Skip to main content

Nutraceuticals and Cardiovascular Disease

  • Chapter
  • First Online:
Nutraceuticals and Cardiovascular Disease

Abstract

Cardiovascular disease (CVD) remains the primary cause of mortality worldwide, taking an estimated 17.9 million lives each year. Among several cardiometabolic risk factors, dyslipidemia, and especially high low-density lipoprotein cholesterol (LDL-C) levels, are associated with the development and progression of atherosclerosis and its clinical sequelae. Recent studies have shown promising results for nutraceutical compounds on various CVD risk factors and complications. In addition to looking at individual nutrients or foods, dietary pattern have also emerged as a complementary approach to examine the relationship between the overall diet and the risk for CVD. The Mediterranean Diet (MedDiet) seems to provide the best dietary tools to improve cardiovascular health, although further large-scale randomized clinical trials are necessary to confirm this. In this chapter, we will discuss currently available data about the effects of nutraceuticals and some foods on different cardiometabolic risk factors and overall CVD risk. In addition, a brief discussion is provided on the role of MedDiet, including the international guidelines which support its use in prevention and/or treatment of subjects at CVD risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartley A, Marshall DC, Salciccioli JD, Sikkel MB, Maruthappu M, Shalhoub J. Trends in mortality from ischemic heart disease and cerebrovascular disease in Europe: 1980 to 2009. Circulation. 2016;133:1916–26.

    Article  PubMed  Google Scholar 

  2. Cardiovascular disease in Europe 2016: an epidemiological update. Eur Heart J. 2016;37:3182–3.

    Google Scholar 

  3. Siri-Tarino PW, Krauss RM. Diet, lipids, and cardiovascular disease. Curr Opin Lipidol. 2016;27:323–8.

    Article  CAS  PubMed  Google Scholar 

  4. Authors/Task Force M, Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis. 2016;253:281–344.

    Article  CAS  Google Scholar 

  5. Imamura F, Micha R, Khatibzadeh S, Fahimi S, Shi P, Powles J, et al. Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob Health. 2015;3:e132–42.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, et al. Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch Med Sci. 2017;13:965–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banach M, Patti AM, Giglio RV, Cicero AFG, Atanasov AG, Bajraktari G, et al. The role of nutraceuticals in statin intolerant patients. J Am Coll Cardiol. 2018;72:96–118.

    Article  PubMed  Google Scholar 

  8. Toth PP, Patti AM, Giglio RV, Nikolic D, Castellino G, Rizzo M, et al. Management of statin intolerance in 2018: still more questions than answers. Am J Cardiovasc Drugs. 2018;18:157–73.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61:1402S–6S.

    Article  CAS  PubMed  Google Scholar 

  10. Appel LJ, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, Elmer PJ, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA. 2003;289:2083–93.

    PubMed  Google Scholar 

  11. Jenkins DJ, Jones PJ, Lamarche B, Kendall CW, Faulkner D, Cermakova L, et al. Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in hyperlipidemia: a randomized controlled trial. JAMA. 2011;306:831–9.

    Article  CAS  PubMed  Google Scholar 

  12. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  13. Nordisk Råd and Nordisk Ministerråd, 2005. Nordic Nutrition Recommendations NNR 2004: integrating nutrition and physical activity. Nordic Council of Ministers.

    Google Scholar 

  14. Oh R, Gilani B, Uppaluri KR. Low carbohydrate diet. StatPearls, Treasure Island; 2020.

    Google Scholar 

  15. Gomez-Delgado F, Katsiki N, Lopez-Miranda J, Perez-Martinez P. Dietary habits, lipoprotein metabolism and cardiovascular disease: from individual foods to dietary patterns. Crit Rev Food Sci Nutr. 2020;2020:1–19.

    CAS  Google Scholar 

  16. Chen CH, Yang JC, Uang YS, Lin CJ. Improved dissolution rate and oral bioavailability of lovastatin in red yeast rice products. Int J Pharm. 2013;444:18–24.

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Jiang L, Jia Z, Xin W, Yang S, Yang Q, et al. A meta-analysis of red yeast rice: an effective and relatively safe alternative approach for dyslipidemia. PLoS One. 2014;9:e98611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ye P, Lu ZL, Du BM, Chen Z, Wu YF, Yu XH, et al. Effect of xuezhikang on cardiovascular events and mortality in elderly patients with a history of myocardial infarction: a subgroup analysis of elderly subjects from the China Coronary Secondary Prevention Study. J Am Geriatr Soc. 2007;55:1015–22.

    Article  PubMed  Google Scholar 

  19. Poli A, Visioli F. Pharmacology of nutraceuticals with lipid lowering properties. High Blood Press Cardiovasc Prev. 2019;26:113–8.

    Article  CAS  PubMed  Google Scholar 

  20. Gerards MC, Terlou RJ, Yu H, Koks CH, Gerdes VE. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain – a systematic review and meta-analysis. Atherosclerosis. 2015;240:415–23.

    Google Scholar 

  21. Cicero AFG, Fogacci F, Bove M, Veronesi M, Rizzo M, Giovannini M, et al. Short-term effects of a combined nutraceutical on lipid level, fatty liver biomarkers, hemodynamic parameters, and estimated cardiovascular disease risk: a double-blind, placebo-controlled randomized clinical trial. Adv Ther. 2017;34:1966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ras RT, Geleijnse JM, Trautwein EA. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: a meta-analysis of randomised controlled studies. Br J Nutr. 2014;112:214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trautwein EA, Koppenol WP, de Jong A, Hiemstra H, Vermeer MA, Noakes M, et al. Plant sterols lower LDL-cholesterol and triglycerides in dyslipidemic individuals with or at risk of developing type 2 diabetes; a randomized, double-blind, placebo-controlled study. Nutr Diabetes. 2018;8:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Poli A, Barbagallo CM, Cicero AFG, Corsini A, Manzato E, Trimarco B, et al. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol Res. 2018;134:51–60.

    Article  CAS  PubMed  Google Scholar 

  25. Rocha VZ, Ras RT, Gagliardi AC, Mangili LC, Trautwein EA, Santos RD. Effects of phytosterols on markers of inflammation: a systematic review and meta-analysis. Atherosclerosis. 2016;248:76–83.

    Article  CAS  PubMed  Google Scholar 

  26. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegard L, Jessup W, et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014;232:346–60.

    Article  CAS  PubMed  Google Scholar 

  27. Genser B, Silbernagel G, De Backer G, Bruckert E, Carmena R, Chapman MJ, et al. Plant sterols and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J. 2012;33:444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silbernagel G, Genser B, Nestel P, Marz W. Plant sterols and atherosclerosis. Curr Opin Lipidol. 2013;24:12–7.

    Article  CAS  PubMed  Google Scholar 

  29. Banuls C, Martinez-Triguero ML, Lopez-Ruiz A, Morillas C, Lacomba R, Victor VM, et al. Evaluation of cardiovascular risk and oxidative stress parameters in hypercholesterolemic subjects on a standard healthy diet including low-fat milk enriched with plant sterols. J Nutr Biochem. 2010;21:881–6.

    Article  CAS  PubMed  Google Scholar 

  30. Granado-Lorencio F, Lagarda MJ, Garcia-Lopez FJ, Sanchez-Siles LM, Blanco-Navarro I, Alegria A, et al. Effect of beta-cryptoxanthin plus phytosterols on cardiovascular risk and bone turnover markers in post-menopausal women: a randomized crossover trial. Nutr Metab Cardiovasc Dis. 2014;24:1090–6.

    Article  CAS  PubMed  Google Scholar 

  31. Eslick GD, Howe PR, Smith C, Priest R, Bensoussan A. Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int J Cardiol. 2009;136:4–16.

    Article  PubMed  Google Scholar 

  32. Hartweg J, Farmer AJ, Perera R, Holman RR, Neil HA. Meta-analysis of the effects of n-3 polyunsaturated fatty acids on lipoproteins and other emerging lipid cardiovascular risk markers in patients with type 2 diabetes. Diabetologia. 2007;50:1593–602.

    Article  CAS  PubMed  Google Scholar 

  33. Wei MY, Jacobson TA. Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids: a systematic review and meta-analysis. Curr Atheroscler Rep. 2011;13:474–83.

    Article  CAS  PubMed  Google Scholar 

  34. Hooper L, Thompson RL, Harrison RA, Summerbell CD, Moore H, Worthington HV, et al. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Syst Rev. 2004;4:CD003177.

    Google Scholar 

  35. Berge K, Musa-Veloso K, Harwood M, Hoem N, Burri L. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels. Nutr Res. 2014;34:126–33.

    Article  CAS  PubMed  Google Scholar 

  36. Nikolic D, Katsiki N, Montalto G, Isenovic ER, Mikhailidis DP, Rizzo M. Lipoprotein subfractions in metabolic syndrome and obesity: clinical significance and therapeutic approaches. Nutrients. 2013;5:928–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation. 2000;102:1264–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kelley DS, Siegel D, Fedor DM, Adkins Y, Mackey BE. DHA supplementation decreases serum C-reactive protein and other markers of inflammation in hypertriglyceridemic men. J Nutr. 2009;139:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mori TA, Bao DQ, Burke V, Puddey IB, Beilin LJ. Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension. 1999;34:253–60.

    Article  CAS  PubMed  Google Scholar 

  40. Satoh N, Shimatsu A, Kotani K, Himeno A, Majima T, Yamada K, et al. Highly purified eicosapentaenoic acid reduces cardio-ankle vascular index in association with decreased serum amyloid A-LDL in metabolic syndrome. Hypertens Res. 2009;32:1004–8.

    Article  CAS  PubMed  Google Scholar 

  41. Alexander DD, Miller PE, Van Elswyk ME, Kuratko CN, Bylsma LC. A meta-analysis of randomized controlled trials and prospective cohort studies of eicosapentaenoic and docosahexaenoic long-chain omega-3 fatty acids and coronary heart disease risk. Mayo Clin Proc. 2017;92:15–29.

    Article  CAS  PubMed  Google Scholar 

  42. Kromhout D, Giltay EJ, Geleijnse JM. Alpha omega trial G. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26.

    Article  CAS  PubMed  Google Scholar 

  43. Bhatt DL, Steg PG, Miller M. Cardiovascular risk reduction with icosapent ethyl. reply. N Engl J Med. 2019;380:1678.

    Article  PubMed  Google Scholar 

  44. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019;380:23–32.

    Article  CAS  PubMed  Google Scholar 

  45. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;11:CD003177.

    PubMed  Google Scholar 

  46. Mori TA, Bao DQ, Burke V, Puddey IB, Watts GF, Beilin LJ. Dietary fish as a major component of a weight-loss diet: effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am J Clin Nutr. 1999;70:817–25.

    Article  CAS  PubMed  Google Scholar 

  47. Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res. 2011;50:372–87.

    Article  CAS  PubMed  Google Scholar 

  48. Du S, Jin J, Fang W, Su Q. Does fish oil have an anti-obesity effect in overweight/obese adults? A meta-analysis of randomized controlled trials. PLoS One. 2015;10:e0142652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–30.

    Article  PubMed  CAS  Google Scholar 

  50. Hunter PM, Hegele RA. Functional foods and dietary supplements for the management of dyslipidaemia. Nat Rev Endocrinol. 2017;13:278–88.

    Article  CAS  PubMed  Google Scholar 

  51. Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD012345.

    PubMed  Google Scholar 

  52. Torris C, Smastuen MC, Molin M. Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients. 2018;10(7):952.

    Article  PubMed Central  CAS  Google Scholar 

  53. Leung Yinko SS, Stark KD, Thanassoulis G, Pilote L. Fish consumption and acute coronary syndrome: a meta-analysis. Am J Med. 2014;127:848–57 e2.

    Article  PubMed  Google Scholar 

  54. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, et al. Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern Med. 2016;176:1155–66.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xun P, Qin B, Song Y, Nakamura Y, Kurth T, Yaemsiri S, et al. Fish consumption and risk of stroke and its subtypes: accumulative evidence from a meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2012;66:1199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rimm EB, Appel LJ, Chiuve SE, Djousse L, Engler MB, Kris-Etherton PM, et al. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. Circulation. 2018;138:e35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, et al. The effect of oat beta-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr. 2016;116:1369–82.

    Article  CAS  PubMed  Google Scholar 

  58. Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, et al. Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Nutr Rev. 2017;75:731–67.

    Article  PubMed  Google Scholar 

  59. Sood N, Baker WL, Coleman CI. Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr. 2008;88:1167–75.

    Article  CAS  PubMed  Google Scholar 

  60. Ho HVT, Jovanovski E, Zurbau A, Blanco Mejia S, Sievenpiper JL, Au-Yeung F, et al. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am J Clin Nutr. 2017;105:1239–47.

    Article  CAS  PubMed  Google Scholar 

  61. Wei ZH, Wang H, Chen XY, Wang BS, Rong ZX, Wang BS, et al. Time- and dose-dependent effect of psyllium on serum lipids in mild-to-moderate hypercholesterolemia: a meta-analysis of controlled clinical trials. Eur J Clin Nutr. 2009;63:821–7.

    Article  CAS  PubMed  Google Scholar 

  62. Moraru C, Mincea MM, Frandes M, Timar B, Ostafe V. A meta-analysis on randomised controlled clinical trials evaluating the effect of the dietary supplement chitosan on weight loss, lipid parameters and blood pressure. Medicina (Kaunas). 2018;54(6):109.

    Article  Google Scholar 

  63. Dong H, Zhao Y, Zhao L, Lu F. The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med. 2013;79:437–46.

    Article  CAS  PubMed  Google Scholar 

  64. Caliceti C, Franco P, Spinozzi S, Roda A, Cicero AF. Berberine: new insights from pharmacological aspects to clinical evidences in the management of metabolic disorders. Curr Med Chem. 2016;23:1460–76.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu L, Zhang D, Zhu H, Zhu J, Weng S, Dong L, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe(−/−) mice. Atherosclerosis. 2018;268:117–26.

    Article  CAS  PubMed  Google Scholar 

  66. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25:1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marungruang N, Tovar J, Bjorck I, Hallenius FF. Improvement in cardiometabolic risk markers following a multifunctional diet is associated with gut microbial taxa in healthy overweight and obese subjects. Eur J Nutr. 2018;57:2927–36.

    Article  PubMed  Google Scholar 

  68. van Nielen M, Feskens EJ, Rietman A, Siebelink E, Mensink M. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity. J Nutr. 2014;144:1423–9.

    Article  PubMed  CAS  Google Scholar 

  69. Simental-Mendia LE, Gotto AM Jr, Atkin SL, Banach M, Pirro M, Sahebkar A. Effect of soy isoflavone supplementation on plasma lipoprotein(a) concentrations: a meta-analysis. J Clin Lipidol. 2018;12:16–24.

    Article  PubMed  Google Scholar 

  70. Lou D, Li Y, Yan G, Bu J, Wang H. Soy consumption with risk of coronary heart disease and stroke: a meta-analysis of observational studies. Neuroepidemiology. 2016;46:242–52.

    Article  PubMed  Google Scholar 

  71. Nagata C, Wada K, Tamura T, Konishi K, Goto Y, Koda S, et al. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: the Takayama study. Am J Clin Nutr. 2017;105:426–31.

    Article  CAS  PubMed  Google Scholar 

  72. Talaei M, Koh WP, van Dam RM, Yuan JM, Pan A. Dietary soy intake is not associated with risk of cardiovascular disease mortality in Singapore Chinese adults. J Nutr. 2014;144:921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Giglio RV, Patti AM, Nikolic D, Li Volti G, Al-Rasadi K, Katsiki N, et al. The effect of bergamot on dyslipidemia. Phytomedicine. 2016;23:1175–81.

    Article  CAS  PubMed  Google Scholar 

  74. Toth PP, Patti AM, Nikolic D, Giglio RV, Castellino G, Biancucci T, et al. Bergamot reduces plasma lipids, atherogenic small dense LDL, and subclinical atherosclerosis in subjects with moderate hypercholesterolemia: a 6 months prospective study. Front Pharmacol. 2015;6:299.

    PubMed  Google Scholar 

  75. Flori L, Donnini S, Calderone V, Zinnai A, Taglieri I, Venturi F, et al. The nutraceutical value of olive oil and its bioactive constituents on the cardiovascular system. Focusing on main strategies to slow down its quality decay during production and storage. Nutrients. 2019;11:1962.

    Article  CAS  PubMed Central  Google Scholar 

  76. Lapointe A, Couillard C, Lemieux S. Effects of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem. 2006;17:645–58.

    Article  CAS  PubMed  Google Scholar 

  77. Jimenez-Gomez Y, Lopez-Miranda J, Blanco-Colio LM, Marin C, Perez-Martinez P, Ruano J, et al. Olive oil and walnut breakfasts reduce the postprandial inflammatory response in mononuclear cells compared with a butter breakfast in healthy men. Atherosclerosis. 2009;204:e70–6.

    Article  CAS  PubMed  Google Scholar 

  78. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13:154.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dibaba DT. Effect of vitamin D supplementation on serum lipid profiles: a systematic review and meta-analysis. Nutr Rev. 2019;77:890–902.

    Article  PubMed  Google Scholar 

  80. Giustina A, Adler RA, Binkley N, Bollerslev J, Bouillon R, Dawson-Hughes B, et al. Consensus statement from 2(nd) international conference on controversies in vitamin D. Rev Endocr Metab Disord. 2020;21:89–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ware WR. The JUPITER lipid lowering trial and vitamin D: is there a connection? Dermatoendocrinoloy. 2010;2:50–4.

    Article  CAS  Google Scholar 

  82. Dinca M, Serban MC, Sahebkar A, Mikhailidis DP, Toth PP, Martin SS, et al. Does vitamin D supplementation alter plasma adipokines concentrations? A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;107:360–71.

    Article  CAS  PubMed  Google Scholar 

  83. Nimitphong H, Samittarucksa R, Saetung S, Bhirommuang N, Chailurkit LO, Ongphiphadhanakul B. The effect of vitamin D supplementation on metabolic phenotypes in thais with prediabetes. J Med Assoc Thail. 2015;98:1169–78.

    Google Scholar 

  84. Hernandez-Camacho JD, Bernier M, Lopez-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cicero AFG, Colletti A, von Haehling S, Vinereanu D, Bielecka-Dabrowa A, Sahebkar A, et al. Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev. 2020;16:1–25.

    Google Scholar 

  86. Pirro M, Mannarino MR, Bianconi V, Simental-Mendia LE, Bagaglia F, Mannarino E, et al. The effects of a nutraceutical combination on plasma lipids and glucose: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;110:76–88.

    Article  CAS  PubMed  Google Scholar 

  87. Sahebkar A, Simental-Mendia LE, Stefanutti C, Pirro M. Supplementation with coenzyme Q10 reduces plasma lipoprotein(a) concentrations but not other lipid indices: a systematic review and meta-analysis. Pharmacol Res. 2016;105:198–209.

    Article  CAS  PubMed  Google Scholar 

  88. Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007;37:31–7.

    Article  CAS  PubMed  Google Scholar 

  89. Lei L, Liu Y. Efficacy of coenzyme Q10 in patients with cardiac failure: a meta-analysis of clinical trials. BMC Cardiovasc Disord. 2017;17:196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Larijani VN, Ahmadi N, Zeb I, Khan F, Flores F, Budoff M. Beneficial effects of aged garlic extract and coenzyme Q10 on vascular elasticity and endothelial function: the FAITH randomized clinical trial. Nutrition. 2013;29:71–5.

    Article  CAS  PubMed  Google Scholar 

  91. de Frutos F, Gea A, Hernandez-Estefania R, Rabago G. Prophylactic treatment with coenzyme Q10 in patients undergoing cardiac surgery: could an antioxidant reduce complications? A systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2015;20:254–9.

    Article  PubMed  Google Scholar 

  92. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and health. Molecules. 2016;21:264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Qin S, Huang L, Gong J, Shen S, Huang J, Ren H, et al. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J. 2017;16:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Panahi Y, Khalili N, Sahebi E, Namazi S, Reiner Z, Majeed M, et al. Curcuminoids modify lipid profile in type 2 diabetes mellitus: a randomized controlled trial. Complement Ther Med. 2017;33:1–5.

    Article  PubMed  Google Scholar 

  95. Salehi B, Del Prado-Audelo ML, Cortes H, Leyva-Gomez G, Stojanovic-Radic Z, Singh YD, et al. Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases. J Clin Med. 2020;9(3):746.

    Article  CAS  PubMed Central  Google Scholar 

  96. Di Pierro F, Bressan A, Ranaldi D, Rapacioli G, Giacomelli L, Bertuccioli A. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. Eur Rev Med Pharmacol Sci. 2015;19:4195–202.

    PubMed  Google Scholar 

  97. Patti AM, Al-Rasadi K, Katsiki N, Banerjee Y, Nikolic D, Vanella L, et al. Effect of a natural supplement containing Curcuma longa, guggul, and chlorogenic acid in patients with metabolic syndrome. Angiology. 2015;66:856–61.

    Article  CAS  PubMed  Google Scholar 

  98. Onakpoya I, Spencer E, Heneghan C, Thompson M. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2014;24:823–36.

    Article  CAS  PubMed  Google Scholar 

  99. Khalesi S, Sun J, Buys N, Jamshidi A, Nikbakht-Nasrabadi E, Khosravi-Boroujeni H. Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. Eur J Nutr. 2014;53:1299–311.

    Article  CAS  PubMed  Google Scholar 

  100. Basu A, Sanchez K, Leyva MJ, Wu M, Betts NM, Aston CE, et al. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr. 2010;29:31–40.

    Article  CAS  PubMed  Google Scholar 

  101. Chen X, He K, Wei C, Yang W, Geng Z. Green tea powder decreased egg weight through increased liver lipoprotein lipase and decreased plasma total cholesterol in an indigenous chicken breed. Animals (Basel). 2020;10(3):370.

    Article  Google Scholar 

  102. Erba D, Riso P, Bordoni A, Foti P, Biagi PL, Testolin G. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem. 2005;16:144–9.

    Article  CAS  PubMed  Google Scholar 

  103. Serban C, Sahebkar A, Antal D, Ursoniu S, Banach M. Effects of supplementation with green tea catechins on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Nutrition. 2015;31:1061–71.

    Article  CAS  PubMed  Google Scholar 

  104. Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chin Med. 2010;5:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Mousavi A, Vafa M, Neyestani T, Khamseh M, Hoseini F. The effects of green tea consumption on metabolic and anthropometric indices in patients with Type 2 diabetes. J Res Med Sci. 2013;18:1080–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Giovinazzo G, Ingrosso I, Paradiso A, De Gara L, Santino A. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food. Plant Foods Hum Nutr. 2012;67:191–9.

    Article  CAS  PubMed  Google Scholar 

  107. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, et al. Resveratrol: a double-edged sword in health benefits. Biomedicine. 2018;6(3):91.

    CAS  Google Scholar 

  108. Akbari M, Tamtaji OR, Lankarani KB, Tabrizi R, Dadgostar E, Haghighat N, et al. The effects of resveratrol on lipid profiles and liver enzymes in patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2020;19:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Simental-Mendia LE, Guerrero-Romero F. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: a randomized double-blind, placebo-controlled trial. Nutrition. 2019;58:7–10.

    Article  CAS  PubMed  Google Scholar 

  110. Christenson J, Whitby SJ, Mellor D, Thomas J, McKune A, Roach PD, et al. The effects of resveratrol supplementation in overweight and obese humans: a systematic review of randomized trials. Metab Syndr Relat Disord. 2016;14:323–33.

    Article  CAS  PubMed  Google Scholar 

  111. Jurgonski A, Juskiewicz J, Zdunczyk Z. Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia. Plant Foods Hum Nutr. 2008;63:176–82.

    Article  PubMed  Google Scholar 

  112. Kowalczyk E, Fijalkowski P, Kura M, Krzesinski P, Blaszczyk J, Kowalski J, et al. The influence of anthocyanins from Aronia melanocarpa on selected parameters of oxidative stress and microelements contents in men with hypercholesterolemia. Pol Merkur Lekarski. 2005;19:651–3.

    PubMed  Google Scholar 

  113. Castellino G, Nikolic D, Magan-Fernandez A, Malfa GA, Chianetta R, Patti AM, et al. Altilix((R)) supplement containing chlorogenic acid and luteolin improved hepatic and cardiometabolic parameters in subjects with metabolic syndrome: a 6 month randomized, double-blind, placebo-controlled study. Nutrients. 2019;11:11.

    Article  CAS  Google Scholar 

  114. Sahebkar A, Pirro M, Banach M, Mikhailidis DP, Atkin SL, Cicero AFG. Lipid-lowering activity of artichoke extracts: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;58:2549–56.

    Article  CAS  PubMed  Google Scholar 

  115. Anderson JW, Major AW. Pulses and lipaemia, short- and long-term effect: potential in the prevention of cardiovascular disease. Br J Nutr. 2002;88(Suppl 3):S263–71.

    Article  CAS  PubMed  Google Scholar 

  116. Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21:94–103.

    Article  CAS  PubMed  Google Scholar 

  117. Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chen GC, Tong X, Xu JY, Han SF, Wan ZX, Qin JB, et al. Whole-grain intake and total, cardiovascular, and cancer mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2016;104:164–72.

    Article  CAS  PubMed  Google Scholar 

  120. Langley P. Why a pomegranate? BMJ. 2000;321:1153–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem. 2000;48:4581–9.

    Article  CAS  PubMed  Google Scholar 

  122. Stowe CB. The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement Ther Clin Pract. 2011;17:113–5.

    Article  PubMed  Google Scholar 

  123. Aviram M, Dornfeld L. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis. 2001;158:195–8.

    Article  CAS  PubMed  Google Scholar 

  124. Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. 2012;32:421–7.

    Article  CAS  PubMed  Google Scholar 

  125. Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran J Basic Med Sci. 2013;16:1031–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sahebkar A, Serban C, Ursoniu S, Banach M. Effect of garlic on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of randomized controlled clinical trials. Nutrition. 2016;32:33–40.

    Article  CAS  PubMed  Google Scholar 

  127. Ried K, Fakler P. Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integr Blood Press Control. 2014;7:71–82.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gomez-Arbelaez D, Lahera V, Oubina P, Valero-Munoz M, de Las Heras N, Rodriguez Y, et al. Aged garlic extract improves adiponectin levels in subjects with metabolic syndrome: a double-blind, placebo-controlled, randomized, crossover study. Mediat Inflamm. 2013;2013:285795.

    Article  Google Scholar 

  129. Bayan L, Koulivand PH, Gorji A. Garlic: a review of potential therapeutic effects. Avicenna J Phytomed. 2014;4:1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Houston M. The role of nutrition and nutraceutical supplements in the treatment of hypertension. World J Cardiol. 2014;6:38–66.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zanetti M, Grillo A, Losurdo P, Panizon E, Mearelli F, Cattin L, et al. Omega-3 polyunsaturated fatty acids: structural and functional effects on the vascular wall. Biomed Res Int. 2015;2015:791978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Corina A, Abrudan MB, Nikolic D, Ctoi AF, Chianetta R, Castellino G, et al. Effects of aging and diet on cardioprotection and cardiometabolic risk markers. Curr Pharm Des. 2019;25:3704–14.

    Article  CAS  PubMed  Google Scholar 

  133. Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Perez-Caballero AI, Perez-Jimenez F, Lopez-Miranda J. Mediterranean diet and cardiovascular risk: beyond traditional risk factors. Crit Rev Food Sci Nutr. 2016;56:788–801.

    Article  CAS  PubMed  Google Scholar 

  134. Chiva-Blanch G, Badimon L, Estruch R. Latest evidence of the effects of the Mediterranean diet in prevention of cardiovascular disease. Curr Atheroscler Rep. 2014;16:446.

    Article  CAS  PubMed  Google Scholar 

  135. Gotsis E, Anagnostis P, Mariolis A, Vlachou A, Katsiki N, Karagiannis A. Health benefits of the Mediterranean diet: an update of research over the last 5 years. Angiology. 2015;66:304–18.

    Google Scholar 

  136. Salvia R, D'Amore S, Graziano G, Capobianco C, Sangineto M, Paparella D, et al. Short-term benefits of an unrestricted-calorie traditional Mediterranean diet, modified with a reduced consumption of carbohydrates at evening, in overweight-obese patients. Int J Food Sci Nutr. 2017;68:234–48.

    Article  CAS  PubMed  Google Scholar 

  137. Liyanage T, Ninomiya T, Wang A, Neal B, Jun M, Wong MG, et al. Effects of the Mediterranean diet on cardiovascular outcomes – a systematic review and meta-analysis. PLoS One. 2016;11:e0159252.

    Google Scholar 

  138. Rosato V, Temple NJ, La Vecchia C, Castellan G, Tavani A, Guercio V. Mediterranean diet and cardiovascular disease: a systematic review and meta-analysis of observational studies. Eur J Nutr. 2019;58:173–91.

    Article  CAS  PubMed  Google Scholar 

  139. Grosso G, Marventano S, Yang J, Micek A, Pajak A, Scalfi L, et al. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit Rev Food Sci Nutr. 2017;57:3218–32.

    Article  PubMed  Google Scholar 

  140. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Retraction and republication: primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368:1279–90. N Engl J Med 2018; 378:2441–2.

    Google Scholar 

  141. Catapano AL, Reiner Z, De Backer G, Graham I, Taskinen MR, Wiklund O, et al. ESC/EAS guidelines for the management of dyslipidaemias The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis. 2011;217:3–46.

    Article  CAS  PubMed  Google Scholar 

  142. Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82.

    Article  PubMed  Google Scholar 

  143. Chamberlain JJ, Johnson EL, Leal S, Rhinehart AS, Shubrook JH, Peterson L. Cardiovascular disease and risk management: review of the American Diabetes Association Standards of Medical Care in Diabetes 2018. Ann Intern Med. 2018;168:640–50.

    Article  PubMed  Google Scholar 

  144. Garcia-Rios A, Perez-Martinez P, Delgado-Lista J, Lopez-Miranda J, Perez-Jimenez F. Nutrigenetics of the lipoprotein metabolism. Mol Nutr Food Res. 2012;56:171–83.

    Article  CAS  PubMed  Google Scholar 

  145. Gomez-Delgado F, Alcala-Diaz JF, Garcia-Rios A, Delgado-Lista J, Ortiz-Morales A, Rangel-Zuniga O, et al. Polymorphism at the TNF-alpha gene interacts with Mediterranean diet to influence triglyceride metabolism and inflammation status in metabolic syndrome patients: from the CORDIOPREV clinical trial. Mol Nutr Food Res. 2014;58:1519–27.

    Article  CAS  PubMed  Google Scholar 

  146. Perez-Martinez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI, et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev. 2017;75:307–26.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfredi Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chianetta, R. et al. (2021). Nutraceuticals and Cardiovascular Disease. In: Cicero, A.F., Rizzo, M. (eds) Nutraceuticals and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-62632-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62632-7_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62631-0

  • Online ISBN: 978-3-030-62632-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics