Skip to main content

Micro/Nano Scaffolds for Osteochondral Tissue Engineering

  • Chapter
  • First Online:
Osteochondral Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1058))

Abstract

To develop an osteochondral tissue regeneration strategy it is extremely important to take into account the multiscale organization of the natural extracellular matrix. The structure and gradients of organic and inorganic components present in the cartilage and bone tissues must be considered together. Another critical aspect is an efficient interface between both tissues. So far, most of the approaches were focused on the development of multilayer or stratified scaffolds which resemble the structural composition of bone and cartilage, not considering in detail a transitional interface layer. Typically, those scaffolds have been produced by the combined use of two or more processing techniques (microtechnologies and nanotechnologies) and materials (organic and inorganic). A significant number of works was focused on either cartilage or bone, but there is a growing interest in the development of the osteochondral interface and in tissue engineering models of composite constructs that can mimic the cartilage/bone tissues. The few works that give attention to the interface between cartilage and bone, as well as to the biochemical gradients observed at the osteochondral unit, are also herein described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro NJ, Patel R, Zhang LJG (2015) Design of a Novel 3D printed bioactive nanocomposite scaffold for improved osteochondral regeneration. Cell Mol Bioeng 8(3):416–432

    Article  CAS  Google Scholar 

  2. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030

    Article  CAS  Google Scholar 

  3. Camarero-Espinosa S, Cooper-White J (2017) Tailoring biomaterial scaffolds for osteochondral repair. Int J Pharm 523(2):476–489

    Article  CAS  Google Scholar 

  4. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138. https://doi.org/10.1126/science.1106587

    Article  CAS  PubMed  Google Scholar 

  5. Mwenifumbo S, Shaffer MS, Stevens MM (2007) Exploring cellular behaviour with multi-walled carbon nanotube constructs. J Mater Chem 17(19):1894–1902

    Article  CAS  Google Scholar 

  6. Alexander PG, Gottardi R, Lin H, Lozito TP, Tuan RS (2014) Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med 239(9):1080–1095

    Article  Google Scholar 

  7. Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12(12):3265–3283

    Article  CAS  Google Scholar 

  8. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen M 2(2–3):81–96

    Article  CAS  Google Scholar 

  9. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen M 1(4):245–260

    Article  CAS  Google Scholar 

  10. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  Google Scholar 

  11. Abbah SA, Delgado LM, Azeem A, Fuller K, Shologu N, Keeney M, Biggs MJ, Pandit A, Zeugolis DI (2015) Harnessing hierarchical Nano- and Micro-fabrication Technologies for Musculoskeletal Tissue Engineering. Adv Healthc Mater 4(16):2488–2499

    Article  CAS  Google Scholar 

  12. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  CAS  Google Scholar 

  13. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  Google Scholar 

  14. Stevens B, Yang YZ, Mohanda SA, Stucker B, Nguyen KT (2008) A review of materials, fabrication to enhance bone regeneration in methods, and strategies used engineered bone tissues. J Biomed Mater Res B 85b(2):573–582

    Article  CAS  Google Scholar 

  15. Fang TD, Salim A, Xia W, Nacamuli RP, Guccione S, Song HM, Carano RA, Filvaroff EH, Bednarski MD, Giaccia AJ, Longaker MT (2005) Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res 20(7):1114–1124

    Article  CAS  Google Scholar 

  16. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146

    Article  CAS  Google Scholar 

  17. Riminucci M, Bianco P (2003) Building bone tissue: matrices and scaffolds in physiology and biotechnology. Braz J Med Biol Res 36(8):1027–1036

    Article  CAS  Google Scholar 

  18. Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL (2002) Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mat Sci Eng C-Bio S 20(1–2):19–26

    Article  Google Scholar 

  19. Costa PF, Martins A, Neves NM, Gomes ME, Reis RL (2014) Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. Tissue Eng Part B-Re 20(6):567–577. https://doi.org/10.1089/ten.teb.2013.0751

    Article  Google Scholar 

  20. Dalton PD, Vaquette C, Farrugia BL, Dargaville TR, Brown TD, Hutmacher DW (2013) Electrospinning and additive manufacturing: converging technologies. Biomater Sci 1(2):171–185

    Article  CAS  Google Scholar 

  21. Martins A, Chung S, Pedro AJ, Sousa RA, Marques AP, Reis RL, Neves NM (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen M 3(1):37–42

    Article  CAS  Google Scholar 

  22. Canha-Gouveia A, Costa-Pinto AR, Martins AM, Silva NA, Faria S, Sousa RA, Salgado AJ, Sousa N, Reis RL, Neves NM (2015) Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells. Biofabrication 7(3). doi:10.1088/1758-5090/7/3/035009

    Article  CAS  PubMed  Google Scholar 

  23. Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL (2005) Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16(12):1099–1104. https://doi.org/10.1007/s10856-005-4713-8

    Article  CAS  PubMed  Google Scholar 

  24. Tuzlakoglu K, Santos MI, Neves N, Reis RL (2011) Design of Nano- and Microfiber Combined Scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular matrix. Tissue Eng Part A 17(3–4):463–473

    Article  CAS  Google Scholar 

  25. Santos MI, Fuchs S, Gomes ME, Unger RE, Reis RL, Kirkpatrick CJ (2007) Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials 28(2):240–248. doi:S0142-9612(06)00693-4 [pii]. 10.1016/j.biomaterials.2006.08.006

    Article  CAS  Google Scholar 

  26. Santos MI, Tuzlakoglu K, Fuchs S, Gomes ME, Peters K, Unger RE, Piskin E, Reis RL, Kirkpatrick CJ (2008) Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29(32):4306–4313

    Article  CAS  Google Scholar 

  27. Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495

    Article  CAS  Google Scholar 

  28. Costa PF, Vaquette C, Zhang QY, Reis RL, Ivanovski S, Hutmacher DW (2014) Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol 41(3):283–294

    Article  CAS  Google Scholar 

  29. Kim G, Son J, Park S, Kim W (2008) Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol Rapid Commun 29(19):1577–1581. https://doi.org/10.1002/marc.200800277

    Article  CAS  Google Scholar 

  30. Moroni L, Schotel R, Hamann D, de Wijn JR, van Blitterswijk CA (2008) 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv Func Mater 18:53–60. https://doi.org/10.1002/adfm.200601158

    Article  CAS  Google Scholar 

  31. Park SH, Kim TG, Kim HC, Yang DY, Park TG (2008) Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater 4(5):1198–1207

    Article  CAS  Google Scholar 

  32. Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenstrom P (2008) Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9(3):1044–1049

    Article  CAS  Google Scholar 

  33. Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Dang QSL, Nielsen AD, Nygaard JV, Bunger CE, Lind M (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sport Tr A 20(6):1192–1204

    Article  Google Scholar 

  34. Jeon JE, Vaquette C, Theodoropoulos C, Klein TJ, Hutmacher DW (2014) Multiphasic construct studied in an ectopic osteochondral defect model. J R Soc Interface 11(95):20140184

    Article  Google Scholar 

  35. Xu T, Binder KW, Albanna MZ, Dice D, Zhao WX, Yoo JJ, Atala A (2013) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001

    Article  Google Scholar 

  36. Jeon JE, Vaquette C, Klein TJ, Hutmacher DW (2014) Perspectives in multiphasic osteochondral tissue engineering. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 297(1):26–35

    Article  CAS  Google Scholar 

  37. Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, Mano JF, Oliveira AL, Oliveira JM, Reis RL (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241

    Article  CAS  Google Scholar 

  38. Christakiran MJ, Reardon PJT, Konwarh R, Knowles JC, Mandal BB (2017) Mimicking hierarchical complexity of the osteochondral Interface using electrospun silk bioactive glass composites. Acs Appl Mater Inter 9(9):8000–8013

    Article  Google Scholar 

  39. Yousefi AM, Hoque ME, Prasad RGSV, Uth N (2015) Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res A 103(7):2460–2481

    Article  CAS  Google Scholar 

  40. Shim JH, Lee JS, Kim JY, Cho DW (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014

    Article  Google Scholar 

  41. Castro NJ, O'Brien J, Zhang LG (2015) Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale 7(33):14010–14022

    Article  CAS  Google Scholar 

  42. Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 168(2):166–178

    Article  CAS  Google Scholar 

  43. Liu YY, Yu HC, Liu Y, Liang G, Zhang T, Hu QX (2016) Dual drug spatiotemporal release from functional gradient scaffolds prepared using 3D bioprinting and electrospinning. Polym Eng Sci 56(2):170–177. https://doi.org/10.1002/pen.24239

    Article  CAS  Google Scholar 

  44. Erisken C, Kalyon DM, Wang HJ, Ornek-Ballanco C, Xu JH (2011) Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic Polycaprolactone Nanofibrous scaffolds with graded insulin and Beta-Glycerophosphate concentrations. Tissue Eng Pt A 17(9–10):1239–1252

    Article  CAS  Google Scholar 

  45. Du YY, Liu HM, Yang Q, Wang S, Wang JL, Ma J, Noh I, Mikos AG, Zhang SM (2017) Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137:37–48

    Article  CAS  Google Scholar 

  46. Gadjanski I, Vunjak-Novakovic G (2015) Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opin Biol Ther 15(11):1583–1599

    Article  Google Scholar 

  47. Di Luca A, Van Blitterswijk C, Moroni L (2015) The osteochondral Interface as a gradient tissue: from development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Research Part C-Embryo Today-Reviews 105(1):34–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albino Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martins, A., Reis, R.L., Neves, N.M. (2018). Micro/Nano Scaffolds for Osteochondral Tissue Engineering. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-319-76711-6_6

Download citation

Publish with us

Policies and ethics