Skip to main content

Nutraceuticals Supporting Heart Function in Heart Failure

  • Chapter
  • First Online:
Nutraceuticals and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Heart failure (HF) is a complex clinical syndrome that represents a major cause of morbidity and mortality in Western countries. Several nutraceuticals have shown promising clinical results in term of HF prevention as well as in the management of symptoms associated to the early stages of the disease. Clinical trials reported that the intake of some nutraceuticals (Hawthorn, Coenzyme Q10, L-carnitine, D-ribose, Carnosine, Vitamin D, Probiotics, Omega-3 PUFAs, Beet nitrates) is associated with improvements in self-perceived quality of life and/or functional parameters such as ejection fraction, stroke volume and cardiac output in HF patients, with minimal or no side effects. Those benefits tended to be greater in earlier HF stage. Evidence suggests that the supplementation with some nutraceuticals may be a useful option to improve HF management. However, in no case, the use of nutraceuticals can replace the consolidated pharmacological treatment of HF. Further long-term clinical trials are needed to investigate the effects of nutraceuticals supplementation on hard outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bozkurt B. What is new in heart failure management in 2017? Update on ACC/AHA heart failure guidelines. Curr Cardiol Rep. 2018;20(6):39. https://doi.org/10.1007/s11886-018-0978-7.

    Article  PubMed  Google Scholar 

  2. Jessup M, Marwick TH, Ponikowski P, Voors AA, Yancy CW. 2016 ESC and ACC/AHA/HFSA heart failure guideline update – what is new and why is it important? Nat Rev Cardiol. 2016;13(10):623–8. https://doi.org/10.1038/nrcardio.2016.134.

    Article  PubMed  Google Scholar 

  3. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart disease and stroke statistics-2016 Update: A report from the American Heart Association. Circulation. 2016;133:e38–e360.

    Google Scholar 

  4. Liu L, Eisen HJ. Epidemiology of heart failure and scope of the problem. Cardiol Clin. 2014;32(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  5. Maggioni AP. Epidemiology of heart failure in Europe. Heart Fail Clin. 2015;11(4):625–35.

    Article  PubMed  Google Scholar 

  6. Meyer S, Brouwers FP, Voors AA, Hillege HL, de Boer RA, Gansevoort RT, van der Harst P, Rienstra M, van Gelder IC, van Veldhuisen DJ, van Gilst WH, van der Meer P. Sex differences in new-onset heart failure. Clin Res Cardiol. 2015;104(4):342–50.

    Article  PubMed  Google Scholar 

  7. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8:30–41.

    Article  PubMed  Google Scholar 

  8. Kannel WB. Incidence and epidemiology of heart failure. Heart Fail Rev. 2000;5(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  9. ACCF/AHA. Guideline for the management of heart failure 2013. J Am Coll Cardiol. 2013;62(16):e147–239.

    Article  Google Scholar 

  10. Ponikowski P, Voors A, D Anker S, Bueno H, Cleland JGF, Coats AJS, Falk V, Ramón González-Juanatey J, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Europ Heart J. 2016;37–27, 2129–2200.

    Google Scholar 

  11. Rifai L, Silver MA. A review of the DASH diet as an optimal dietary plan for symptomatic heart failure. Prog Cardiovasc Dis. 2016;58(5):548–54. https://doi.org/10.1016/j.pcad.2015.11.001.

    Article  PubMed  Google Scholar 

  12. Rifai L, Pisano C, Hayden J, Sulo S, Silver MA. Impact of the DASH diet on endothelial function, exercise capacity, and quality of life in patients with heart failure. Proc. 2015;28(2):151–6.

    Google Scholar 

  13. Tektonidis TG, Åkesson A, Gigante B, Wolk A, Larsson SC. Adherence to a Mediterranean diet is associated with reduced risk of heart failure in men. Eur J Heart Fail. 2016;18(3):253–9. https://doi.org/10.1002/ejhf.481.

    Article  PubMed  Google Scholar 

  14. Salehi-Abargouei A, Maghsoudi Z, Shirani F, Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases – incidence: a systematic review and meta-analysis on observational prospective studies. Nutrition. 2013;29(4):611–8.

    Article  PubMed  Google Scholar 

  15. Wexler R, Pleister A, Raman SV, Borchers JR. Therapeutic lifestyle changes for cardiovascular disease. Phys Sports Med. 2012;40:109–15.

    Article  Google Scholar 

  16. Coggan AR, Peterson LR. Dietary nitrate and skeletal muscle contractile function in heart failure. Curr Heart Fail Rep. 2016;13(4):158–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hare JM, Stamler JS. NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest. 2005;115:509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kapil V, Weitzberg E, Lundberg JO. Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health. Nitric Oxide. 2014;38:45–57.

    Article  CAS  PubMed  Google Scholar 

  19. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.

    Article  CAS  PubMed  Google Scholar 

  20. Lundberg JO, Carlstrom M, Larsen FJ, Weitzberg E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc Res. 2011;89:525–32.

    Article  CAS  PubMed  Google Scholar 

  21. Omar SA, Artime E, Webb AJ. A comparison of organic and inorganic nitrates/nitrites. Nitric Oxide-Biol Chem. 2012;26:229–40.

    Article  CAS  Google Scholar 

  22. Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, LeWinter MM, Joseph SM, Shah SJ, Semigran MJ, Felker GM, Cole RT, Reeves GR, Tedford RJ, Tang WH, McNulty SE, Velazquez EJ, Shah MR, Braunwald E, Heart Failure Clinical Research Network NHLBI. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373(24):2314–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller GD, Marsh AP, Dove RW, Beavers D, Presley T, Helms C, Bechtold E, King SB, Kim-Shapiro D. Plasma nitrate and nitrite are increased by a high-nitrate supplement but not by high-nitrate foods in older adults. Nutr Res. 2012;32:160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lansley K, Winyard P, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Gilchrist M, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol. 2011;110:591–600.

    Article  CAS  PubMed  Google Scholar 

  25. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107:1144–55.

    Article  CAS  PubMed  Google Scholar 

  26. Hoon MW, Johnson NA, Chapman PG, Burke LM. The effect of nitrate supplementation on exercise performance in healthy individuals: a systematic review and meta-analysis. Int J Sport Nutr Exerc Metab. 2014;23:522–32.

    Article  Google Scholar 

  27. Kelly J, Fulford J, Vanhatalo A, Blackwell JR, French O, Bailey SJ, Gilchrist M, Winyard PG, Jones AM. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am J Physiol Regul Integr Comp Physiol. 2013;304:R73–83.

    Article  CAS  PubMed  Google Scholar 

  28. Balsalobre-Fernández C, Romero-Moraleda B, Cupeiro R, et al. The effects of beetroot juice supplementation on exercise economy, rating of perceived exertion and running mechanics in elite distance runners: a double-blinded, randomized study. PLoS One. 2018;13(7):e0200517. https://doi.org/10.1371/journal.pone.0200517. eCollection 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, Doulias PT, Ischiropoulos H, Townsend RR, Margulies KB, Cappola TP, Poole DC, Chirinos JA. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015;131:371–80.

    Article  CAS  PubMed  Google Scholar 

  30. Coggan AR, Leibowitz JL, Spearie CA, Kadkhodayan A, Thomas DP, Ramamurthy S, Mahmood K, Park S, Waller S, Farmer M, Peterson LR. Acute dietary nitrate intake improves muscle contractile function in patients with heart failure: a double-blind, placebo-controlled, Randomized Trial. Circ Heart Fail. 2015;85:914–20.

    Article  CAS  Google Scholar 

  31. Eggebeen J, Kim-Shapiro DB, Haykowsky M, Morgan TM, Basu S, Brubaker P, Rejeski J, Kitzman DW. One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2016;4(6):428–37.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Coggan AR, Broadstreet SR, Mahmood K. Dietary nitrate increases VO2peak and performance but does not alter ventilation or efficiency in patients with heart failure with reduced ejection fraction. J Card Fail. 2018;24(2):65–73.

    Article  CAS  PubMed  Google Scholar 

  33. Shaltout HA, Eggebeen J, Marsh AP, Miguel-Carrasco JL, Arias JL, Arévalo M, Mate A, Aramburu O, Vázquez CM. Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction. Nitric Oxide. 2017;69:78–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bahadoran Z, Mirmiran P, Kabir A, Azizi F, Ghasemi A. The Nitrate-independent blood pressure-lowering effect of beetroot juice: a systematic review and meta-analysis. Adv Nutr. 2017 Nov 15;8(6):830–8. https://doi.org/10.3945/an.117.016717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernández-Murga L, Tarín JJ, García-Perez MA, Cano A. The impact of chocolate on cardiovascular health. Maturitas. 2011;69(4):312–21.

    Article  PubMed  CAS  Google Scholar 

  36. Oracz J, Zyzelewicz D, Nebesny E. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review. Crit Rev Food Sci Nutr. 2015;55:1176–92.

    Article  CAS  PubMed  Google Scholar 

  37. Ortega N, Romero MP, Macià A, Reguant J, Anglès N, Morelló JR, Motilva MJ. Obtention and characterization of phenolic extracts from different cocoa sources. J Agric Food Chem. 2008;56(20):9621–7.

    Article  CAS  PubMed  Google Scholar 

  38. Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A. 2006;103:1024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heiss C, Jahn S, Taylor M, Real WM, Angeli FS, Wong ML, Amabile N, Prasad M, Rassaf T, Ottaviani JI, Mihardja S, Keen CL, Springer ML, Boyle A, Grossman W, Glantz SA, Schroeter H, Yeghiazarians Y. Improvement of endothelial function with dietary flavanols is associated with mobilization of circulating angiogenic cells in patients with coronary artery disease. J Am Coll Cardiol. 2010;56:218–24.

    Article  CAS  PubMed  Google Scholar 

  40. Gong F, Yao S, Wan J, Chocolate Consumption GX. Risk of heart failure: a meta-analysis of prospective studies. Nutrients. 2017;9(4):402.

    Article  PubMed Central  CAS  Google Scholar 

  41. Steinhaus DA, Mostofsky E, Levitan EB, Dorans KS, Håkansson N, Wolk A, Mittleman MA. Chocolate intake and incidence of heart failure: findings from the cohort of Swedish men. Am Heart J. 2017;183:18–23.

    Article  PubMed  Google Scholar 

  42. Petrone AB, Gaziano JM, Djousse L. Chocolate consumption and risk of heart failure in the Physicians’ Health Study. Eur J Heart Fail. 2014;16:1372–6.

    Article  PubMed  Google Scholar 

  43. De Palma R, Sotto I, Wood EG, Khan NQ, Butler J, Johnston A, Rothman MT, Corder R. Cocoa flavanols reduce N-terminal pro-B-type natriuretic peptide in patients with chronic heart failure. ESC Heart Fail. 2016;3(2):97–106.

    Article  PubMed  Google Scholar 

  44. Flammer AJ, Sudano I, Wolfrum M, Thomas R, Enseleit F, Périat D, Kaiser P, Hirt A, Hermann M, Serafini M, Lévêques A, Lüscher TF, Ruschitzka F, Noll G, Corti R. Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur Heart J. 2012;33(17):2172–80.

    Article  CAS  PubMed  Google Scholar 

  45. Taub PR, Ramirez-Sanchez I, Patel M, Higginbotham E, Moreno-Ulloa A, Román-Pintos LM, Phillips P, Perkins G, Ceballos G, Villarreal F. Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: underlying mechanisms. A double blind, randomized, placebo controlled trial. Food Funct. 2016;7(9):3686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamed MS, Gambert S, Bliden KP, Bailon O, Singla A, Antonino MJ, Hamed F, Tantry US, Gurbel PA. Dark chocolate effect on platelet activity, C-reactive protein and lipid profile: a pilot study. South Med J. 2008;101(12):1203–8.

    Article  PubMed  Google Scholar 

  47. Mursu J, Voutilainen S, Nurmi T, Rissanen TH, Virtanen JK, Kaikkonen J, Nyyssönen K, Salonen JT. Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic Biol Med. 2004;37(9):1351–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ludovici V, Barthelmes J, Nägele MP, Enseleit F, Ferri C, Flammer AJ, Ruschitzka F, Sudano I. Cocoa, blood pressure, and vascular function. Front Nutr. 2017;4:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB, Cassidy A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95(3):740–51.

    Article  CAS  PubMed  Google Scholar 

  50. Shrime MG, Bauer SR, McDonald AC, Chowdhury NH, Coltart CE, Ding EL. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J Nutr. 2011;141(11):1982–8.

    Article  CAS  PubMed  Google Scholar 

  51. Schwinger RH, Pietsch M, Frank K, Brixius K. Crataegus special extract WS 1442 increases force of contraction in human myocardium cAMP-independently. J Cardiovasc Pharmacol. 2000;35(5):700–7. https://doi.org/10.1097/00005344-200005000-00004.

    Article  CAS  PubMed  Google Scholar 

  52. Münch G, Brixius K, Frank K, Erdmann EWS. 1442 (extract of Crataegus species) increases force of contraction in human failing myocardium by inhibition of the Na+/K+-ATPase. Circulation. 1997;96(S):I–729. Abstract No. 4090

    Google Scholar 

  53. Brixius K, Willms S, Napp A, Tossios P, Ladage D, Bloch W, Mehlhorn U, Schwinger RH. Crataegus special extract WS 1442 induces an endothelium-dependent, NO-mediated vasorelaxation via eNOS-phosphorylation at serine 1177. Cardiovasc Drugs Ther. 2006;20(3):177–84. https://doi.org/10.1007/s10557-006-8723-7.

    Article  PubMed  Google Scholar 

  54. Anselm E, Socorro VF, Dal-Ros S, Schott C, Bronner C, Schini-Kerth VB. Crataegus special extract WS 1442 causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of endothelial NO synthase but not via activation of estrogen receptors. J Cardiovasc Pharmacol. 2009;53(3):253–60. https://doi.org/10.1097/FJC.0b013e31819ccfc9.

    Article  CAS  PubMed  Google Scholar 

  55. Willer EA, Malli R, Bondarenko AI, Zahler S, Vollmar AM, Graier WF, Fürst R. The vascular barrier protecting hawthorn extract WS® 1442 raises endothelial calcium levels by inhibition of SERCA and activation of the IP3 pathway. J Mol Cell Cardiol. 2012;53(4):567–77.

    Article  CAS  PubMed  Google Scholar 

  56. Holubarsch CJ, Colucci WS, Meinertz T, Gaus W, Tendera M. Survival and Prognosis: Investigation of Crataegus Extract WS 1442 in congestive heart failure (SPICE)—rationale, study design and study protocol. Eur J Heart Fail. 2000;2(4):431–7.

    Article  CAS  PubMed  Google Scholar 

  57. Holubarsch CJ, Colucci WS, Meinertz T, Gaus W, Tendera M. The efficacy and safety of Crataegus extract WS 1442 in patients with heart failure: the SPICE trial. Eur J Heart Fail. 2008;10(12):1255–63.

    Article  PubMed  Google Scholar 

  58. Tauchert M. Efficacy and safety of Crataegus extract WS 1442 in comparison with placebo in patients with chronic stable New York Heart Association class-III heart failure. Am Heart J. 2002;143(5):910–5.

    Article  CAS  PubMed  Google Scholar 

  59. Pittler MH, Guo R, Ernst E. Hawthorn extract for treating chronic heart failure. Cochrane Database Syst Rev. 2008;1:CD005312.

    Google Scholar 

  60. Eggeling T, Regitz-Zagrosek V, Zimmermann A, Burkart M. Baseline severity but not gender modulates quantified Crataegus extract effects in early heart failure--a pooled analysis of clinical trials. Phytomedicine. 2011;18(14):1214–9.

    Article  PubMed  Google Scholar 

  61. Wang J, Xiong X, Feng B. Effect of crataegus usage in cardiovascular disease prevention: an evidence-based approach. Evid Based Complement Alternat Med. 2013;2013:149363.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Koch E, Malek FA. Standardized extracts from hawthorn leaves and flowers in the treatment of cardiovascular disorders--preclinical and clinical studies. Planta Med. 2011;77(11):1123–8.

    Article  CAS  PubMed  Google Scholar 

  63. Daniele C, Mazzanti G, Pittler MH, Ernst E. Adverse-event profile of Crataegus spp.: a systematic review. Drug Saf. 2006;29(6):523–35. https://doi.org/10.2165/00002018-200629060-00005.

    Article  CAS  PubMed  Google Scholar 

  64. Cicero AF, Colletti A. Nutraceuticals and dietary supplements to improve quality of life and outcomes in heart failure patients. Curr Pharm Des. 2017;23(8):1265–72.

    Article  CAS  PubMed  Google Scholar 

  65. Saini R. Coenzyme Q10: the essential nutrient. J Pharm Bioallied Sci. 2011;3(3):466–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Menke T, Niklowitz P, de Sousa G, Reinehr T, Andler W. Comparison of coenzyme Q10 plasma levels in obese and normal weight children. Clin Chim Acta. 2004;349(1-2):121–7.

    Article  CAS  PubMed  Google Scholar 

  67. Littarru GP, Tiano L. Clinical aspects of coenzyme Q10: an update. Nutrition. 2010;26:250–4.

    Article  CAS  PubMed  Google Scholar 

  68. Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007;37:31–7.

    Article  CAS  PubMed  Google Scholar 

  69. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Florkowski CM, Molyneux SL, Young JM. Coenzyme Q10 and congestive heart failure: an evolving evidence base. Kardiol Pol. 2015;73(2):73–9.

    Article  PubMed  Google Scholar 

  71. Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci U S A. 1985;82:901–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kitamura N, Yamaguchi A, Otaki M, Sawatani O, Minoji T, Tamura H, Atobe M. Myocardial tissue level of coenzyme Q10 in patients with cardiac failure. Biomedical and Clinical Aspects of Coenzyme Q. 1984;4:221–9.

    Google Scholar 

  73. Judy WV, Stogsdill WW, Folkers K. Myocardial preservation by therapy with coenzyme Q10 during heart surgery. Clin Investig. 1993;71(S):155–61.

    Google Scholar 

  74. Weber C, Bysted A, Hłlmer G. The coenzyme Q10 content of the average Danish diet. Int J Vitam Nutr Res. 1997;67(2):123–9.

    CAS  PubMed  Google Scholar 

  75. Onur S, Niklowitz P, Jacobs G, et al. Association between serum level of ubiquinol and NT-proBNP, a marker for chronic heart failure, in healthy elderly subjects. Biofactors. 2015;41(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  76. Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, Alehagen U, Steurer G, Littarru GP, Q-SYMBIO Study Investigators. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2014;2(6):641–9.

    Article  PubMed  Google Scholar 

  77. Lei L, Liu Y. Efficacy of coenzyme Q10 in patients with cardiac failure: a meta-analysis of clinical trials. BMC Cardiovasc Disord. 2017;17(1):196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fotino AD, Thompson-Paul AM, Bazzano LA. Effect of coenzyme Q10 supplementation on heart failure: a meta-analysis. Am J Clin Nutr. 2013;97(2):268–75.

    Article  CAS  PubMed  Google Scholar 

  79. Sander S, Coleman CI, Patel AA, Kluger J, White CM. The impact of coenzyme Q10 on systolic function in patients with chronic heart failure. J Card Fail. 2006;12(6):464–72.

    Article  CAS  PubMed  Google Scholar 

  80. Belardinelli R, Mucaj A, Lacalaprice F, Solenghi M, Principi F, Tiano L, Littarru GP. Coenzyme Q10 improves contractility of dysfunctional myocardium in chronic heart failure. Biofactors. 2005;25:137–45.

    Article  CAS  PubMed  Google Scholar 

  81. Munkholm H, Hansen HH, Rasmussen K. Coenzyme Q10 treatment in serious heart failure. Biofactors. 1999;9:285–9.

    Article  CAS  PubMed  Google Scholar 

  82. Keogh A, Fenton S, Leslie C, Aboyoun C, Macdonald P, Zhao YC, Bailey M, Rosenfeldt F. Randomised double-blind, placebo-controlled trial of coenzyme Q, therapy in class II and III systolic heart failure. Heart Lung Circ. 2003;12:135–41.

    Article  PubMed  Google Scholar 

  83. Langsjoen PH. Lack of effect of coenzyme Q on left ventricular function in patients with congestive heart failure. J Am Coll Cardiol. 2000;35:816–7.

    Article  CAS  PubMed  Google Scholar 

  84. Sharifi N, Tabrizi R, Moosazadeh M, Mirhosseini N, Lankarani KB, Akbari M, Chamani M, Kolahdooz F, Asemi Z. The effects of coenzyme Q10 supplementation on lipid profiles among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des. 2018; https://doi.org/10.2174/1381612824666180406104516.

  85. Sahebkar A, Simental-Mendia LE, Stefanutti C, Pirro M. Supplementation with coenzyme Q10 reduces plasma lipoprotein(a) concentrations but not other lipid indices: a systematic review and meta-analysis. Pharmacol Res. 2016;105:198–209.

    Article  CAS  PubMed  Google Scholar 

  86. Alehagen U, Johansson P, Aaseth J, Alexander J, Brismar K. Increase in insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 after supplementation with selenium and coenzyme Q10. A prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. PLoS One. 2017;12:e0178614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;119:128–36.

    Article  CAS  PubMed  Google Scholar 

  88. Zhai J, Bo Y, Lu Y, Liu C, Zhang L. Effects of coenzyme Q10 on markers of inflammation: a systematic review and meta-analysis. PLoS One. 2017;12:e0170172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. de Frutos F, Gea A, Hernandez-Estefania R, Rabago G. Prophylactic treatment with coenzyme Q10 in patients undergoing cardiac surgery: could an antioxidant reduce complications? a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2015;20:254–9.

    Article  PubMed  Google Scholar 

  90. Pauly DF, Pepine CJ. D-ribose as a supplement for cardiac energy metabolism. J Cardiovasc Pharmacol Therapeut. 2000;5(4):249–58. 11

    Article  CAS  Google Scholar 

  91. JA SC, Bianco RW, Schneider JR, Mahoney JR Jr, Tveter K, Einzig S, Foker JE. Enhanced high energy phosphate recovery with ribose infusion after global myocardial ischemia in a canine model. J Surg Res. 1989;46(2):157–62.

    Article  Google Scholar 

  92. Zimmer HG. Normalization of depressed heart function in rats by ribose. Science. 1983;220(4592):81–2.

    Article  CAS  PubMed  Google Scholar 

  93. Schneider J, St Cyr J, Mahoney J. Recovery of ATP and return of function after global ischemia. Circulation. 1985;72(Suppl III):298.

    Google Scholar 

  94. Omran H, Illien S, MacCarter D, St Cyr J, Lüderitz B. D-ribose improves diastolic function and quality of life in congestive heart failure patients: a prospective feasibility study. Eur J Heart Fail. 2003;5:615–9.

    Article  CAS  PubMed  Google Scholar 

  95. Vijay N, MacCarter D, Shecterle LM. D-ribose benefits heart failure patients. J Med Food. 2008;11(1):199–200.

    Article  CAS  PubMed  Google Scholar 

  96. Bayram M, St Cyr JA, Abraham WT. D-ribose aids heart failure patients with preserved ejection fraction and diastolic dysfunction: a pilot study. Ther Adv Cardiovasc Dis. 2015;9(3):56–65.

    Article  CAS  PubMed  Google Scholar 

  97. Pliml W, von Arnim T, Stablein A, Hofmann H, Zimmer HG, Erdmann E. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet. 1992;340:507–10.

    Article  CAS  PubMed  Google Scholar 

  98. Perkowski D, Wagner S, Marcus A. D-ribose improves cardiac indices in patients undergoing “off” pump coronary arterial revascularization. J Surg Res. 2007;137(2):295.

    Article  Google Scholar 

  99. Vance R, Einzig S, Kreisler K. D-ribose maintains ejection fraction following aortic valve surgery. FASEB J. 2000;14(4):A419. (NIENTE LAVORO INTEGRALE?)

    Google Scholar 

  100. Jimenez K, Kulnigg-Dabsch S, Gasche C. Management of Iron Deficiency Anemia. Gastroenterol Hepatol. 2015;11(4):241–50.

    Google Scholar 

  101. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, Borodulin-Nadzieja L, von Haehling S, Doehner W, Banasiak W, Polonski L, Filippatos G, Anker SD, Ponikowski P. Iron deficiency predicts impaired exercise capacity in patients with systolic chronic heart failure. J Card Fail. 2011;17:899–906.

    Article  CAS  PubMed  Google Scholar 

  102. Tkaczyszyn M, Comín-Colet J, Voors AA, van Veldhuisen DJ, Enjuanes C, Moliner Borja P, Rozentryt P, Poloński L, Banasiak W, Ponikowski P, van der Meer P, Jankowska EA. Iron deficiency and red cell indices in patients with heart failure. Eur J Heart Fail. 2017;20:114–22.

    Article  PubMed  CAS  Google Scholar 

  103. Van Aelst LNL, Abraham M, Sadoune M, Lefebvre T, Manivet P, Logeart D. Iron status and inflammatory biomarkers in patients with acutely decompensated heart failure: Early in-hospital phase and 30-day follow-up. Eur J Heart Fail. 2017;19:1075–6.

    Article  PubMed  CAS  Google Scholar 

  104. Cohen-Solal A, Damy T, Hanon O, Terbah M, Laperche T, Kerebel S. High prevalence of iron deficiency in patients admitted for acute decompensated heart failure: A french study (CardioFer). J Am Coll Cardiol. 2014;63:A779. pp. Presentation Number: 1114-183. (mai pubblicato in extensor???)

    Article  Google Scholar 

  105. Okonko DO, Mandal AK, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure: prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58:1241–51.

    Article  CAS  PubMed  Google Scholar 

  106. Ganz T, Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol. 2006;290:G199–203.

    Article  CAS  PubMed  Google Scholar 

  107. Hughes CM, Woodside JV, McGartland C, Roberts MJ, Nicholls DP, McKeown PP. Nutritional intake and oxidative stress in chronic heart failure. Nutr Metab Cardiovasc Dis. 2012;22:376–82.

    Article  CAS  PubMed  Google Scholar 

  108. Lewis GD, Malhotra R, Hernandez AF, McNulty SE, Smith A, Felker GM, Tang WHW, LaRue SJ, Redfield MM, Semigran MJ, Givertz MM, Van Buren P, Whellan D, Anstrom KJ, Shah MR, Desvigne-Nickens P, Butler J, Braunwald E, NHLBI Heart Failure Clinical Research Network. Effect of oral iron repletion on exercise capacity in patients with heart failure with reduced ejection fraction and iron deficiency: The IRONOUT HF randomized clinical trial. JAMA. 2017;317:1958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McDonagh T, Macdougall IC. Iron therapy for the treatment of iron deficiency in chronic heart failure: Intravenous or oral? Eur J Heart Fail. 2015;17:248–62.

    Article  CAS  PubMed  Google Scholar 

  110. El-Hattab AW, Scaglia F. Disorders of carnitine biosynthesis and transport. Mol Genet Metab. 2015;116:107–12.

    Article  CAS  PubMed  Google Scholar 

  111. Katz AM. Is the failing heart energy depleted? Cardiol Clin. 1998;16(4):633–44. https://doi.org/10.1016/S0733-8651(05)70040-0.

    Article  CAS  PubMed  Google Scholar 

  112. Blanca AJ, Ruiz-Armenta MV, Zambrano S, Miguel-Carrasco JL, Arias JL, Arévalo M, Mate A, Aramburu O, Vázquez CM. Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: protective role of L-carnitine. Toxicol Lett. 2016;241:9–18.

    Article  CAS  PubMed  Google Scholar 

  113. Omori Y, Ohtani T, Sakata Y, Mano T, Takeda Y, Tamaki S, Tsukamoto Y, Kamimura D, Aizawa Y, Miwa T, Komuro I, Soga T, Yamamoto K. L-Carnitine prevents the development of ventricular fibrosis and heart failure with preserved ejection fraction in hypertensive heart disease. J Hypertens. 2012;30(9):1834–44.

    Article  CAS  PubMed  Google Scholar 

  114. Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab. 2010;7:30. https://doi.org/10.1186/1743-7075-7-30.

    Article  CAS  Google Scholar 

  115. Orlandi A, Francesconi A, Ferlosio A, Di Lascio A, Marcellini M, Pisano C, Spagnoli LG. Propionyl-L-carnitine prevents age-related myocardial remodeling in the rabbit. J Cardiovasc Pharmacol. 2007;50(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  116. Dzugkoev SG, Mozhaeva IV, Otiev MA, Margieva OI, Dzugkoeva FS. Effect of L-carnitine, afobazole and their combination with L-arginine on biochemical and histological indices of endothelial dysfunctions in cobalt intoxication in rats. Patologicheskaia fiziologiia i eksperimental’naia terapiia. 2015;59(2):70–5.

    CAS  PubMed  Google Scholar 

  117. Koc A, Ozkan T, Karabay AZ, Sunguroglu A, Aktan F. Effect of L-carnitine on the synthesis of nitric oxide in RAW 264·7 murine macrophage cell line. Cell Biochem Funct. 2011;29(8):679–85. https://doi.org/10.1002/cbf.1807.

    Article  CAS  PubMed  Google Scholar 

  118. DiNicolantonio JJ, Lavie CJ, Fares H, Menezes AR, O’Keefe JH. L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin Proc. 2013;88(6):544–51.

    Article  CAS  PubMed  Google Scholar 

  119. Song X, Qu H, Yang Z, Rong J, Cai W, Zhou H. Efficacy and safety of L-carnitine treatment for chronic heart failure: a meta-analysis of randomized controlled trials. Biomed Res Int. 2017;2017:6274854.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mazidi M, Rezaie P, Banach M. Impact of L-carnitine on C-reactive protein: a systematic review and meta-analysis of 10 randomized control trials with 925 patients. Presentation at 2nd CPPEI Congress in Vienna, July 2017.

    Google Scholar 

  121. Pooyandjoo M, Nouhi M, Shab-Bidar S, Djafarian K, Olyaeemanesh A. The effect of (L-) carnitine on weight loss in adults: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2016;17:970–6.

    Article  CAS  PubMed  Google Scholar 

  122. Serban MC, Sahebkar A, Mikhailidis DP, Toth PP, Jones SR, Muntner P, Blaha MJ, Andrica F, Martin SS, Borza C, Lip GY, Ray KK, Rysz J, Hazen SL, Banach M. Impact of L-carnitine on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2016;6:19188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93:1803–45.

    Article  CAS  PubMed  Google Scholar 

  124. Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39:321–33.

    Article  CAS  PubMed  Google Scholar 

  125. Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A. 1988;85:3175–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kang JH, Kim KS, Choi SY, Kwon HY, Won MH, Kang TC. Protective effects of carnosine, homocarnosine and anserine against peroxyl radical-mediated Cu,Zn-superoxide dismutase modification. Biochim Biophys Acta. 2002;1570(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  127. Pavlov AR, Revina AA, Dupin AM, Boldyrev AA, Yaropolov AI. The mechanism of interaction of carnosine with superoxide radicals in water solutions. Biochim Biophys Acta. 1993;1157:304–12.

    Article  CAS  PubMed  Google Scholar 

  128. Zaloga GP, Roberts PR, Black KW, Lin M, Zapata-Sudo G, Sudo RT, Nelson TE. Carnosine is a novel peptide modulator of intracellular calcium and contractility in cardiac cells. Am J Physiol. 1997;272(1 Pt 2):H462–8.

    CAS  PubMed  Google Scholar 

  129. Bokeriya LA, Boldyrev AA, Movsesyan RR, Alikhanov SA, Arzumanyan ES, Nisnevich ED, Artyukhina TV, Serov RA. Cardioprotective effect of histidine-containing dipeptides in pharmacological cold cardioplegia. Bull Exp Biol Med. 2008;145:323–7.

    Article  CAS  PubMed  Google Scholar 

  130. Lombardi C, Carubelli V, Lazzarini V, Vizzardi E, Quinzani F, Guidetti F, Rovetta R, Nodari S, Gheorghiade M, Metra M. Effects of oral amino acid supplements on functional capacity in patients with chronic heart failure. Clin Med Insights Cardiol. 2014;8:39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rosenfeldt FL. Metabolic supplementation with orotic acid and magnesium orotate. Cardiovasc Drugs Ther. 1998;12(Suppl 2):147–52.

    Article  CAS  PubMed  Google Scholar 

  132. Stepura OB, Martynow AI. Magnesium orotate in severe congestive heart failure (MACH). Int J Cardiol. 2009;134:145–7.

    Article  CAS  PubMed  Google Scholar 

  133. McCarty MF, Di Nicolantonio JJ. β-Alanine and orotate as supplements for cardiac protection. Open Heart. 2014;1(1):e000119.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Artioli GG, Gualano B, Smith A, Stout J, Lancha AH Jr. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc. 2010;42:1162–73.

    Article  CAS  PubMed  Google Scholar 

  135. Decombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff T. Effect of slow-release beta-alanine tablets on absorption kinetics and paresthesia. AminoAcids. 2012;43:67–76.

    CAS  Google Scholar 

  136. Rude RK. Physiology of magnesium metabolism and the important role of magnesium in potassium deficiency. Am J Cardiol. 1989;63:31–4.

    Article  Google Scholar 

  137. Gattlieb SS. Importance of magnesium in congestive heart failure. Am J Cardiol. 1989;63:39–42.

    Article  Google Scholar 

  138. Ralston MA, Mumane MR, Unverferth DV, Leier CV. Serum and tissue magnesium concentrations in patients with heart failure and serious ventricular arrhythmias. Ann Intern Med. 1990;113:841–6.

    Article  CAS  PubMed  Google Scholar 

  139. Douban S, Brodsky MA, Whang DD, Whang R. Significance of magnesium congestive heart failure. Am Heart J. 1996;132:664–71.

    Article  CAS  PubMed  Google Scholar 

  140. Wester PO. Electrolyte balance in heart failure and the role of magnesium ions. Am J Cardiol. 1992;70:44–9.

    Article  CAS  Google Scholar 

  141. Wu X, Ackermann U, Sonnenberg H. Potassium depletion and salt-sensitive hypertension in DAHL rats: effect on calcium, magnesium, and phosphate excretions. Clin Exp Hypertens. 1995;17:989–1008.

    Article  CAS  PubMed  Google Scholar 

  142. Douban S, Brodsky MA, Whang DD, Whang R. Significance of magnesium in congestive heart failure. Am Heart J. 1996;132(3):664–71.

    Article  CAS  PubMed  Google Scholar 

  143. Witte KKA, Nikitin NP, Parker AC, von Haehling S, Volk H-D, Anker SD, Clark AL, Cleland JGF. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J. 2005;26:2238–44.

    Article  CAS  PubMed  Google Scholar 

  144. Almoznino-Sarafian D, Sarafian G, Berman S, Shteinshnaider M, Tzur I, Cohen N, Gorelik O. Magnesium administration may improve heart rate variability in patients with heart failure. Nutr Metab Cardiovasc Dis. 2009;19:641–5.

    Article  CAS  PubMed  Google Scholar 

  145. He K, Liu K, Daviglus ML, Morris SJ, Loria CM, Van Horn L, Jacobs DR, Savage PJ. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation. 2006;113:1675–82.

    Article  CAS  PubMed  Google Scholar 

  146. Song Y, He K, Levitan EB, Manson JE, Liu S. Effects of oral magnesium supplementation on glycaemic control in type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med. 2006;23:1050–6.

    Article  CAS  PubMed  Google Scholar 

  147. Lee SH, Miller ER, Guallar E, Singh VK, Appel LJ, Klag MJ. The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials. Am J Hypertens. 2002;15:691–6.

    Article  Google Scholar 

  148. Misialek JR, Lopez FL, Lutsey PL, Huxley RR, Peacock JM, Chen LY, Soliman EZ, Agarwal SK, Alonso A. Serum and dietary magnesium and incidence of atrial fibrillation in whites and in African Americans; Atherosclerosis Risk in Communities (ARIC) Study. Circ J. 2013;77:323–9.

    Article  CAS  PubMed  Google Scholar 

  149. Gottlieb SS, Baruch L, Kukin ML, Bemstein JL, Fisher ML, Packer M. Prognostic importance of the serum magnesium concentration in patients with congestive heart failure. J Am Cardiol. 1990;6:827–83.

    Article  Google Scholar 

  150. Altura BM, Altura BT. Biochemistry and pathophysiology of congestive heart failure: is there a role for magnesium. Magnesium. 1986;5:134–43.

    CAS  PubMed  Google Scholar 

  151. Lutsey PL, Alonso A, Michos ED, Loehr LR, Astor BC, Coresh J, Folsom AR. Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2014;100(3):756–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Arinzon Z, Peisakh A, Schrire S, Berner YN. Prevalence of hypomagnesemia (HM) in a geriatric long-term care (LTC) setting. Arch Gerontol Geriatr. 2010;51:36–40.

    Article  CAS  PubMed  Google Scholar 

  153. Adamopoulos C, Pitt B, Sui X, Love TE, Zannad F, Ahmed A. Low serum magnesium and cardiovascular mortality in chronic heart failure: a propensity-matched study. Int J Cardiol. 2009;136:270–7.

    Article  PubMed  Google Scholar 

  154. Wannamethee SG, Papacosta O, Lennon L, Whincup PH. Serum magnesium and risk of incident heart failure in older men: The British Regional Heart Study. Eur J Epidemiol. 2018;33(9):873–82. https://doi.org/10.1007/s10654-018-0388-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Taveira TH, Ouellette D, Gulum A, Choudhary G, Eaton CB, Liu S, Wu WC. Relation of magnesium intake with cardiac function and heart failure hospitalizations in Black adults: the Jackson heart study. Circ Heart Fail. 2016;9(4):e002698.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Song EK, Kang SM. Micronutrient deficiency independently predicts adverse health outcomes in patients with heart failure. J Cardiovasc Nurs. 2017;32(1):47–53.

    Article  PubMed  Google Scholar 

  157. Angkananard T, Anothaisintawee T, Eursiriwan S, Gorelik O, McEvoy M, Attia J, Thakkinstian A. The association of serum magnesium and mortality outcomes in heart failure patients: a systematic review and meta-analysis. Medicine. 2016;95(50):e5406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lopez FL, Agarwal SK, Grams ME, Loehr LR, Soliman EZ, Lutsey PL, Chen LY, Huxley RR, Alonso A. Relation of serum phosphorus levels to the incidence of atrial fibrillation (from the Atherosclerosis Risk in Communities [ARIC] Study). Am J Cardiol. 2013;111:857–62.

    Article  CAS  PubMed  Google Scholar 

  159. Khan AM, Lubitz SA, Sullivan LM, Sun JX, Levy D, Vasan RS, Magnani JW, Ellinor PT, Benjamin EJ, Wang TJ. Low serum magnesium and the development of atrial fibrillation in the community: the Framingham Heart Study. Circulation. 2013;127:33–8.

    Article  CAS  PubMed  Google Scholar 

  160. Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, D’Agostino RB, Murabito JM, Kannel WB, Benjamin EJ. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920–5.

    Article  PubMed  Google Scholar 

  161. Chamberlain AM, Redfield MM, Alonso A, Weston SA, Roger VL. Atrial fibrillation and mortality in heart failure: a community study. Circ Heart Fail. 2011;4:740–6.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Rude RK. Magnesium. In: Coates PM, Betz JM, Blackman MR, Cragg GM, editors. Encyclopedia of dietary supplements. New York: Informa Healthcare; 2010. p. 527–37.

    Chapter  Google Scholar 

  163. Fang X, Wang K, Han D, He X, Wei J, Zhao L, Imam MU, Ping Z, Li Y, Xu Y, Min J, Wang F. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. BMC Med. 2016;14(1):210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Urso C, Brucculeri S, Caimi G. Acid-base and electrolyte abnormalities in heart failure: pathophysiology and implications. Heart Fail Rev. 2015;20(4):493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Khairallah RJ, Sparagna GC, Khanna N, O’Shea KM, Hecker PA, Kristian T, Fiskum G, Des Rosiers C, Polster BM, Stanley WC. Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim Biophys Acta. 2010;1797:1555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Khairallah RJ, Kim J, O’Shea KM, O’Connell KA, Brown BH, Galvao T, Daneault C, Des Rosiers C, Polster BM, Hoppel CL, Stanley WC. Improved mitochondrial function with diet induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids. PLoS One. 2012;7:e34402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. O’Shea KM, Khairallah RJ, Sparagna GC, Xu W, Hecker PA, Robillard-Frayne I, Des Rosiers C, Kristian T, Murphy RC, Fiskum G, Stanley WC. Dietary omega 3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+ induced permeability transition. J Mol Cell Cardiol. 2009;47:819–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Stanley WC, Khairallah RJ, Dabkowski ER. Update on lipids and mitochondrial function: impact of dietary n 3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care. 2012;15:122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chrysohoou C, Metallinos G, Georgiopoulos G, Mendrinos D, Papanikolaou A, N M, Pitsavos C, Vyssoulis G, Stefanadis C, Tousoulis D. Short term omega-3 polyunsaturated fatty acid supplementation induces favorable changes in right ventricle function and diastolic filling pressure in patients with chronic heart failure; a randomized clinical trial. Vascul Pharmacol. 2016;79:43–50.

    Article  CAS  PubMed  Google Scholar 

  170. Cicero AF, Ertek S, Borghi C. Omega-3 polyunsaturated fatty acids: their potential role in blood pressure prevention and management. Curr Vasc Pharmacol. 2009;7(3):330–7.

    Article  CAS  PubMed  Google Scholar 

  171. Wilk JB, Tsai MY, Hanson NQ, Gaziano JM, Djoussé L. Plasma and dietary omega-3 fatty acids, fish intake, and heart failure risk in the Physicians’ Health Study. Am J Clin Nutr. 2012;96(4):882–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bayer AL, Heidkamp MC, Patel N, Porter M, Engman S, Samarel AM. Alterations in protein kinase C isoenzyme expression and autophosphorylation during the progression of pressure overload-induced left ventricular hypertrophy. Mol Cell Biochem. 2003;242:145–52.

    Article  CAS  PubMed  Google Scholar 

  173. Djoussé L, Akinkuolie AO, Wu JH, Ding EL, Gaziano JM. Fish consumption, omega-3 fatty acids and risk of heart failure: a meta-analysis. Clin Nutr. 2012;31(6):846–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, Lucci D, Nicolosi GL, Porcu M, Tognoni G, Gissi-HF Investigators. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, doubleblind, placebo-controlled trial. Lancet. 2008;372(9645):1223–30.

    Article  PubMed  CAS  Google Scholar 

  175. Ghio S, Scelsi L, Latini R, Masson S, Eleuteri E, Palvarini M, Vriz O, Pasotti M, Gorini M, Marchioli R, Maggioni A, Tavazzi L. GISSI-HF investigators.. Effects of n-3 polyunsaturated fatty acids and of rosuvastatin on left ventricular function in chronic heart failure: a substudy of GISSI-HF trial. Eur J Heart Fail. 2010;12(12):1345–53.

    Article  CAS  PubMed  Google Scholar 

  176. Maki KC, Palacios OM, Bell M, Toth PP. Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: an updated meta-analysis and review of research gaps. J Clin Lipidol. 2017;11(5):1152–1160.e2.

    Article  PubMed  Google Scholar 

  177. Dabkowski ER, O’Connell KA, Xu W, Ribeiro RF Jr, Hecker PA, Shekar KC, Daneault C, Des Rosiers C, Stanley WC. Docosahexaenoic acid supplementation alters key properties of cardiac mitochondria and modestly attenuates development of left ventricular dysfunction in pressure overload-induced heart failure. Cardiovasc Drugs Ther. 2013;27(6):499–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Moertl D, Hammer A, Steiner S, Hutuleac R, Vonbank K, Berger R. Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of non ischemic origin: a double-blind, placebo-controlled, 3-arm study. Am Heart J. 2011;161(5):915.e1–9.

    Article  CAS  Google Scholar 

  179. Oikonomou E, Vogiatzi G, Karlis D, Siasos G, Chrysohoou C, Zografos T, Lazaros G, Tsalamandris S, Mourouzis K, Georgiopoulos G, Toutouza M, Tousoulis D. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin Nutr. 2018 May 3. pii: S0261–5614(18)30168-7.

    Google Scholar 

  180. Mehra MR, Lavie CJ, Ventura HO, Milani RV. Fish oils produce anti-inflammatory effects and improve body weight in severe heart failure. J Heart Lung Transplant. 2006;25:834–8.

    Article  PubMed  Google Scholar 

  181. Pepe S, McLennan PL. Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation. 2002;105:2303–8.

    Article  CAS  PubMed  Google Scholar 

  182. Cicero AF, Reggi A, Parini A, Borghi C. Application of polyunsaturated fatty acids in internal medicine: beyond the established cardiovascular effects. Arch Med Sci. 2012;8:784–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Trumbo P, Schlicker S, Yates AA, Poos M, Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102:1621–30.

    Article  PubMed  Google Scholar 

  184. Nagatomo Y, Tang WH. Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail. 2015;21(12):973–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sandek A, Bjarnason I, Volk HD, Crane R, Meddings JB, Niebauer J, Kalra PR, Buhner S, Herrmann R, Springer J, Doehner W, von Haehling S, Anker SD, Rauchhaus M. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012;157(1):80–5.

    Article  PubMed  Google Scholar 

  186. Krack A, Sharma R, Figulla HR, Anker SD. The importance of the gastrointestinal system in the pathogenesis of heart failure. Eur Heart J. 2005;26(22):2368–74.

    Article  CAS  PubMed  Google Scholar 

  187. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wilson TWH, Zeneng W, Yiying F, Levison B, Hazen JE, Donahue LM, Wu Y, Hazen S. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-n-oxide in patients with heart failure. J Am Coll Cardiol. 2014;64(18):1908–14.

    Article  CAS  Google Scholar 

  190. Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S, Qi H, Wu J, Pan C, Brown JM, Vallim T, Bennett BJ, Graham M, Hazen SL, Lusis AJ. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res. 2015;56(1):22–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hartiala J, Bennett BJ, Tang WH, Wang Z, Stewart AF, Roberts R, McPherson R, Lusis AJ, Hazen SL, Allayee H, CARDIoGRAM Consortium. Comparative genome-wide association studies in mice and humans for trimethylamine Noxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler Thromb Vasc Biol. 2014;34(6):1307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Costanza AC, Moscavitch SD, Faria Neto HC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol. 2015;179:348–50.

    Article  PubMed  Google Scholar 

  193. Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, Sidaway JE, Martin G, Gloor GB, Swann JR, Reid G, Karmazyn M. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7(3):491–9.

    Article  PubMed  Google Scholar 

  194. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64:897–903.

    Article  CAS  PubMed  Google Scholar 

  195. Wang L, Guo MJ, Gao Q, Yang JF, Yang L, Pang XL, Jiang XJ. The effects of probiotics on total cholesterol: a meta-analysis of randomized controlled trials. Medicine. 2018;97(5):e9679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Crommen S, Simon MC. Microbial regulation of glucose metabolism and insulin resistance. Gen. 2017;9(1) pii: E10

    Google Scholar 

  198. Robles-Vera I, Toral M, Romero M, Jiménez R, Sánchez M, Pérez-Vizcaíno F, Duarte J. Antihypertensive effects of probiotics. Curr Hypertens Rep. 2017;19(4):26.

    Article  PubMed  CAS  Google Scholar 

  199. Upadrasta A, Madempudi RS. Probiotics and blood pressure: current insights. Integr Blood Press Control. 2016;9:33–42.

    PubMed  PubMed Central  Google Scholar 

  200. Young RC, Blass JP. Iatrogenic nutritional deficiencies. Annu Rev Nutr. 1982;2:201–27.

    Article  CAS  PubMed  Google Scholar 

  201. Lonsdale D. Thiamin. Adv Food Nutr Res. 2018;83:1–56. https://doi.org/10.1016/bs.afnr.2017.11.001.

    Article  PubMed  Google Scholar 

  202. Pfitzenmeyer P, Guilland JC, d’Athis P, Petit-Marnier C, Gaudet M. Thiamine status of elderly patients with cardiac failure including the effects of supplementation. Int J Vitam Nutr Res. 1994;64(2):113–8.

    CAS  PubMed  Google Scholar 

  203. Jain A, Mehta R, Al-Ani M, Hill JA, Winchester DE. Determining the role of thiamine deficiency in systolic heart failure: a metaanalysis and systematic review. J Card Fail. 2015;21(12):1000–7.

    Article  CAS  PubMed  Google Scholar 

  204. Katta N, Balla S, Alpert MA. Does long-term furosemide therapy cause thiamine deficiency in patients with heart failure? a focused review. Am J Med. 2016;129(7):753.e11.

    Article  CAS  Google Scholar 

  205. Dabar G, Harmouche C, Habr B, Riachi M, Jaber B. Shoshin beriberi in critically-ill patients: case series. Nutr J. 2015;14(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Lei Y, Zheng M, Huang W, Zhang J, Lu Y. Wet beriberi with multiple organ failure remarkably reversed by thiamine administration: a case report and literature review. Medicine. 2018;97(9):e0010.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Jikrona R, Suharjono S, Ahmad A. Thiamine supplement therapy improves ejection fraction value in stage ii heart failure patients. Folia Medica Indon. 2017;53(2):139–43.

    Article  Google Scholar 

  208. Shimon H, Almog S, Vered Z, Seligmann H, Shefi M, Peleg E, Rosenthal T, Motro M, Halkin H, Ezra D. Improved left ventricular function after thiamine supplementation in patients with congestive heart failure receiving long-term furosemide therapy. Am J Med. 1995;98(5):485–90.

    Article  CAS  PubMed  Google Scholar 

  209. Schoenenberger A, Schoenenberger-Berzins R, der Maur C, Suter P, Vergopoulos A, Erne P. Thiamine supplementation in symptomatic chronic heart failure: a randomized, double-blind, placebo-controlled, cross-over pilot study. Clin Res Cardiol. 2012;101(3):159–64.

    Article  CAS  PubMed  Google Scholar 

  210. Dinicolantonio JJ, Lavie CJ, Niazi AK, O’Keefe JH, Hu T. Effects of thiamine on cardiac function in patients with systolic heart failure: systematic review and metaanalysis of randomized, doubleblind, placebo-controlled trials. Ochsner J. 2013;13(4):495–9.

    PubMed  PubMed Central  Google Scholar 

  211. Mousavi M, Namazi S, Avadi M, Amirahmadi M, Salehifar D. Thiamine supplementation in patients with chronic heart failure receiving optimum medical treatment. J Cardiol Curr Res. 2017;9(2):00316.

    Google Scholar 

  212. Rocha RM, Silva GV, de Albuquerque DC, Tura BR, Albanesi Filho FM. Influence of spironolactone therapy on thiamine blood levels in patients with heart failure. Arq Bras Cardiol. 2008;90(5):324–8.

    PubMed  Google Scholar 

  213. Kattoor AJ, Goel A, Mehta JL. Thiamine therapy for heart failure: a promise or fiction? Cardiovasc Drugs Ther. 2018;32(4):313–7. https://doi.org/10.1007/s10557-018-6808-8.

    Article  PubMed  Google Scholar 

  214. Bruckdorfer KR. Antioxidants and CVD. Proc Nutr Soc. 2008;67:214–22.

    Article  CAS  PubMed  Google Scholar 

  215. Wilcox BJ, Curb JD, Rodriguez B. Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies. Am J Cardiol. 2008;101(S):75D–86D.

    Article  CAS  Google Scholar 

  216. Djoussé L, Driver JA, Gaziano JM. Relation between modifiable lifestyle factors and lifetime risk of heart failure. JAMA. 2009;302:394–400.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Levitan EB, Wolk A, Mittleman MA. Consistency with the DASH diet and incidence of heart failure. Arch Intern Med. 2009;169:851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang Y, Tuomilehto J, Jousilahti P, Antikainen R, Mähönen M, Katzmarzyk PT, Hu G. Lifestyle factors in relation to heart failure among Finnish men and women. Circ Heart Fail. 2011;4:607–12.

    Article  PubMed  Google Scholar 

  219. Pfister R, Sharp SJ, Luben R, Wareham NJ, Khaw KT. Plasma vitamin C predicts incident heart failure in men and women in European Prospective Investigation into Cancer and Nutrition-Norfolk Prospective Study. Am Heart J. 2011;162:246–53.

    Article  CAS  PubMed  Google Scholar 

  220. Bingham SA, Welch AA, McTaggart A, Mulligan AA, Runswick SA, Luben R, Oakes S, Khaw KT, Wareham N, Day NE. Nutritional methods in the European Prospective Investigation of Cancer in Norfolk. Public Health Nutr. 2001;4:847–58.

    Article  CAS  PubMed  Google Scholar 

  221. Plantinga Y, Ghiadoni L, Magagna A, Giannarelli C, Franzoni F, Taddei S, Salvetti A. Supplementation with vitamins C and E improves arterial stiffness and endothelial function in essential hypertensive patients. Am J Hypertens. 2007;20:392–7.

    Article  CAS  PubMed  Google Scholar 

  222. Wannamethee SG, Bruckdorfer KR, Shaper AG, Papacosta O, Lennon L, Whincup PH. Plasma vitamin C, but not vitamin E, is associated with reduced risk of heart failure in older men. Circ Heart Fail. 2013;6(4):647–54.

    Article  CAS  PubMed  Google Scholar 

  223. Song EK, Kang SM. Vitamin C deficiency, high-sensitivity C-reactive protein, and cardiac event-free survival in patients with heart failure. J Cardiovasc Nurs. 2018;33(1):6–12.

    Article  PubMed  Google Scholar 

  224. Ashor AW, Lara J, Mathers JC, Siervo M. Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials. Atherosclerosis. 2014;235(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  225. Spoelstra-de Man AME, Elbers PWG, Oudemans-Van Straaten HM. Vitamin C: should we supplement? Curr Opin Crit Care. 2018;24(4):248–55. https://doi.org/10.1097/MCC.0000000000000510.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  CAS  PubMed  Google Scholar 

  227. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523:123–33.

    Article  CAS  PubMed  Google Scholar 

  228. O’Connell TD, Simpson RU. Immunochemical identification of the 1,25dihydroxyvitamin D3 receptor protein in human heart. Cell Biol Int. 1996;20:621–4.

    Article  PubMed  Google Scholar 

  229. Simpson RU, Thomas GA, Arnold AJ. Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem. 1985;260:8882–91.

    Article  CAS  PubMed  Google Scholar 

  230. Kim DH, Sabour S, Sagar UN, Adams S, Whellan DJ. Prevalence of hypovitaminosis D in cardiovascular diseases (from the National Health and Nutrition Examination Survey 2001 to 2004). Am J Cardiol. 2008;102(11):1540–4.

    Article  CAS  PubMed  Google Scholar 

  231. Anderson JL, May HT, Horne BD, Bair TL, Hall NL, Carlquist JF, Lappé DL, Muhlestein JB. Intermountain Heart Collaborative (IHC) Study Group. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general health care population. Am J Cardiol. 2010;106(7):963–8.

    Article  CAS  PubMed  Google Scholar 

  232. Pilz S, Marz W, Wellnitz B, Seelhorst U, Fahrleitner-Pammer A, Dimai HP, Boehm BO, Dobnig H. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab. 2008;93(10):3927–35.

    Article  CAS  PubMed  Google Scholar 

  233. Liu LC, Voors AA, van Veldhuisen DJ, van der Veer E, Belonje AM, Szymanski MK, Silljé HH, van Gilst WH, Jaarsma T, de Boer RA. Vitamin D status and outcomes in heart failure patients. Eur J Heart Fail. 2011;13:619–25.

    Article  CAS  PubMed  Google Scholar 

  234. Pourdjabbar A, Dwivedi G, Haddad H. The role of vitamin D in chronic heart failure. Curr Opin Cardiol. 2013 Mar;28(2):216–22. https://doi.org/10.1097/HCO.0b013e32835bd480.

    Article  PubMed  Google Scholar 

  235. Iqba lN, Ducharme J, Desai S, Chambers S, Terembula K, Chan GW, Shults J, Leonard MB, Kumanyika S. Status of bone mineral density in patients selected for cardiac transplantation. Endocr Pract. 2008;14(6):704–12.

    Article  Google Scholar 

  236. Alsafwah S, Laguardia SP, Nelson MD. Hypovitaminosis D in African Americans residing in Memphis, Tennessee with and without heart failure. Am J Med Sci. 2008;335(4):292–7.

    Article  PubMed  Google Scholar 

  237. Arroyo M, Laguardia SP, Bhattacharya SK, Nelson MD, Johnson PL, Carbone LD, Newman KP, Weber KT. Micronutrients in African-Americans with decompensated and compensated heart failure. Transl Res. 2006;148(6):301–8.

    Article  CAS  PubMed  Google Scholar 

  238. Zittermann A, Schleithoff SS, Gotting C, Dronow O, Fuchs U, Kuhn J, Kleesiek K, Tenderich G, Koerfer R. Poor outcome in end stage heart failure patients with low circulating calcitriol levels. Eur J Heart Fail. 2008;10(3):321–7.

    Article  CAS  PubMed  Google Scholar 

  239. Shane E, Mancini D, Aaronson K, Silverberg SJ, Seibel MJ, Addesso V, McMahon DJ. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am J Med. 1997;103(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  240. Boxer RS, Dauser DA, Walsh SJ, Hager WD, Kenny AM. The association between vitamin D and inflammation with the 6-minute walk and frailty in patients with heart failure. J Am Geriatr Soc. 2008;56(3):454–61.

    Article  PubMed  Google Scholar 

  241. Boxer RS, Kenny AM, Cheruvu VK, Vest M, Fiutem JJ, Pina II. Serum 25-hydroxyvitamin D concentration is associated with functional capacity in older adults with heart failure. Am Heart J. 2010;160(5):893–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a doubleblind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83:754–9.

    Article  CAS  PubMed  Google Scholar 

  243. Shedeed SA. Vitamin D supplementation in infants with chronic congestive heart failure. Pediatr Cardiol. 2012;33:713–9.

    Article  PubMed  Google Scholar 

  244. Gotsman I, Shauer A, Zwas DR, Hellman Y, Keren A, Lotan C, Admon D. Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. Eur J Heart Fail. 2012;14:357–66.

    Article  CAS  PubMed  Google Scholar 

  245. Witham MD, Crighton LJ, Gillespie ND, Struthers AD, McMurdo ME. The effects of vitamin D supplementation on physical function and quality of life in older patients with heart failure: a randomized controlled trial. Circ Heart Fail. 2010;3:195–201.

    Article  CAS  PubMed  Google Scholar 

  246. Robien K, Oppeneer SJ, Kelly JA, Hamilton-Reeves JM. Drug-vitamin D interactions: a systematic review of the literature. Nutr Clin Pract. 2013;28(2):194–208.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Sawyer DB. Oxidative stress in heart failure: what are we missing? Am J Med Sci. 2011;342:120–4.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Li F, Tan W, Kang Z, Wong CW. Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferators-activated receptors. Atherosclerosis. 2010;211:278–82.

    Article  CAS  PubMed  Google Scholar 

  249. Rasool AH, Rahman AR, Yuen KH, Wong AR. Arterial compliance and vitamin E blood levels with a self emulsifying preparation of tocotrienol rich vitamin E. Arch Pharm Res. 2008;31:1212–7.

    Article  CAS  PubMed  Google Scholar 

  250. Prasad K. Tocotrienols and cardiovascular health. Curr Pharm Des. 2011;17:2147–54.

    Article  CAS  PubMed  Google Scholar 

  251. Loffredo L, Perri L, Di Castelnuovo A, Iacoviello L, De Gaetano G, Violi F. Supplementation with vitamin E alone is associated with reduced myocardial infarction: a meta-analysis. Nutr Metab Cardiovasc Dis. 2015;25:354–63.

    Article  CAS  PubMed  Google Scholar 

  252. Chae CU, Albert CM, Moorthy MV, Lee IM, Buring JE. Vitamin E supplementation and the risk of heart failure in women. Circ Heart Fail. 2012;5:176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Glynn RJ, Gaziano JM, Vitamins E. C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Marchioli R, Levantesi G, Macchia A, Marfisi RM, Nicolosi GL, Tavazzi L, Tognoni G, Valagussa F, GISSI-Prevenzione Investigators. Vitamin E increases the risk of developing heart failure after myocardial infarction: results from the GISSI-prevenzione trial. J Cardiovasc Med. 2006;7:347–50.

    Article  Google Scholar 

  255. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais G, HOPE and HOPE-TOO Trial Investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47.

    Article  PubMed  Google Scholar 

  256. Wannamethee SG, Bruckdorfer KR, Shaper AG, Papacosta O, Lennon L, Whincup PH. Plasma vitamin C, but not vitamin E, is associated with reduced risk of heart failure in older men. Circ Heart Fail. 2013 Jul;6(4):647–54.

    Article  CAS  PubMed  Google Scholar 

  257. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  258. Deveraj D, Jialei I. Failure of vitamin E in clinical trials: is γ-tocopherol the answer? Nutr Rev. 2005;63:290–3.

    Article  Google Scholar 

  259. Hodge AM, Simpson JA, Fridman M, Rowley K, English DR, Giles GG, Su Q, O’Dea K. Evaluation of an FFQ for assessment of antioxidant intake using plasma biomarkers in an ethnically diverse population. Public Health Nutr. 2009;12:2438–47.

    Article  PubMed  Google Scholar 

  260. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.

    Article  PubMed  Google Scholar 

  261. Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized. J Am Coll Cardiol. 2014;63(12):1123–33.

    Article  PubMed  Google Scholar 

  262. Tuppin P, Rivière S, Rigault A, et al. Prevalence and economic burden of cardiovascular diseases in France in 2013 according to the national health insurance scheme database. Arch Cardiovasc Dis. 2016;109(6-7):399–411.

    Article  PubMed  Google Scholar 

  263. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart failure. Int J Cardiol. 2014;171(3):368–76.

    Article  PubMed  Google Scholar 

  264. Yao G, Freemantle N, Flather M, et al. Long-term cost-effectiveness analysis of Nebivolol compared with standard care in elderly patients with heart failure: an individual patient-based simulation model. Pharmacoeconomics. 2008;26:879–89.

    Article  CAS  PubMed  Google Scholar 

  265. Ghio S, Scelsi L, Latini R, et al. GISSI-HF investigators. Effects of n-3 polyunsaturated fatty acids and of rosuvastatin on left ventricular function in chronic heart failure: a substudy of GISSI-HF trial. Eur J Heart Fail. 2010;12(12):1345–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cicero, A.F.G., Colletti, A. (2021). Nutraceuticals Supporting Heart Function in Heart Failure. In: Cicero, A.F., Rizzo, M. (eds) Nutraceuticals and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-62632-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62632-7_11

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62631-0

  • Online ISBN: 978-3-030-62632-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics