Skip to main content

Twenty-First Century FISH: Focus on Interphase Chromosomes

  • Chapter
  • First Online:
Human Interphase Chromosomes

Abstract

Interphase molecular cytogenetics provides opportunities for analysis of chromosomes in almost all types of human cells at any stage of the cell cycle. Generally, interphase fluorescence in situ hybridization (I-FISH) is a basic technological platform for visualization of individual chromosomes (chromosomal regions) in single cells. The achievements of studying human interphase chromosomes have allowed numerous discoveries in chromosome research (molecular cytogenetics) and genomics (cytogenomics). In the postgenomic era, interphase chromosome analysis by I-FISH remains an important part of biomedical research. Here, we describe the spectrum of FISH applications with special emphasis on interphase chromosome biology and molecular cytogenetic/cytogenomic diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andriani GA, Maggi E, Piqué D et al (2019) A direct comparison of interphase FISH versus low-coverage single cell sequencing to detect aneuploidy reveals respective strengths and weaknesses. Sci Rep 9(1):10508

    PubMed  PubMed Central  Google Scholar 

  • Arendt T, Mosch B, Morawski M (2009) Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci 10(4):1609–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker B, van den Bos H, Lansdorp PM et al (2015) How to count chromosomes in a cell: an overview of current and novel technologies. BioEssays 37(5):570–577

    PubMed  Google Scholar 

  • Baumgartner A, Ferlatte Hartshorne C, Polyzos A et al (2018) Full karyotype interphase cell analysis. J Histochem Cytochem 66(8):595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bint SM, Davies AF, Ogilvie CM (2013) Multicolor banding remains an important adjunct to array CGH and conventional karyotyping. Mol Cytogenet 6(1):55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng L, Zhang S, Wang L et al (2017) Fluorescence in situ hybridization in surgical pathology: principles and applications. J Pathol Clin Res 3(2):73–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrzanowska NM, Kowalewski J, Lewandowska MA (2020) Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors. Molecules 25(8):1864

    Article  CAS  PubMed Central  Google Scholar 

  • Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Durm M, Haar F-M, Hausmann M et al (1997) Optimized Fast-FISH with a-satellite probes: acceleration by microwave activation. Braz J Med Biol Res 30(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Feuk L, Marshall CR, Wintle RF et al (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15(1):R57–R66

    Article  CAS  PubMed  Google Scholar 

  • Frickmann H, Zautner AE, Moter A et al (2017) Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 43(3):263–293

    Article  CAS  PubMed  Google Scholar 

  • Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175–188

    Article  CAS  PubMed  Google Scholar 

  • Gersen SL, Keagle MB (2005) The principles of clinical cytogenetics, 2nd edn. Humana Press, Totowa

    Book  Google Scholar 

  • Gupta P, Balasubramaniam N, Chang HY et al (2020) A single-neuron: current trends and future prospects. Cell 9:1528

    Article  Google Scholar 

  • Heng HH (2020) New data collection priority: focusing on genome-based bioinformation. Res Result Biomed 6(1):5–8

    Article  Google Scholar 

  • Hovhannisyan GG (2010) Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology. Mol Cytogenet 3:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu Q, Maurais EG, Ly P (2020) Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosom Res 28(1):19–30

    Article  CAS  Google Scholar 

  • Iourov IY (2012) To see an interphase chromosome or: how a disease can be associated with specific nuclear genome organization. BioDiscovery 4:e8932

    Google Scholar 

  • Iourov IY (2016) Post genomics: towards a personalized approach to chromosome abnormalities. J Down Syndr Chromosom Abnorm 2(1):2:e104

    Google Scholar 

  • Iourov IY (2017) Quantitative fluorescence in situ hybridization (QFISH). Methods Mol Biol 1541:143–149

    Article  CAS  PubMed  Google Scholar 

  • Iourov IY (2019a) Cytogenomic bioinformatics: practical issues. Curr Bioinformatics 14(5):372–373

    Article  CAS  Google Scholar 

  • Iourov IY (2019b) Cytopostgenomics: what is it and how does it work? Curr Genomics 20(2):77–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iourov IY, Soloviev IV, Vorsanova SG et al (2005) An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J Histochem Cytochem 53:401–408

    Article  CAS  PubMed  Google Scholar 

  • Iourov IY, Liehr T, Vorsanova SG et al (2006a) Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosom Res 14(3):223–229

    Article  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Pellestor F et al (2006b) Brain tissue preparations for chromosomal PRINS labeling. Methods Mol Biol 334:123–132

    PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2006c) Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191

    Article  CAS  PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2006d) Intercellular genomic (chromosomal) variations resulting in somatic mosaicism: mechanisms and consequences. Curr Genomics 7:435–446

    Article  CAS  Google Scholar 

  • Iourov IY, Liehr T, Vorsanova SG et al (2007) Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 24(4):415–417

    Article  CAS  PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2008a) Chromosomal mosaicism goes global. Mol Cytogenet 1:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2008b) Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 9(7):452–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2008c) Recent patents on molecular cytogenetics. Recent Pat DNA Gene Seq 2(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Liehr T et al (2009a) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18(14):2656–2669

    Article  CAS  PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Liehr T et al (2009b) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34(2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Solov’ev IV et al (2010a) Methods of molecular cytogenetics for studying interphase chromosome in human brain cells. Russ J Genet 46(9):1039–1041

    Article  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2010b) Somatic genome variations in health and disease. Curr Genomics 11:387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2011) Genomic landscape of the Alzheimer’s disease brain: chromosome instability – aneuploidy, but not tetraploidy – mediates neurodegeneration. Neurodegener Dis 8:35–37

    PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2012) Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 13(6):477–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2013a) Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res 139(3):181–188

    CAS  PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Voinova VY et al (2013b) Xq28 (MECP2) microdeletions are common in mutation-negative females with Rett syndrome and cause mild subtypes of the disease. Mol Cytogenet 6(1):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Liehr T et al (2014a) Mosaike im Gehirn des Menschen. Diagnostische Relevanz in der Zukunft? Med Genet 26(3):342–345

    Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2014b) In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet 7(1):98

    Article  PubMed  PubMed Central  Google Scholar 

  • Iourov IY, Vorsanova SG, Demidova IA et al (2015a) 5p13.3p13.2 duplication associated with developmental delay, congenital malformations and chromosome instability manifested as low-level aneuploidy. Springerplus 4(1):616

    Article  PubMed  PubMed Central  Google Scholar 

  • Iourov IY, Vorsanova SG, Voinova VY et al (2015b) 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances. Mol Cytogenet 8:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2017) Interphase FISH for detection of chromosomal mosaicism. In: Liehr T (ed) Fluorescence in situ hybridization (FISH) – application guide (springer protocols handbooks), 2nd edn. Springer, Berlin/Heidelberg, pp 361–372

    Chapter  Google Scholar 

  • Iourov IY, Liehr T, Vorsanova SG et al (2019a) The applicability of interphase chromosome-specific multicolor banding (ICS-MCB) for studying neurodevelopmental and neurodegenerative disorders. Res Result Biomed 5(3):4–9

    Article  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2019b) Pathway-based classification of genetic diseases. Mol Cytogenet 12(4)

    Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2019c) The variome concept: focus on CNVariome. Mol Cytogenet 12:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB et al (2019d) Ontogenetic and pathogenetic views on somatic chromosomal mosaicism. Genes (Basel) 10(5):E379

    Article  CAS  Google Scholar 

  • Iurov II, Vorsanova SG, Solov’ev IV et al (2011) Original molecular cytogenetic approach to determining spontaneous chromosomal mutations in the interphase cells to evaluate the mutagenic activity of environmental factors. Gig Sanit 5:90–94

    Google Scholar 

  • Knouse KA, Wu J, Whittaker CA et al (2014) Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 111:13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liehr T (2017) Fluorescence in situ hybridization (FISH) – application Guide. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Liehr T, Al-Rikabi A (2019) Mosaicism: reason for normal phenotypes in carriers of small supernumerary marker chromosomes with known adverse outcome. A systematic review. Front Genet 10:1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Liehr T, Heller A, Starke H et al (2002) Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med 9(4):335–339

    CAS  PubMed  Google Scholar 

  • Liehr T, Starke H, Weise A et al (2004) Multicolor FISH probe sets and their applications. Histol Histopathol 19(1):229–237

    CAS  PubMed  Google Scholar 

  • Liehr T, Othman MA, Rittscher K et al (2015) The current state of molecular cytogenetics in cancer diagnosis. Expert Rev Mol Diagn 15(4):517–526

    Article  CAS  PubMed  Google Scholar 

  • Martin CL, Warburton D (2015) Detection of chromosomal aberrations in clinical practice: from karyotype to genome sequence. Annu Rev Genomics Hum Genet 16:309–326

    Article  CAS  PubMed  Google Scholar 

  • Moffitt JR, Hao J, Bambah-Mukku D et al (2016) High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc Natl Acad Sci U S A 113(50):14456–14461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83(9):2934–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riegel M (2014) Human molecular cytogenetics: from cells to nucleotides. Genet Mol Biol 37(1):194–209

    Article  PubMed  Google Scholar 

  • Rouquette J, Cremer C, Cremer T et al (2010) Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 282:1–90

    Article  CAS  PubMed  Google Scholar 

  • Russo R, Sessa AM, Fumo R et al (2016) Chromosomal anomalies in early spontaneous abortions: interphase FISH analysis on 855 FFPE first trimester abortions. Prenat Diagn 36(2):186–191

    Article  CAS  PubMed  Google Scholar 

  • Savic S, Bubendorf L (2016) Common fluorescence in situ hybridization applications in cytology. Arch Pathol Lab Med 140(12):1323–1330

    Article  PubMed  Google Scholar 

  • Soloviev IV, Yurov YB, Vorsanova SG et al (1994) Microwave activation of fluorescence in situ hybridization: a novel method for rapid chromosome detection and analysis. Focus 16(4):115–116

    Google Scholar 

  • Soloviev IV, Yurov YB, Vorsanova SG et al (1995) Prenatal diagnosis of trisomy 21 using interphase fluorescence in situ hybridization of post-replicated cells with site-specific cosmid and cosmid contig probes. Prenat Diagn 15:237–248

    Article  CAS  PubMed  Google Scholar 

  • Soloviev IV, Yurov YB, Vorsanova SG et al (1998) Fluorescent in situ hybridization analysis of α-satellite DNA in cosmid libraries specific for human chromosomes 13, 21 and 22. Rus J Genet 34:1247–1255

    CAS  Google Scholar 

  • van der Ploeg M (2000) Cytochemical nucleic acid research during the twentieth century. Eur J Histochem 44(1):7–42

    PubMed  Google Scholar 

  • Viotti M (2020) Preimplantation genetic testing for chromosomal abnormalities: aneuploidy, mosaicism, and structural rearrangements. Genes 11:602

    Article  CAS  PubMed Central  Google Scholar 

  • Vorsanova SG, Yurov YB, Alexandrov IA et al (1986) 18p- syndrome: an unusual case and diagnosis by in situ hybridization with chromosome 18-specific alphoid DNA sequence. Hum Genet 72:185–187

    Article  CAS  PubMed  Google Scholar 

  • Vorsanova SG, Yurov YB, Kolotii AD et al (2001a) FISH analysis of replication and transcription of chromosome X loci: new approach for genetic analysis of Rett syndrome. Brain and Development 23:S191–S195

    Article  PubMed  Google Scholar 

  • Vorsanova SG, Yurov YB, Ulas VY et al (2001b) Cytogenetic and molecular-cytogenetic studies of Rett syndrome (RTT): a retrospective analysis of a Russian cohort of RTT patients (the investigation of 57 girls and three boys). Brain and Development 23:S196–S201

    Article  PubMed  Google Scholar 

  • Vorsanova SG, Iourov IY, Beresheva AK et al (2005a) Non-disjunction of chromosome 21, alphoid DNA variation, and sociogenetic features of Down syndrome. Tsitol Genet 39(6):30–36

    CAS  PubMed  Google Scholar 

  • Vorsanova SG, Kolotii AD, Iourov IY et al (2005b) Evidence for high frequency of chromosomal mosaicism in spontaneous abortions revealed by interphase FISH analysis. J Histochem Cytochem 53(3):375–380

    Article  CAS  PubMed  Google Scholar 

  • Vorsanova SG, Yurov IY, Demidova IA et al (2007) Variability in the heterochromatin regions of the chromosomes and chromosomal anomalies in children with autism: identification of genetic markers of autistic spectrum disorders. Neurosci Behav Physiol 37(6):553–558

    Article  CAS  PubMed  Google Scholar 

  • Vorsanova SG, Iourov IY, Kolotii AD et al (2010a) Chromosomal mosaicism in spontaneous abortions: analysis of 650 cases. Rus J Genet 46:1197–1200

    Article  CAS  Google Scholar 

  • Vorsanova SG, Voinova VY, Yurov IY et al (2010b) Cytogenetic, molecular-cytogenetic, and clinical-genealogical studies of the mothers of children with autism: a search for familial genetic markers for autistic disorders. Neurosci Behav Physiol 40(7):745–756

    Article  CAS  PubMed  Google Scholar 

  • Vorsanova SG, Yurov YB, Iourov IY (2010c) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vorsanova SG, Yurov YB, Soloviev IV et al (2010d) Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 11(6):440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorsanova SG, Yurov YB, Iourov IY (2013) Technological solutions in human interphase cytogenetics. In: Yurov YB, Vorsanova SG, Iourov IY (eds) Human interphase chromosomes (biomedical aspects). Springer, New York/Heidelberg/Dordrecht/London, pp 179–203

    Chapter  Google Scholar 

  • Vorsanova SG, Yurov YB, Soloviev IV et al (2019) FISH-based analysis of mosaic aneuploidy and chromosome instability for investigating molecular and cellular mechanisms of disease. OBM Genetics 3(1):9

    Article  Google Scholar 

  • Wan TS (2017) Cancer cytogenetics. Springer, New York

    Book  Google Scholar 

  • Weise A, Liehr T, Claussen U et al (2005) Increased efficiency of fluorescence in situ hybridization (FISH) using the microwave. J Histochem Cytochem 53(10):1301–1303

    Article  CAS  PubMed  Google Scholar 

  • Weise A, Mrasek K, Pentzold C et al (2019) Chromosomes in the DNA era: perspectives in diagnostics and research. Med Genet 31(1):8–19

    Google Scholar 

  • Ye CJ, Stilgenbauer L, Moy A et al (2019) What is karyotype coding and why is genomic topology important for cancer and evolution? Front Genet 10:1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurov YB, Soloviev IV, Vorsanova SG et al (1996) High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: rapid chromosome identification by directly fluorescently labeled alphoid DNA probes. Hum Genet 97(3):390–398

    Article  CAS  PubMed  Google Scholar 

  • Yurov YB, Vostrikov VM, Vorsanova SG et al (2001) Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain and Development 23(1):S186–S190

    Article  PubMed  Google Scholar 

  • Yurov YB, Iourov IY, Monakhov VV et al (2005) The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem 53(3):385–390

    Article  CAS  PubMed  Google Scholar 

  • Yurov YB, Iourov IY, Vorsanova SG et al (2007a) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2(6):e558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yurov YB, Vorsanova SG, Iourov IY et al (2007b) Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet 44(8):521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurov YB, Iourov IY, Vorsanova SG et al (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98:139–147

    Article  PubMed  Google Scholar 

  • Yurov YB, Vorsanova SG, Iourov IY (2009) GIN’n’CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet 2:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yurov YB, Vorsanova SG, Iourov IY (2010a) Ontogenetic variation of the human genome. Curr Genomics 11(6):420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurov YB, Vorsanova SG, Solov’ev IV et al (2010b) Instability of chromosomes in human nerve cells (normal and with neuromental diseases). Russ J Genet 46(10):1194–1196

    Article  CAS  Google Scholar 

  • Yurov YB, Vorsanova SG, Iourov IY (2013) Human interphase chromosomes – biomedical aspects. Springer, New York/Heidelberg/Dordrecht/London

    Book  Google Scholar 

  • Yurov YB, Vorsanova SG, Liehr T et al (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet 7(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  • Yurov YB, Vorsanova SG, Soloviev IV et al (2017) FISH-based assays for detecting genomic (chromosomal) mosaicism in human brain cells. NeuroMethods 131:27–41

    Article  CAS  Google Scholar 

  • Yurov YB, Vorsanova SG, Demidova IA et al (2018a) Mosaic brain aneuploidy in mental illnesses: an association of low-level post-zygotic aneuploidy with schizophrenia and comorbid psychiatric disorders. Curr Genomics 19(3):163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurov YB, Vorsanova SG, Iourov IY (2018b) Human molecular neurocytogenetics. Curr Genet Med Rep 6(4):155–164

    Article  Google Scholar 

  • Yurov YB, Vorsanova SG, Iourov IY (2019a) Chromosome instability in the neurodegenerating brain. Front Genet 10:892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurov YB, Vorsanova SG, Iourov IY (2019b) FISHing for unstable cellular genomes in the human brain. OBM Genetics 3(2):11

    Article  Google Scholar 

  • Zeng H, Weier JF, Wang M et al (2012) Bioinformatic tools identify chromosome-specific DNA probes and facilitate risk assessment by detecting aneusomies in extra-embryonic tissues. Curr Genomics 13(6):438–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Cerveira E, Rens W et al (2018) Multicolor fluorescence in situ hybridization (FISH) approaches for simultaneous analysis of the entire human genome. Curr Protoc Hum Genet 99(1):e70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Dr. MA Zelenova for help in chapter preparation. Prof. SG Vorsanova, Dr. OS Kurinnaia, and Prof. IY Iourov are partially supported by RFBR and CITMA according to the research project No. 18-515-34005. Prof. IY Iourov’s lab is supported by the Government Assignment of the Russian Ministry of Science and Higher Education, Assignment no. AAAA-A19-119040490101-6. Prof. SG Vorsanova’s lab is supported by the Government Assignment of the Russian Ministry of Health, Assignment no. AAAA-A18-118051590122-7.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorsanova, S.G., Yurov, Y.B., Kurinnaia, O.S., Kolotii, A.D., Iourov, I.Y. (2020). Twenty-First Century FISH: Focus on Interphase Chromosomes. In: Iourov, I., Vorsanova, S., Yurov, Y. (eds) Human Interphase Chromosomes. Springer, Cham. https://doi.org/10.1007/978-3-030-62532-0_7

Download citation

Publish with us

Policies and ethics