Skip to main content

Bioactive Phytochemicals from Sesame Oil Processing By-products

  • Living reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Abstract

Sesame (Sesamum indicum L.) is an oil crop that belongs to the family Pedaliaceae. It is cultivated all over the world. Sesame seeds possess nutritional value being a rich source of proteins, dietary fibers, carbohydrates, fats, and vitamins. Sesame seeds and oil have several biological potentials: antioxidant, antimutagenic, estrogenic, and hypolipidemic. Many phytochemical constituents were observed in sesame seeds and/or oil as phenolic acids, flavonoids, lignans, phytosterols, and unsaturated fatty acids. The total world production of sesame is around seven million tons with a production of two million tons of sesame oil with nearly 70% of agri-industrial by-product in the form of the cake counterpart. Some studies focused on the cake by-product’s phytochemical composition and biological potential, reflecting the valorization of such agri-industrial by-products where the effective utilization of them could lead to sustainability in the industry of food supplements, nutraceuticals, and non-food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. FAO-Statistics (2018) Productions, crops (accessed on 25th Oct 2021)

    Google Scholar 

  2. Bedigian D, Harlan JR (1986) Evidence for cultivation of sesame in the ancient world. Econ Bot 40:137–154

    Article  Google Scholar 

  3. Aboelsoud NH (2010) Herbal medicine in ancient Egypt. J Med Plant Res 4:082–086

    Google Scholar 

  4. Shyu Y-S, Hwang LS (2002) Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res Int 35:357–365

    Article  CAS  Google Scholar 

  5. Dachtler M, van de Put FHM, v. Stijn F, Beindorff CM, Fritsche J (2003) On-line LC-NMR-MS characterization of sesame oil extracts and assessment of their antioxidant activity. Eur J Lipid Sci Technol 105:488–496

    Article  CAS  Google Scholar 

  6. Singh K, Garg SK, Kalla A, Bhatnagar A (2003) Oilcakes as protein sources in supplementary diets for the growth of Cirrhinus mrigala (Ham.) fingerlings: laboratory and field studies. Bioresour Technol 86:283–291

    Article  PubMed  Google Scholar 

  7. Grougnet R, Magiatis P, Mitaku S, Terzis A, Tillequin F, Skaltsounis A-L (2006) New Lignans from the Perisperm of Sesamum indicum. J Agric Food Chem 54:7570–7574

    Article  CAS  PubMed  Google Scholar 

  8. Silva ER, Martino HSD, Moreira AVB, Arriel NHC, Silva AC, Ribeiro SMR (2011) Antioxidant capacity and chemical composition of whole grains of cream and black sesame. Pesqui Agropecu Bras 46:736–742

    Article  Google Scholar 

  9. Lim T (2012) Sesamum indicum. In: Edible medicinal and non-medicinal plants, vol 4. Springer, pp 187–219

    Chapter  Google Scholar 

  10. Mekky RH, Abdel-Sattar E, Segura-Carretero A, Contreras MDM (2019) Phenolic compounds from sesame cake and antioxidant activity: a new insight for agri-food Residues’ significance for sustainable development. Foods 8:432

    Article  CAS  PubMed Central  Google Scholar 

  11. Mekky RH, Abdel-Sattar E, Segura-Carretero A, del Mar Contreras M (2020) Profiling of the oil of the Egyptian cultivar of sesame ‘Giza 32’ using LC-MS-based untargeted metabolomics. In: 1st international electronic conference on food science and functional foods, foods 2020. Foods, MDPI. https://doi.org/10.3390/foods_2020-07730

    Chapter  Google Scholar 

  12. Chang L-W, Yen W-J, Huang SC, Duh P-D (2002) Antioxidant activity of sesame coat. Food Chem 78:347–354

    Article  CAS  Google Scholar 

  13. Chen PR, Chien KL, Su TC, Chang CJ, Liu T-L, Cheng H et al (2005) Dietary sesame reduces serum cholesterol and enhances antioxidant capacity in hypercholesterolemia. Nutr Res 25:559–567

    Article  CAS  Google Scholar 

  14. Namiki M (2007) Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr 47:651–673

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed T, Shittu LJL, Bankole MA, Shittu RK, Adesanya OA, Bankole MN et al (2009) Comparative studies of the crude extracts of sesame against some common pathogenic microorganisms. Sci Res Essays 4:584–589

    Google Scholar 

  16. Nasirullah JT, Rakshitha D (2009) Isolation and antioxidant efficacy of nutraceutical concentrates from sesame and flax seed oils. J Food Sci Technol 46:66–69

    CAS  Google Scholar 

  17. Vishwanath HS, Anilakumar KR, Harsha SN, Khanum F, Bawa AS (2012) In vitro antioxidant activity of Sesamum indicum seeds. Asian J Pharm Clin Res 5:56–60

    Google Scholar 

  18. Mekky RH, del Mar Contreras M, Segura-Carretero A, Abdel-Sattar E (2018) Metabolic profiling of the cake of the Egyptian cultivar of sesame ‘Giza 32’ and antioxidant activity: a new insight for agro-industrial by-products utilization for sustainable development. In: 1st conference on sustainable development in pharmaceutical sciences. Faculty of Pharmacy and Drug Technology, Heliopolis University

    Google Scholar 

  19. Majdalawieh AF, Mansour ZR (2019) Sesamol, a major lignan in sesame seeds (Sesamum indicum): anti-cancer properties and mechanisms of action. Eur J Pharmacol 855:75–89

    Article  CAS  PubMed  Google Scholar 

  20. Tassoni A, Tedeschi T, Zurlini C, Cigognini IM, Petrusan J-I, Rodríguez Ó et al (2020) State-of-the-art production chains for peas, beans and chickpeas-valorization of agro-industrial residues and applications of derived extracts. Molecules 25:1383

    Article  CAS  PubMed Central  Google Scholar 

  21. Yasothai R (2014) Chemical composition of sesame oil cake-review. Int J Environ Sci Technol 3:827–835

    Google Scholar 

  22. Suja KP, Jayalekshmy A, Arumughan C (2005) In vitro studies on antioxidant activity of lignans isolated from sesame cake extract. J Sci Food Agric 85:1779–1783

    Article  CAS  Google Scholar 

  23. Mohdaly AAA, Smetanska I, Ramadan MF, Sarhan MA, Mahmoud A (2011) Antioxidant potential of sesame (Sesamum indicum) cake extract in stabilization of sunflower and soybean oils. Ind Crop Prod 34:952–959

    Article  CAS  Google Scholar 

  24. Mohdaly AAA, Hassanien MFR, Mahmoud A, Sarhan MA, Smetanska I (2013) Phenolics extracted from potato, sugar beet, and sesame processing by-products. Int J Food Prop 16:1148–1168

    Article  CAS  Google Scholar 

  25. Nadeem M, Situ C, Mahmud A, Khalique A, Imran M, Rahman F et al (2014) Antioxidant activity of sesame (Sesamum indicum L.) cake extract for the stabilization of olein based butter. J Am Oil Chem Soc 91:967–977

    Article  CAS  Google Scholar 

  26. Sarkis JR, Boussetta N, Blouet C, Tessaro IC, Marczak LDF, Vorobiev E (2015) Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innov Food Sci Emerg Technol 29:170–177

    Article  CAS  Google Scholar 

  27. Hafez HH (2018) Utilization of sesame processing byproducts in preparing some functional bakery products. Egypt J Agric Res 96:1077–1092

    Google Scholar 

  28. Prakash K, Naik SN, Vadivel D, Hariprasad P, Gandhi D, Saravanadevi S (2018) Utilization of defatted sesame cake in enhancing the nutritional and functional characteristics of biscuits. J Food Process Preserv 42:1–10

    Article  CAS  Google Scholar 

  29. Şahin S, Elhussein EAA (2018) Assessment of sesame (Sesamum indicum L.) cake as a source of high-added value substances: from waste to health. Phytochem Rev 17:691–700

    Article  CAS  Google Scholar 

  30. Sisay MT, Emire SA, Ramaswamy HS, Workneh TS (2018) Effect of feed components on quality parameters of wheat-tef-sesame-tomato based extruded products. J Food Sci Technol 55:2649–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Senanayake CM, Algama CH, Wimalasekara RL, Weerakoon WNMTDN, Jayathilaka N, Seneviratne KN (2019) Improvement of oxidative stability and microbial shelf life of vanilla cake by coconut oil meal and sesame oil meal phenolic extracts. J Food Qual 2019:1–8

    Article  CAS  Google Scholar 

  32. Ancuța P, Sonia A (2020) Oil press-cakes and meals valorization through circular economy approaches: a review. Appl Sci 10:7432

    Article  CAS  Google Scholar 

  33. Grasso S (2020) Extruded snacks from industrial by-products: a review. Trends Food Sci Technol 99:284–294

    Article  CAS  Google Scholar 

  34. Ma X, Cui X, Li J, Li C, Wang Z (2017) Peptides from sesame cake reduce oxidative stress and amyloid-β-induced toxicity by upregulation of SKN-1 in a transgenic Caenorhabditis elegans model of Alzheimer’s disease. J Funct Foods 39:287–298

    Article  CAS  Google Scholar 

  35. Liu Z, Liu X, Luo S, Chu C, Wu D, Liu R et al (2018) Extract of sesame cake and sesamol alleviate chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits. J Funct Foods 42:237–247

    Article  CAS  Google Scholar 

  36. Ma X, Li J, Cui X, Li F, Wang Z (2019) Dietary supplementation with peptides from sesame cake protect Caenorhabditis elegans from polyglutamine-induced toxicity. J Funct Foods 54:199–210

    Article  CAS  Google Scholar 

  37. Shu Z, Liu L, Geng P, Liu J, Shen W, Tu M (2019) Sesame cake hydrolysates improved spatial learning and memory of mice. Food Biosci 31:100440

    Article  CAS  Google Scholar 

  38. Ma X, Li J, Cui X, Li C, Wang Z (2020) Dietary supplementation with peptides from sesame cake alleviates Parkinson’s associated pathologies in Caenorhabditis elegans. J Funct Foods 65:103737

    Article  CAS  Google Scholar 

  39. Arun D, Dharmalingam K (1999) Short note: Streptomyces peucetius converts anthracycline intermediates efficiently in culture media containing oil cake as carbon source. World J Microbiol Biotechnol 15:333–334

    Article  Google Scholar 

  40. Adinarayana K, Ellaiah P, Srinivasulu B, Bhavani Devi R, Adinarayana G (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Process Biochem 38:1565–1572

    Article  CAS  Google Scholar 

  41. Ohtsuki T, Akiyama J, Shimoyama T, S-i Y, Ui S, Hirose Y et al (2003) Increased production of antioxidative sesaminol glucosides from sesame oil cake through fermentation by Bacillus circulans strain YUS-2. Biosci Biotechnol Biochem 67:2304–2306

    Article  CAS  PubMed  Google Scholar 

  42. Roopesh K, Ramachandran S, Nampoothiri KM, Szakacs G, Pandey A (2006) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97:506–511

    Article  CAS  PubMed  Google Scholar 

  43. Rajendran A, Thangavelu V (2013) Utilizing agricultural wastes as substrates for lipase production by Candida rugosa NCIM 3462 in solid-state fermentation: response surface optimization of fermentation parameters. Waste Biomass Valori 4:347–357

    Article  CAS  Google Scholar 

  44. Nagavalli M, Ponamgi S, Girijashankar V, Venkateswar Rao L (2015) Solid state fermentation and production of rifamycin SV using a mycolatopsis mediterranei. Lett Appl Microbiol 60:44–51

    Article  CAS  PubMed  Google Scholar 

  45. Sameera V, Raju KJ (2015) Optimization of process parameters for the production of L-glutaminase with mixed substrate by solid state fermentation using Aspergillus wentii MTCC 1901. Int J Eng Res Techno 4:328–333

    Article  Google Scholar 

  46. Bhargavi PL, Prakasham RS (2017) Agro-industrial wastes utilization for the generation of fibrinolytic metalloprotease by Serratia marcescens RSPB11. Biocatal Agric Biotechnol 9:201–208

    Article  Google Scholar 

  47. Wang Q, Zheng H, Wan X, Huang H, Li J, Nomura CT et al (2017) Optimization of inexpensive agricultural by-products as raw materials for bacitracin production in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183:1146–1157

    Article  CAS  PubMed  Google Scholar 

  48. Grace JJ, Ramani G, Shenbagarathai R (2020) Enhancement of purified human colon cancer-specific parasporal toxin from Bacillus thuringiensis-LDC-501. Curr Microbiol 77:104–114

    Article  CAS  PubMed  Google Scholar 

  49. Israni N, Shivakumar S (2020) Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: statistical optimization and characterization. Int J Biol Macromol 148:20–30

    Article  CAS  PubMed  Google Scholar 

  50. Mirzaee H, Khodaiyan F, Kennedy JF, Hosseini SS (2020) Production, optimization and characterization of pullulan from sesame seed oil cake as a new substrate by Aureobasidium pullulans. Carbohydr Polym Tech Appl 1:100004

    Google Scholar 

  51. Obeidat B, Aloqaily B (2010) Using sesame hulls in Awassi lambs diets: its effect on growth performance and carcass characteristics and meat quality. Small Rumin Res 91:225–230

    Article  Google Scholar 

  52. Jahanbakhshi A, Imanpoor MR, Taghizadeh V, Shabani A (2013) Hematological and serum biochemical indices changes induced by replacing fish meal with plant protein (sesame oil cake and corn gluten) in the great sturgeon (Huso huso). Comp Clin Path 22:1087–1092

    Article  CAS  Google Scholar 

  53. Das P, Ghosh K (2015) Improvement of nutritive value of sesame oil cake in formulated diets for rohu, Labeo rohita (Hamilton) after bio-processing through solid state fermentation by a phytase-producing fish gut bacterium. Int J Aquat Biol 3:89–101

    Google Scholar 

  54. Obeidat BS, Kridli RT, Mahmoud KZ, Obeidat MD, Haddad SG, Subih HS et al (2019) Replacing soybean meal with sesame meal in the diets of lactating Awassi ewes suckling single lambs: nutrient digestibility, milk production, and lamb growth. Animals 9:157

    Article  PubMed Central  Google Scholar 

  55. Omer HAA, Ahmed SM, Abdel-Magid SS, Bakry BA, El-Karamany MF, El-Sabaawy EH (2019) Nutritional impact of partial or complete replacement of soybean meal by sesame (Sesamum indicum) meal in lambs rations. Bull Natl Res Cent 43:98

    Article  Google Scholar 

  56. Salavati ME, Rezaeipour V, Abdullahpour R, Mousavi N (2020) Effects of graded inclusion of bioactive peptides derived from sesame meal on the growth performance, internal organs, gut microbiota and intestinal morphology of broiler chickens. Int J Pept Res Ther 26,1541–1548

    Google Scholar 

  57. Hajimohammadi A, Mottaghitalab M, Hashemi M (2020) Influence of microbial fermentation processing of sesame meal and enzyme supplementation on broiler performances. Ital J Anim Sci 19:712–722

    Article  CAS  Google Scholar 

  58. Radwan M, El-Maadawy E, Kassem S, Abu-Elamayem M (2009) Oil cakes soil amendment effects on Meloidogyne incognita, root-knot nematode infecting tomato. Arch Phytopathol Pflanzenschutz 42:58–64

    Article  CAS  Google Scholar 

  59. Viji R, Manonmani V (2018) Influence of seed priming with oil cake extracts on quality parameters of maize seeds. Madras Agric J 105:243–246

    Google Scholar 

  60. Rahman MT, Rubayet MT, Khan AA, Bhuiyan M (2020) Integrated management of fusarium root rot and wilt disease of soybean caused by Fusarium oxysporum. Int J Biosci 17:83–96

    CAS  Google Scholar 

  61. Jang SJ, Park HH, Kuk YI (2021) Application of various extracts enhances the growth and yield of cucumber (Cucumis sativus L.) without compromising the biochemical content. Agronomy 11:505

    Article  CAS  Google Scholar 

  62. Govarthanan M, Park S-H, Park Y-J, Myung H, Krishnamurthy RR, Lee S-H et al (2015) Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake extract in mine soil. RSC Adv 5:54564–54570

    Article  CAS  Google Scholar 

  63. Jain SN, Garud VB, Dawange SD, Sonawane DD, Shaikh ER (2020) Sesame (Sesamum indicum) oil cake-industrial waste biomass for sequestration of Basic Blue 26 from aqueous media. Biomass Convers Biorefin

    Google Scholar 

  64. Khan MA, Alqadami AA, Wabaidur SM, Siddiqui MR, Jeon BH, Alshareef SA et al (2020) Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water. J Hazard Mater 400:123247

    Article  CAS  PubMed  Google Scholar 

  65. Volli V, Singh R (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585

    Article  CAS  Google Scholar 

  66. Rajagopalan G, He J, Yang K-L (2016) One-pot fermentation of agricultural residues to produce butanol and hydrogen by Clostridium strain BOH3. Renew Energy 85:1127–1134

    Article  CAS  Google Scholar 

  67. Chang F-C, Tsai M-J, Ko C-H (2018) Agricultural waste derived fuel from oil meal and waste cooking oil. Environ Sci Pollut Res 25:5223–5230

    Article  CAS  Google Scholar 

  68. Ammar S, Contreras MM, Gargouri B, Segura-Carretero A, Bouaziz M (2017) RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart. Phytochem Anal 28:217–229

    Article  CAS  PubMed  Google Scholar 

  69. Grougnet R, Magiatis P, Laborie H, Lazarou D, Papadopoulos A, Skaltsounis A-L (2011) Sesamolinol glucoside, disaminyl ether, and other lignans from sesame seeds. J Agric Food Chem 60:108–111

    Article  PubMed  CAS  Google Scholar 

  70. Schmidt TJ, Hemmati S, Fuss E, Alfermann AW (2006) A combined HPLC-UV and HPLC-MS method for the identification of lignans and its application to the lignans of Linum usitatissimum L. and L. bienne Mill. Phytochem Anal 17:299–311

    Article  CAS  PubMed  Google Scholar 

  71. Guo H, Liu A-H, Ye M, Yang M, Guo D-A (2007) Characterization of phenolic compounds in the fruits of Forsythia suspensa by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:715–729

    Article  CAS  PubMed  Google Scholar 

  72. Katsuzaki H, Kawakishi S, Osawa T (1994) Sesaminol glucosides in sesame seeds. Phytochemistry 35:773–776

    Article  CAS  PubMed  Google Scholar 

  73. Wikul A, Damsud T, Kataoka K, Phuwapraisirisan P (2012) (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting alpha-glucosidase. Bioorg Med Chem Lett 22:5215–5217

    Article  CAS  PubMed  Google Scholar 

  74. Bae JJ, Yeon SJ, Park WJ, Hong GE, Lee CH (2016) Production of sesaminol and antioxidative activity of fermented sesame with Lactobacillus plantarum P8, Lactobacillus acidophilus ATCC 4356, Streptococcus thermophilus S10. Food Sci Biotechnol 25:199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moazzami AA, Andersson RE, Kamal-Eldin A (2006) Characterization and analysis of sesamolinol diglucoside in sesame seeds. Biosci Biotechnol Biochem 70:1478–1481

    Article  CAS  PubMed  Google Scholar 

  76. Nantarat N, Mueller M, Lin W-C, Lue S-C, Viernstein H, Chansakaow S et al (2020) Sesaminol diglucoside isolated from black sesame seed cake and its antioxidant, anti-collagenase and anti-hyaluronidase activities. Food Biosci 36:100628

    Article  CAS  Google Scholar 

  77. Moazzami AA, Andersson RE, Kamal-Eldin A (2006) HPLC analysis of sesaminol glucosides in sesame seeds. J Agric Food Chem 54:633–638

    Article  CAS  PubMed  Google Scholar 

  78. Materska M (2015) Flavone C-glycosides from Capsicum annuum L.: relationships between antioxidant activity and lipophilicity. Eur Food Res Technol 240:549–557

    Article  CAS  Google Scholar 

  79. Mekky RH, Abdel-Sattar E, Segura-Carretero A, Contreras MM (2021) Metabolic profiling of the oil of sesame of the Egyptian cultivar ‘Giza 32’ employing LC-MS and tandem MS-based untargeted method. Foods 10:298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dabrowski KJ, Sosulski FW (1984) Composition of free and hydrolyzable phenolic acids in defatted flours of ten oilseeds. J Agric Food Chem 32:128–130

    Article  CAS  Google Scholar 

  81. Mekky RH, del Mar CM, El-Gindi MR, Abdel-Monem AR, Abdel-Sattar E, Segura-Carretero A (2015) Profiling of phenolic and other compounds from Egyptian cultivars of chickpea (Cicer arietinum L.) and antioxidant activity: a comparative study. RSC Adv 5:17751–17767

    Article  CAS  Google Scholar 

  82. Mekky RH, Thabet MM, Rodríguez-Pérez C, Elnaggar DMY, Mahrous EA, Segura-Carretero A et al (2020) Comparative metabolite profiling and antioxidant potentials of seeds and sprouts of three Egyptian cultivars of Vicia faba L. Food Res Int 136:109537

    Article  CAS  PubMed  Google Scholar 

  83. Mohdaly AAA, Sarhan MA, Smetanska I, Mahmoud A (2010) Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J Sci Food Agric 90:218–226

    Article  CAS  PubMed  Google Scholar 

  84. Morales-Soto A, García-Salas P, Rodríguez-Pérez C, Jiménez-Sánchez C, Cádiz-Gurrea ML, Segura-Carretero A et al (2014) Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Res Int 58:35–46

    Article  CAS  Google Scholar 

  85. Abdelazim AA, Mahmoud A, Ramadan-Hassanien MF (2013) Oxidative stability of vegetable oils as affected by sesame extracts during accelerated oxidative storage. J Food Sci Technol 50:868–878

    Article  CAS  PubMed  Google Scholar 

  86. Bodoira R, Velez A, Andreatta AE, Martinez M, Maestri D (2017) Extraction of bioactive compounds from sesame (Sesamum indicum L.) defatted seeds using water and ethanol under sub-critical conditions. Food Chem 237:114–120

    Article  CAS  PubMed  Google Scholar 

  87. Elhussein EAA, Şahin S (2019) Cleaner production of micronutrients from sesame seed pressed cake: a comparative study. Biomass Convers Biorefin

    Google Scholar 

  88. Konsoula Z, Liakopoulou-Kyriakides M (2010) Effect of endogenous antioxidants of sesame seeds and sesame oil to the thermal stability of edible vegetable oils. LWT 43:1379–1386

    Article  CAS  Google Scholar 

  89. Wu S, Wang L, Shu F, Cao W, Chen F, Wang X (2013) Effect of refining on the lignan content and oxidative stability of oil pressed from roasted sesame seed. Int J Food Sci Technol 48:1187–1192

    Article  CAS  Google Scholar 

  90. Elsorady ME (2020) Characterization and functional properties of proteins isolated from flaxseed cake and sesame cake. Croat J Food Sci Technol 12:77–83

    Article  Google Scholar 

  91. Nascimento EMGC, Carvalho CWP, Takeiti CY, Freitas DDGC, Ascheri JLR (2012) Use of sesame oil cake (Sesamum indicum L.) on corn expanded extrudates. Food Res Int 45:434–443

    Article  CAS  Google Scholar 

  92. Reshma MV, Namitha LK, Sundaresan A, Ravi Kiran C (2013) Total phenol content, antioxidant activities and α-glucosidase inhibition of sesame cake extracts. J Food Biochem 37:723–731

    Article  CAS  Google Scholar 

  93. Sunil L, Appaiah P, Prasanth Kumar PK, Gopala Krishna AG (2015) Preparation of food supplements from oilseed cakes. J Food Sci Technol 52:2998–3005

    Article  CAS  PubMed  Google Scholar 

  94. Esmaeilzadeh Kenari R, Mohsenzadeh F, Amiri ZR (2014) Antioxidant activity and total phenolic compounds of Dezful sesame cake extracts obtained by classical and ultrasound-assisted extraction methods. Food Sci Nutr 2:426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takeuchi H, Mooi LY, Inagaki Y, He P (2001) Hypoglycemic effect of a hot-water extract from defatted sesame (Sesamum indicum L.) seed on the blood glucose level in genetically diabetic KK-Ay mice. Biosci Biotechnol Biochem 65:2318–2321

    Article  CAS  PubMed  Google Scholar 

  96. Jan K-C, Ku K-L, Chu Y-H, Hwang LS, Ho C-T (2010) Tissue distribution and elimination of estrogenic and anti-inflammatory catechol metabolites from sesaminol triglucoside in rats. J Agric Food Chem 58:7693–7700

    Article  CAS  PubMed  Google Scholar 

  97. Das R, Dutta A, Bhattacharjee C (2012) Preparation of sesame peptide and evaluation of antibacterial activity on typical pathogens. Food Chem 131:1504–1509

    Article  CAS  Google Scholar 

  98. Aondona MM, Ikya JK, Ukeyima MT, Gborigo T-wJA, Aluko RE, Girgih AT (2021) In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. J Food Biochem 45:e13587

    Article  CAS  PubMed  Google Scholar 

  99. Nakano D, Ogura K, Miyakoshi M, Ishii F, Kawanishi H, Kurumazuka D et al (2006) Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Biosci Biotechnol Biochem 70:1118–1126

    Article  CAS  PubMed  Google Scholar 

  100. Visavadiya NP, Narasimhacharya AVRL (2008) Sesame as a hypocholesteraemic and antioxidant dietary component. Food Chem Toxicol 46:1889–1895

    Article  CAS  PubMed  Google Scholar 

  101. Saleh M, Akash M, Al-Dabbas M, Al-Ismail K (2014) Sesame-oil-cake (SOC) impacted consumer liking of a traditional Jordanian dessert; a mixture response surface model approach. Life Sci J 11:38–44

    Google Scholar 

  102. Guzmán R, Gómez J, Chocrón S (2020) Potential use of Sesame (Sesamum indicum L.) oil and sesame oil cake in the development of spreadable cocoa cream. Am J Food Sci Nutr 2:1–11

    Google Scholar 

  103. Mummaleti G, Prasaram N, Busani N, Badugu MR, Satyanarayana CV (2020) Sesame meal and Moringa oleifera leaves ready to cook curry mix: an ethnic food of Godavari districts in Andhra Pradesh. India Eur J Nutr Food Saf:64–75

    Google Scholar 

  104. Wichitsranoi J, Weerapreeyakul N, Boonsiri P, Settasatian C, Settasatian N, Komanasin N et al (2011) Antihypertensive and antioxidant effects of dietary black sesame meal in pre-hypertensive humans. Nutr J 10:1–7

    Article  CAS  Google Scholar 

  105. Khosravi-Boroujeni H, Nikbakht E, Natanelov E, Khalesi S (2017) Can sesame consumption improve blood pressure? A systematic review and meta-analysis of controlled trials. J Sci Food Agric 97:3087–3094

    Article  CAS  PubMed  Google Scholar 

  106. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  107. Awawdeh MS, Dager HK, Obeidat BS (2019) Effects of alternative feedstuffs on growth performance, carcass characteristics, and meat quality of growing Awassi lambs. Ital J Anim Sci 18:777

    Article  CAS  Google Scholar 

  108. Hassan H, Elamin K, Elhashmi Y, Eldar A, Elbushra M (2013) Effects of feeding different levels of sesame oil cake (Sesamum indicum L.) on performance and carcass characteristics of Sudan Desert sheep. J Anim Sci Adv 3:91

    Article  CAS  Google Scholar 

  109. Nang Thu TT, Bodin N, De Saeger S, Larondelle Y, Rollin X (2011) Substitution of fish meal by sesame oil cake (Sesamum indicum L.) in the diet of rainbow trout (Oncorhynchus mykiss W.). Aquac Nutr 17:80–89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María de la Luz Cádiz-Gurrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mekky, R.H., Hegazy, M.M., Cádiz-Gurrea, M.d.l.L., Fernández-Ochoa, Á., Segura Carretero, A. (2021). Bioactive Phytochemicals from Sesame Oil Processing By-products. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-63961-7_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63961-7_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63961-7

  • Online ISBN: 978-3-030-63961-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics