;38:842–24.

    CAS  PubMed  Google Scholar 

  75. DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, Polascik TJ, Price DT. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res. 2000;61:110–7.

    Google Scholar 

  76. Hara T. 18F-Fluorocholine: a new oncologic PET tracer. J Nucl Med. 2001;12:1815–7.

    Google Scholar 

  77. Kwee SA, Coel MN, Lim J, Ko JP. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumour evaluation. J Neuroimaging. 2004;14:285–9.

    Article  PubMed  Google Scholar 

  78. Coenen HH, Colosimo M, Schüller M, Stöcklin G. Preparation of N. C. A. [18F]-CH2BrF via aminopolyether supported nucleophilic substitution. J Label Compd Radiopharm. 1985;23:587–95.

    Article  Google Scholar 

  79. Eskola O, Bergman J, Lehikoinen P, Ögren M, Långström B, Solin O. Synthesis of 18F-bromofluoromethane [18F]FCH2Br; fluoromethylation reagent with high specific radioactivity. J Label Compd Radiopharm. 1999;42:S543–5.

    Google Scholar 

  80. Rasey JS, Koh W-J, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys. 1996;36:417–28.

    Article  CAS  PubMed  Google Scholar 

  81. Lui R-S, Chu L-S, Yen S-H, Chang C-P, Chou K-L, Wu L-C, Chang C-W, Lui M-T, Chen KY, Yeh S-H. Detection of anaerobic odontogenic infections by fluorine-18 fluoromisonidazole. Eur J Nucl Med Mol Imaging. 1996;23:1384–7.

    Article  Google Scholar 

  82. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Chin LK, Hofstrand PD, Grierson JR, Eary JF, Krohn KA. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.

    Article  CAS  PubMed  Google Scholar 

  83. Lewis JS, Welch MJ. PET imaging of hypoxia. Q J Nucl Med. 2001;45:183–8.

    CAS  PubMed  Google Scholar 

  84. Lehtiö K, Oikonen V, Nyman S, Grönroos T, Roivainen A, Eskola O, Minn H. Quantifying tumour hypoxia with fluorine-18 fluoroerythronitroimidazole ([18F]FETNIM) and PET using the tumour to plasma ratio. Eur J Nucl Med Mol Imaging. 2003;30:101–8.

    Article  PubMed  CAS  Google Scholar 

  85. Barthel H, Wilson H, Collingridge DR, Brown G, Osman S, Luthra SK, Brady F, Workman P, Price PM, Aboagye EO. In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2004;90:2232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kämäräinen E-L, Kyllönen T, Nihtilä O, Björk H, Solin O. Preparation of fluorine-18-labelled fluoromisonidazole using two different synthesis methods. J Label Compd Radiopharm. 2004;47:37–45.

    Article  CAS  Google Scholar 

  87. Grierson JR, Link JM, Mathis CA, Rasey JS, Krohn KA. A radiosynthesis of Fluorine-18 Fluoromisonidazole. J Nucl Med. 1989;30:343–50.

    CAS  PubMed  Google Scholar 

  88. McCarthy TJ, Dence CS, Welch MJ. Application of microwave heating to the synthesis of [18F]fluoromisonidazole. Appl Radiat Isot. 1993;44:1129–32.

    Article  CAS  PubMed  Google Scholar 

  89. Lim J-L, Berridge MS. An efficient radiosynthesis of [18F]fluoromisonidazole. Appl Radiat Isot. 1993;44:1085–91.

    Article  CAS  PubMed  Google Scholar 

  90. Patt M, Kuntzsch M, Machulla HJ. Preparation of [18F]fluoromisonidazole by nucleophilic substitution on THP-protected precursor: yield dependence on reaction parameters. J Radioanal Nucl Chem. 1999;240:925–7.

    Article  CAS  Google Scholar 

  91. Oh SJ, Chi DY, Mosdzianowski C, Kim JY, Gil HS, Kang SH, Ryu JS, Moon DH. Fully automated synthesis of [18F]fluoromisonidazole using a conventional [18F]FDG module. Nucl Med Biol. 2005;32:899–905.

    Article  CAS  PubMed  Google Scholar 

  92. Crouzel C, Guillaume M, Barré L, Lemaire C, Pike VW. Ligands and tracers for PET studies of the 5-HT system—current status. Nucl Med Biol. 1992;19:857–70.

    CAS  Google Scholar 

  93. Pike VW. Radioligands for PET studies of central 5-HT receptors and re-uptake sites—current status. Nucl Med Biol. 1995;22:1011–8.

    Article  CAS  PubMed  Google Scholar 

  94. Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L. Fluorine-18-Altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med. 1991;32:2266–72.

    CAS  PubMed  Google Scholar 

  95. Lemaire C, Cantineau R, Christiaens L, Guillaume M. N.C.A. radiofluorination of altanserin: a potential serotonin receptor-binding radiopharamceutical for positron emission tomography. J Label Compd Radiopharm. 1989;26:336–7.

    Article  Google Scholar 

  96. Mukherjee J, Yang Z-Y, Lew R, Brown T, Kronmal S, Cooper MD, Seiden LS. Evaluation of d-amphetamine effects on the binding of dopamine D-2 receptor radioligand, F-18-fallypride in nonhuman primates using positron emission tomography. Synapse. 1997;27:1–13.

    Article  CAS  PubMed  Google Scholar 

  97. Mukherjee J, Yang Z-Y, Brown T, Lew R, Wernick M, Ouyang X, Yasillo N, Chen C-T, Mintzer R, Cooper M. Preliminary assessment of extrastriatal dopamine d-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride. Nucl Med Biol. 1999;26:519–27.

    Article  CAS  PubMed  Google Scholar 

  98. Christian BT, Narayanan TK, Shi BZ, Mukherjee J. Quantitation of striatal and extrastriatal D-2 dopamine receptors using PET imaging of [F-18]fallypride in nonhuman primates. Synapse. 2000;38:71–9.

    Article  CAS  PubMed  Google Scholar 

  99. Slifstein M, Narendran R, Hwang DR, Sudo Y, Talbot PS, Huang YY, Laruelle M. Effect of amphetamine on [F-18]fallypride in vivo binding to D-2 receptors in striatal and extrastriatal regions of the primate brain: single bolus and bolus plus constant infusion studies. Synapse. 2004;54:46–63.

    Article  CAS  PubMed  Google Scholar 

  100. Riccardi P, Baldwin R, Salomon R, Anderson S, Ansari MS, Li R, Dawant B, Bauernfeind A, Schmidt D, Kessler R. Estimation of baseline dopamine D-2 receptor occupancy in striatum and extrastriatal regions in humans with positron emission tomography with [F-18] fallypride. Biol Psychiatry. 2008;63:241–4.

    Article  CAS  PubMed  Google Scholar 

  101. Mukherjee J, Yang Z-Y, Das MK, Brown T. Fluorinated benzamide neuroleptics—III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol. 1995;22:283–96.

    Article  CAS  PubMed  Google Scholar 

  102. Doorduin J, Klein HC, Dierckx RA, James M, Kassiou M, de Vries EF. [11C]-DPA-713 and [18F]-DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol Imaging Biol. 2009;11:386–98.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lartey FM, Ahn GO, Shen B, Cord KT, Smith T, Chua JY, Rosenblum S, Liu H, James ML, Chernikova S, Lee SW, Pisani LJ, Tirouvanziam R, Chen JW, Palmer TD, Chin FT, Guzman R, Graves EE, Loo BW Jr. PET imaging of stroke-induced neuroinflammation in mice using [18F]PBR06. Mol Imaging Biol. 2014;16:109–17.

    Article  PubMed  Google Scholar 

  104. Brackhan M, Bascuñana P, Postema JM, Ross TL, Bengel FM, Bankstahl M, Bankstahl JP. Serial quantitative TSPO-targeted PET reveals peak microglial activation up to 2 weeks after an epileptogenic brain insult. J Nucl Med. 2016;57:1302–8.

    Article  CAS  PubMed  Google Scholar 

  105. Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, Bauersachs J, Wollert KC, Bengel FM. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2017;71:263–75.

    Article  CAS  Google Scholar 

  106. Kapanadze T, Bankstahl JP, Wittneben A, Koestner W, Ballmaier M, Gamrekelashvili J, Krishnasamy K, Limbourg A, Ross TL, Meyer GJ, Haller H, Bengel FM, Limbourg FP. Multimodal and multiscale analysis reveals distinct vascular, metabolic and inflammatory components of the tissue response to limb ischemia. Theranostics. 2019;9:152–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wadsworth H, Jones PA, Chau WF, Durrant C, Fouladi N, Passmore J, O’Shea D, Wynn D, Morisson-Iveson V, Ewan A, Thaning M, Mantzilas D, Gausemel I, Khan I, Black A, Avory M, Trigg W. [18F]GE-180: a novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorg Med Chem Lett. 2012;22:1308–13.

    Article  CAS  PubMed  Google Scholar 

  108. Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14:225–36.

    Article  CAS  PubMed  Google Scholar 

  109. Klunk WE, Engler H, Nordberg A, Wang YM, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.

    Article  CAS  PubMed  Google Scholar 

  110. Koole M, Lewis DM, Buckley C, Nelissen N, Vandenbulcke M, Brooks DJ, Vandenberghe R, Van Laere K. Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med. 2009;50:818–22.

    Article  CAS  PubMed  Google Scholar 

  111. Kung HF, Choi SR, Qu W, Zhang W, Skovronsky D. 18F stilbenes and styrylpyridines for PET imaging of A beta plaques in Alzheimer’s disease: a miniperspective. J Med Chem. 2010;53:933–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, Dannals RF, Nandi A, Brasić JR, Ye W, Hilton J, Lyketsos C, Kung HF, Joshi AD, Skovronsky DM, Pontecorvo MJ. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir F-18). J Nucl Med. 2010;51:913–20.

    Article  CAS  PubMed  Google Scholar 

  113. Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, Hiemeyer F, Wittemer-Rump SM, Seibyl J, Reininger C, Sabri O. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35.

    Article  CAS  PubMed  Google Scholar 

  114. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lockhart SN, Baker SL, Okamura N, Furukawa K, Ishiki A, Furumoto S, Tashiro M, Yanai K, Arai H, Kudo Y, Harada R, Tomita N, Hiraoka K, Watanuki S, Jagust WJJ. Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F]THK-5351. PLoS One. 2016;11:e0158460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Su H, Szardenings AK, Walsh JC, Wang E, Yu C, Zhang W, Zhao T, Kolb HC. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 2013;9:666–76.

    Article  PubMed  Google Scholar 

  117. Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, Guiot MC, Guo Q, Harada R, Comley RA, Massarweh G, Soucy JP, Okamura N, Gauthier S, Rosa-Neto P. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;24:1112–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A, Berndt M, Schmitt-Willich H, Darmency V, Gabellieri E, Boudou C, Juergens T, Varisco Y, Vokali E, Hickman DT, Tamagnan G, Pfeifer A, Dinkelborg L, Muhs A, Stephens A. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46:2178–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Farde L, Pauli S, Hall A, Eriksson L, Halldin C, Hörgberg T, Nilsson L, Sjögren I, Stone-Elander S. Stereoselective binding of 11C-raclopride in living human brain—a search for extrastriatal D2 receptors by PET. Psychopharmacology (Berl). 1988;94:471–8.

    Article  CAS  Google Scholar 

  121. Halldin C, Stone-Elander S, Thorell J-O, Pearson A, Sedvall G. 11C-labelling of Ro 15-1788 in two different positions, and also 11C-labelling of its main metabolite Ro 153890 for PET studies of benzodiazepine receptors. Appl Radiat Isot. 1988;39:993–7.

    Article  CAS  Google Scholar 

  122. Långström B, Lunquvist H. The preparation of [11C]methyl iodide and its use in the synthesis of [11C]methyl-L-methionine. Appl Radiat Isot. 1976;27:357–63.

    Article  Google Scholar 

  123. Långström B, Antoni G, Gullberg P, Halldin C, Malmborg P, Någren K, Rimland A, Svärd H. Synthesis of L- and D-[Methyl-11C]Methionine. J Nucl Med. 1987;28:1037–40.

    PubMed  Google Scholar 

  124. Guadagno JV, Donnan GA, Markus R, Gillard JH, Baron JC. Imaging the ischaemic penumbra. Curr Opin Neurol. 2004;17:61–7.

    Article  PubMed  Google Scholar 

  125. Savic I, Lindström P, Gulyas B, Halldin C, Andree B, Farde L. Limbic reduction of 5-HT1A receptor binding in human temporal lobe epilepsy. Neurology. 2004;62:1343–51.

    Article  CAS  PubMed  Google Scholar 

  126. Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K. Brain tumour imaging with comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med. 2004;31:1064–72.

    Article  CAS  Google Scholar 

  127. Farde L, Halldin C, Stone-Elander S, Sedvall G. PET Analysis of Human Dopamine Receptor Subtypes Using C-11 SCH 23390 and C-11 Raclopride. Psychopharmacology (Berl). 1987;92:278–84.

    Article  CAS  Google Scholar 

  128. Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA. Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med Mol Imaging. 2000;27:1719–22.

    Article  CAS  Google Scholar 

  129. Strauss LG, Conti PS. The application of PET in clinical oncology. J Nucl Med. 1991;32:623–48.

    CAS  PubMed  Google Scholar 

  130. Derlon JM. The in vivo metabolic investigation of brain gliomas with positron emission tomography. Adv Tech Stand Neurosurg. 1998;24:41–76.

    Article  CAS  PubMed  Google Scholar 

  131. Bombardieri E, Carriago I, Conzales P, Serafini A, Turner JH, Virgolini I, Maffioli L. Main diagnostic applications in oncology. Eur J Nucl Med. 1999;26:BP21–7.

    Google Scholar 

  132. Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, Picus J, Welch MJ. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44:549–55.

    CAS  PubMed  Google Scholar 

  133. Schäfers M, Dutka D, Rhodes CG, Lammertsma AA, Hermansen F, Schober O, Camici PG. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertropic cardiomyopathy. Circ Res. 1998;82:57–62.

    Article  PubMed  Google Scholar 

  134. Wichter T, Schäfers M, Rhodes CG, Borggrefe M, Lerch H, Lammertsma AA, Hermansen F, Schober O, Breithardt G, Camici PG. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic ß-adrenergic receptor density with positron emission tomography. Circulation. 2000;101:1552–8.

    Article  CAS  PubMed  Google Scholar 

  135. Rösch F. Past, present and future of 68Ge/68Ga generators. Appl Radiat Isot. 2013;76:24–30.

    Article  PubMed  CAS  Google Scholar 

  136. Eder M, Neels O, Müller M, Bauder-Wüst U, Remde Y, Schäfer M, Hennrich U, Eisenhut M, Afshar-Oromieh A, Haberkorn U, Kopka K. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals. 2014;7:779–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wester HJ, Schottelius M. PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med. 2019;49:302–12.

    Article  PubMed  Google Scholar 

  138. Hofmann M, Oei M, Boerner AR, Maecke H, Geworski L, Knapp WH, Krause T. Comparison of Ga-68-DOTATOC and Ga-68-DOTANOC for radiopeptide PET. Nuklearmedizin. 2005;44:A58.

    Google Scholar 

  139. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, Maecke HR, Eisenhut M, Debus J, Haberkorn U. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med. 2005;46:763–9.

    CAS  PubMed  Google Scholar 

  140. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, Jäger D, Mier W, Haberkorn U. Development of Quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59:1415–22.

    Article  CAS  PubMed  Google Scholar 

  141. Langer L, Hess A, Reffert LM, Bankstahl JP, Thackeray JT, Bengel FM, Ross TL. Visualisation of fibrosis after tissue damage with PET—a tracer for the fibroblast activation protein. J Label Compd Radiopharm. 2019;62:S535.

    Google Scholar 

  142. Revy A, Hallouard F, Joyeux-Klamber S, Skanjeti A, Rioufol C, Fraysse M. Feasibility and evaluation of automated methods for radiolabeling of radiopharmaceutical kits with Gallium-68. Curr Radiopharm. 2019;12:229–37.

    Article  CAS  PubMed  Google Scholar 

  143. Hofman MS, Eu P, Jackson P, Hong E, Binns D, Iravani A, Murphy D, Mitchell C, Siva S, Hicks RJ, Young JD, Blower PJ, Mullen GE. Cold kit for prostate-specific membrane antigen (PSMA) PET imaging: phase 1 study of 68Ga-Tris(Hydroxypyridinone)-PSMA PET/CT in patients with prostate cancer. J Nucl Med. 2018;59:625–31.

    Article  CAS  PubMed  Google Scholar 

  144. Derlin T, Schmuck S, Juhl C, Zörgiebel J, Schneefeld SM, Walte ACA, Hueper K, von Klot CA, Henkenberens C, Christiansen H, Thackeray JT, Ross TL, Bengel FM. PSA-stratified detection rates for [68Ga]THP-PSMA, a novel probe for rapid kit-based 68Ga-labeling and PET imaging, in patients with biochemical recurrence after primary therapy for prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:913–22.

    Article  CAS  PubMed  Google Scholar 

  145. Lenzo NP, Meyrick D, Turner JH. Review of Gallium-68 PSMA PET/CT imaging in the management of prostate cancer. Diagnostics. 2018;8:E16.

    Article  PubMed  CAS  Google Scholar 

  146. Loktev A, Lindner T, Burger EM, Altmann A, Giesel F, Kratochwil C, Debus J, Marmé F, Jäger D, Mier W, Haberkorn U. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J Nucl Med. 2019;60:1421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, Adeberg S, Rathke H, Röhrich M, Winter H, Plinkert PK, Marme F, Lang M, Kauczor HU, Jäger D, Debus J, Haberkorn U, Giesel FL. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60:801–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. Eur J Nucl Med Mol Imaging Radiopharm Chem. 2019;4:16.

    Google Scholar 

  149. Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N, Topping G, Sun T, Nekolla SG, Richter A, Weber C, Habenicht A, Haberkorn UA, Weber WA. Molecular imaging of fibroblast activity after myocardial infarction using a 68Ga-labeled fibroblast activation protein inhibitor, FAPI-04. J Nucl Med. 2019;60:1743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Clark JC, Crouzel C, Meyer GJ, Strijckmans K. Current methodology for oxygen-15 production for clinical use. Appl Radiat Isot. 1987;38:597–600.

    Article  CAS  Google Scholar 

  151. Berridge MS, Cassidy EH, Terris AH. A routine, automated synthesis of oxygen-15 labelled butanol for positron emission tomography. J Nucl Med. 1990;31:1727–31.

    CAS  PubMed  Google Scholar 

  152. Sajjad M, Lambrecht RM, Wolf AP. Cyclotron isotopes and radiopharmaceuticals 37. Exitation-functions for the O-16(p,alpha)N-13 and N-14(p,pn)N-13 reactions. Radiochim Acta. 1986;39:165–8.

    Article  CAS  Google Scholar 

  153. Wieland B, Bida G, Padgett H, Hendry G, Zippi E, Kabalka G, Morelle J-L, Verbruggen R, Ghyoot M. In target production of 13N-ammonia via proton irradiation of aqueous ethanol and acetic acid mixtures. Appl Radiat Isot. 1991;42:1095–8.

    Article  CAS  Google Scholar 

  154. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36:729–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jauw YW, Menke-van der Houven van Oordt CW, Hoekstra OS, Hendrikse NH, Vugts DJ, Zijlstra JM, Huisman MC, van Dongen GA. Immuno-positron emission tomography with Zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front Pharmacol. 2016;7:131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Poot AJ, Adamzek KWA, Windhorst AD, Vosjan MJWD, Kropf S, Wester HJ, van Dongen GAMS, Vugts DJ. Fully automated 89Zr labeling and purification of antibodies. J Nucl Med. 2019;60:691–5.

    Article  CAS  PubMed  Google Scholar 

  157. Follacchio GA, De Feo MS, De Vincentis G, Monteleone F, Liberatore M. Radiopharmaceuticals labelled with copper radionuclides: clinical results in human beings. Curr Radiopharm. 2018;11:22–33.

    Article  CAS  PubMed  Google Scholar 

  158. Green MA, Klippenstein DL, Tennison JR. Copper(II)bis(thiosemicarbazone) complexes as potential tracers for evaluation of cerebral and myocardial blood flow with PET. J Nucl Med. 1988;29:1549–57.

    CAS  PubMed  Google Scholar 

  159. Takahashi N, Fujibayashi Y, Yonekura Y, Welch MJ, Waki A, Tsuchida T, Sadato N, Sugimoto K, Itoh H. Evaluation of 62Cu labeled diacetyl-bis(N4-methylthiosemicarbazone) in hypoxic tissue in patients with lung cancer. Ann Nucl Med. 2000;14:323–8.

    Article  CAS  PubMed  Google Scholar 

  160. Dehdashti F, Mintun MA, Lewis JS. In vivo assessment of tumour hypoxiy in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30:844–50.

    Article  CAS  PubMed  Google Scholar 

  161. Haynes NG, Lacy JL, Nayak N, Martin CS, Dai D, Mathias CJ, Green MA. Performance of a 62Zn/62Cu generator in clinical trials of PET perfusion agent 62Cu-PTSM. J Nucl Med. 2000;41:309–14.

    CAS  PubMed  Google Scholar 

  162. Satyamurthy N, Phelps ME, Barrio JR. Electronic generators for the production of positron-emitter labelled radiopharmaceuticals: where would PET be without them? Clin Posit Imag. 1999;2:233–53.

    Article  CAS  Google Scholar 

  163. Alexoff DL. Automation for the synthesis and application of PET radiopharmaceuticals. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. Radiochemistry and application: Wiley; 2003. p. 283–305.

    Google Scholar 

  164. Krasikova R. Synthesis modules and automation in F-18 labeling. In: Schubiger PA, Lehmann L, Friebe M, editors. PET chemistry—the driving force in molecular imaging. Berlin: Springer; 2007. p. 289–316.

    Google Scholar 

  165. Lucignani G. Pivotal role of nanotechnologies and biotechnologies for molecular imaging and therapy. Eur J Nucl Med Mol Imaging. 2006;33:849–51.

    Article  PubMed  Google Scholar 

  166. Pike VW, Lu SY. Micro-reactors for pet tracer labeling. In: Schubiger PA, Lehmann L, Friebe M, editors. PET chemistry—the driving force in molecular imaging. Berlin: Springer; 2007. p. 271–87.

    Google Scholar 

  167. Brady F, Luthra SK, Gillies JM, Geffery NT. Use of microfabricated devices. PCT WO 03/078358 A2. 2003.

    Google Scholar 

  168. Lu SY, Watts P, Chin FT, Hong J, Musachio JL, Briard E, Pike VW. Syntheses of 11C- and 18F-labeled carboxylic esters within a hydrodynamically driven micro-reactor. Lab Chip. 2004;4:523–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gillies JM, Prenant C, Chimon GN, Smethurst GJ, Perrie W, Hamblett I, Dekker B, Zweit J. Microfluidic reactor for the radiosynthesis of PET radiotracers. Appl Radiat Isot. 2006;64:325–32.

    Article  CAS  PubMed  Google Scholar 

  170. Amor-Coarasa A, Kelly JM, Babich JW. 3D-printed automation for optimized PET radiochemistry. Sci Adv. 2019;5:eaax4762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Saha GB. Fundamentals of nuclear pharmacy. 5th ed. New York: Springer; 2004.

    Google Scholar 

  172. Littman BH, Williams SA. The ultimate model organism: progress in experimental medicine. Nat Rev Drug Discov. 2005;4:631–8.

    Article  CAS  PubMed  Google Scholar 

  173. Bench CJ, Lammertsma AA, Dolan RJ, Grasby PM, Warrington SJ, Gunn K, Cuddigan M, Turton DJ, Osman S, Frackowiak RSJ. Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88,059–01: a study using positron emission tomography and 11C-raclopride. Psychopharmacology (Berl). 1993;112:308–14.

    Article  CAS  Google Scholar 

  174. Yokoi F, Gründer G, Biziere K, Stephane M, Dogan AS, Dannals RF, Ravert H, Suri A, Bramer S, Wong DF. Dopamine D-2 and D-3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [C-11]raclopride. Neuropsychopharmacology. 2002;27:248–59.

    Article  CAS  PubMed  Google Scholar 

  175. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D, Silberman SL, Capdeville R, Dimitrijevic S, Druker B, Demetri GD. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344:1052–6.

    Article  CAS  PubMed  Google Scholar 

  176. Demetri GD, George S, Heinrich MC, Fletcher JA, Fletcher CDM, Desai J, Cohen DP, Scigalla P, Cherrington JM, Van Den Abbeele AD. Clinical activity and tolerability of the multi-targeted tyrosine kinase inhibitor SU11248 in patients with metastatic gastrointestinal stromal tumor (GIST) refractory to imatinib mesylate. Proc Am Soc Clin Oncol. 2003;22:3273.

    Google Scholar 

  177. Bernard-Gauthier V, Collier TL, Liang SH, Vasdev N. Discovery of PET radiopharmaceuticals at the academia-industry interface. Drug Discov Today Technol. 2017;25:19–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias L. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ross, T.L., Ametamey, S.M. (2021). PET Chemistry: Radiopharmaceuticals. In: Khalil, M.M. (eds) Basic Sciences of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65245-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65245-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65244-9

  • Online ISBN: 978-3-030-65245-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics