Skip to main content

Characterization and Biocompatibility of a Polylactic Acid (PLA) 3D/Printed Scaffold

  • Chapter
  • First Online:
Biobased Nanotechnology for Green Applications

Abstract

Tissue engineering, also called regenerative medicine, is the application of the principles and methods of engineering and the biological sciences, to understand the relationship between the structure and function of tissues; and thus, to develop biological substitutes that restore, maintain, or improve the function of damaged or lost tissues. The tissue engineering triad is composed by the scaffolds, the cells and growth factors, or functionalization molecules (Gupte and Ma 2012; Ou and Hosseinkhani 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asti A, Gioglio L (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37(3):187–205

    Article  PubMed  CAS  Google Scholar 

  • Behera BK, Prasad R, Behera S (2020) Bioprinting. In: Competitive Strategies in Life Sciences. New Paradigms of Living Systems, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-15-7590-7_4

  • Benic GI (2014) Horizontal bone augmentation by means of guided bone regeneration. Periodontol 66(1):13–40

    Article  Google Scholar 

  • Brown BN, Barnes BA, Kasick RT, Michel R, Gilbert TW, Beer-Stolz D et al (2010) Surface characterization of extracellular matrix scaffolds. Biomaterials 31(3):428–437

    Article  CAS  PubMed  Google Scholar 

  • Carrow J, Kerativitayanan P, Jaiswal M, Lokhande G, Gaharwar A (2015) Polymers for bioprinting. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Elsevier, London, pp 229–248

    Chapter  Google Scholar 

  • Ceccarelli G, Presta R, Benedetti L, Cusella De Angelis M, Marco S, Baena RRY (2017) Emerging perspectives in scaffold for tissue engineering in oral surgery. Stem Cells Int 2017:1–11

    Article  CAS  Google Scholar 

  • Chiulan I, Frone AN, Brandabur C, Panaitescu DM (2018) Recent advances in 3D printing of aliphatic polyesters. Bioengineering 5(2):1–18

    Google Scholar 

  • Choi J, Kwon OC, Jo W, Lee HJ, Moon MW (2015) 4D printing technology: a review. 3D. Print Addit Manuf 2(4):159–167

    Article  Google Scholar 

  • Cubo-Mateo N, Rodríguez-Lorenzo LM (2020) Design of Thermoplastic 3D-printed scaffolds for bone tissue engineering: influence of parameters of “hidden” importance in the physical properties of scaffolds. Polymers 12(7):1–14

    Article  CAS  Google Scholar 

  • Fairag R, Rosenzweig DH, Ramirez-Garcialuna JL, Weber MH, Haglund L (2019) Three-dimensional printed polylactic acid scaffolds promote bonelike matrix deposition in vitro. ACS Appl Mater Interfaces 11(17):15,306–15,315

    Article  CAS  Google Scholar 

  • Faroque TM, Camp CH Jr, Tison CK, Kumar G, Parekh SH, Simon CG Jr (2014) Measuring stem cell dimensionality in tissue scaffolds. Biomaterials 35(9):2558–2567

    Article  CAS  Google Scholar 

  • Feng K, Pinkas-Sarafova A, Ricotta V, Cuiffo M, Zhang L, Guo Y, Chang C, Halada GP, Simon M, Rafailovich M (2018) The influence of roughness on stem cell differentiation using 3D printed polylactic acid scaffolds. Soft Matter 14(48):9838–9846

    Article  CAS  PubMed  Google Scholar 

  • Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D, Del Fabbro M (2020) Nanotechnology scaffolds for alveolar bone regeneration. Materials 13(1):201

    Article  CAS  PubMed Central  Google Scholar 

  • Gu W, Wu C, Chen J, Xiao Y (2013) Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 8:2305–2317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupte MJ, Ma PX (2012) Nanofibrous scaffolds for dental and craniofacial applications. J Dent Rest 91(3):227–234

    Article  CAS  Google Scholar 

  • Gusić N, Ivković A, VaFaye J, Vukasović A, Ivković J, Hudetz D, Janković S (2014) Nanobiotechnology and bone regeneration: a mini-review. Int Orthop 38(9):1877–1884

    Article  PubMed  Google Scholar 

  • Guvendiren M, Molde J, Soares R, Kohn J (2016) Designing biomaterials for 3D printing. ACS Biomat Sci Eng 2(10):1679–1693

    Article  CAS  Google Scholar 

  • Hayes JS, Czekanska EM, Richards RG (2011) The cell-surface interaction. Adv Biochem Engin/Biotechnol 126:1–31

    Google Scholar 

  • Hill MJ, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak MR (2019) Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine 14(22):2987–3006

    Article  CAS  Google Scholar 

  • Hutmacher D, Hurzeler MB, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 11(5):667–678

    CAS  PubMed  Google Scholar 

  • Hutmacher D, Woodfield T, Dalton P (2014) Scaffold design and fabrication. In: Van Blitterswijk CA, de Boer J (eds) Tissue engineering. Elsevier, Oxford, pp 311–346

    Chapter  Google Scholar 

  • Jafari M, Paknejad Z, Motamedian S, Eghbal M, Nadjmi N, Khojasteh A (2017) Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 105(2):431–459

    Article  CAS  PubMed  Google Scholar 

  • Jeong IS, Ko EK, Yum J, Jung C, Lee YM, Shin H (2008) Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration. Macromol Biosci 9(4):328–338

    Article  CAS  Google Scholar 

  • Kao ST, Scott DD (2007) A review of bone substitutes. Oral Maxillofac Surg Clin North Am 19(4):513–521

    Article  PubMed  Google Scholar 

  • Kennedy KM, Bhaw-Luximon A, Jhurry D (2016) Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance. Acta Biomater 50:41–55

    Article  PubMed  CAS  Google Scholar 

  • Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK (2008) In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo formation in composite. Tissue Eng Part A 14(12):2105–2119

    Article  CAS  PubMed  Google Scholar 

  • Kundu J, Pati F, Jeong Y, Cho DW (2013) Biomaterials for biofabrication of 3D tissue scaffolds. In: Forgacs G, Sun W (eds) Biofabrication, Micro- and nano-fabrication, printing, patterning and assemblies. Elsevier, Amsterdam, pp 23–46

    Chapter  Google Scholar 

  • Li Y, Liu C (2017) Nanomaterial-based bone regeneration. Nanoscale 9(15):4862–4874

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhou T, Lin S, Shi S, Lin Y (2017) Nanomaterials for craniofacial and dental tissue engineering. J Dent Res 96(7):725–732

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Engelmayr G, Auguste DT, Ferreira LS, Karp JM, Saigal R, Langer R (2007) Three-dimensional scaffolds. In: Lanza RP (ed) Principles of tissue engineering. Elsevier, Burlington, MA, pp 359–373

    Chapter  Google Scholar 

  • Manoukian OS, Dieck C, Milne T, Dealy CN, Rudraiah S, Kumbar SG (2018) Nanomaterials/nanocomposites for osteochondral tissue. Adv Exp Med Biol 1058:79–95

    Article  CAS  PubMed  Google Scholar 

  • Markovic M, Van Hoorick J, Hölzl K, Tromayer M, Gruber P, Nürnberger S et al (2015) Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J Nanotechnol Eng Med 6(2):0210011-210017

    Article  PubMed  CAS  Google Scholar 

  • Martins A, Reis RL, Neves NM (2018) Micro/nano scaffolds for osteochondral tissue engineering. Adv Exp Med Biol 1058:125–139

    Article  CAS  PubMed  Google Scholar 

  • Masaeli RK, Zandsalimi M, Rasoulianboroujeni M, Tayebi L (2019) Challenges in three-dimensional printing of bone substitutes. Tissue Eng Part B Rev 25(5):387–397

    Article  PubMed  Google Scholar 

  • McMahon RE, Wang L, Skoracki R, Mathur AB (2013) Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 101(2):387–397

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi MS, Bureau MN, Nazhat SN (2014) Polylactide acid (PLA) biomedical foams for tissue engineering. In: Netti PA (ed) Biomedical foams for tissue engineering applications. Woodhead Publishing, Cambridge, pp 313–334

    Chapter  Google Scholar 

  • Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M (2018) Micro and nanotechnologies for bone regeneration: recent advances and emerging designs. J Control Release 274:35–55

    Article  CAS  PubMed  Google Scholar 

  • Ou KL, Hosseinkhani H (2014) Development of 3D in vitro technology for medical applications. Int J Mol Sci 15(10):17938–17962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pryjmaková J, Kaimlová M, Hubáček T, Švorčík V, Siegel J (2020) Nanostructured materials for artificial tissue replacements. Int J Mol Sci 21(7):2521

    Article  PubMed Central  CAS  Google Scholar 

  • Qasim M, Chae DS, Lee NY (2019) Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine 14:4333–4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltzman WM, Kyriakides TR (2000) Cell interactions with polymers. In: Lanza RP (ed) Principles of tissue engineering. Elsevier, Amsterdam, pp 279–296

    Google Scholar 

  • Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, estrin YZ. (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 57:139–148

    Article  CAS  PubMed  Google Scholar 

  • Serra T, Mateos-Timoneda MA, Planell JA, Navarro M (2013) 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine. Organogenesis 9(4):239–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Souness A, Zamboni F, Walker G, Collins M (2018) Influence of scaffold design on 3D printed cell constructs. J Biomed Mater Res B Appl Biomater 106(2):533–545

    Article  CAS  PubMed  Google Scholar 

  • Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mat 32(1):54–64

    Article  CAS  Google Scholar 

  • Sun Y, Liu Y, Li S, Liu C, Hu Q (2016) Novel compound-forming technology using bioprinting and electrospinning for patterning a 3D scaffold construct with multiscale channels. Micromachines (Basel) 7(12):238

    Article  Google Scholar 

  • Tan Y, Richards DJ, Trusk T, Visconti R, Yost MJ, Kindy MS et al (2014) 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6(2):024111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira S, Vial S, Reis RL, Oliveira JM (2017) Nanoparticles for bone tissue engineering. Biotechnol Prog 33:590–611

    Article  CAS  PubMed  Google Scholar 

  • Virlan MJR, Miricescu D, Totan A, Greabu M, Tanase C, Sabliov CM et al (2015) Current uses of poly(lactic-co-glycolic acid) in the dental field: a comprehensive review. J Chem 2015:1–15

    Article  CAS  Google Scholar 

  • Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS et al (2015) Nanotechnology in bone tissue engineering. Nanomedicine 11(5):1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao M, Wang D, Sun L, Webster TJ (2020) Nanoscale 3D bioprinting for osseous tissue manufacturing. Int J Nanomedicine 15:215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC et al (2007) The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Zakrzewski W, Dobrzynski M, Rybak Z, Szymonowicz M, Wiglusz RJ (2020) Selected nanomaterials’ application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process. Nano 10(6):1–29

    Google Scholar 

  • Zhou W, Apkarian RP, Wang ZL (2006) Fundamentals of scanning Electron microscopy (SEM). In: Zhou W, Wang ZL (eds) Scanning microscopy for Nanotechnology. Springer, New York, pp 1–40

    Google Scholar 

  • Zhu W, Ock J, Ma X, Li W, Chen S (2015) 3D printing and nanomanufacturing. In: Zhang LG (ed) 3D bioprinting and nanotechnology in tissue engineering and regenerative medicine. Academic Press, London, pp 25–55

    Chapter  Google Scholar 

  • Zizzari VL, Zara S, Tete G, Vinci R, Gherlone E, Cataldi A (2016) Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 122(4):392–402

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thanks the financial support by the DGAPA-UNAM: PAPIIT IT203618 project and the CONACYT by the particular program of Fondo Sectorial de Investigación para la Educación A1-S-9178 project. This work was supported by the project B7112 from the University of Costa Rica.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Villalobos-Vega, D. et al. (2021). Characterization and Biocompatibility of a Polylactic Acid (PLA) 3D/Printed Scaffold. In: Sarma, H., Joshi, S.J., Prasad, R., Jampilek, J. (eds) Biobased Nanotechnology for Green Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-61985-5_11

Download citation

Publish with us

Policies and ethics