Skip to main content

Arbuscular Mycorrhizal Fungi: Interactions with Plant and Their Role in Agricultural Sustainability

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Part of the book series: Fungal Biology ((FUNGBIO))

  • 751 Accesses

Abstract

Excessive anthropogenic activities have been a major factor affecting the natural environments. Climate change, loss of biodiversity, soil contamination and soil erosion are some of the major consequences of these activities. In order to diminish the speed of such destruction and rehabilitate ecosystem functioning, it is urgent to undertake an action to restore the soil biodiversity and its functionality by sustainable management practices. Soil microbes play an essential role in several ecosystem functioning. Among the vast variety of soil microbes present, arbuscular mycorrhiza (AM) stand out as a promising selection to offer its benefits in soil restoration and protection, sustainable agriculture and food security. AM fungi are considered integral components of the soil, forming symbiosis with majority of the land plants. They are the most widespread symbiotic fungi playing essential role in ecosystem functioning via affecting their host plant and various soil cycles and properties. Improving the plant nutrition and performance, alleviating stress and pathogen tolerance in plants, as well as enhancing the soil structure and its fertility are some of the essential functions of AM fungi. The role of AM fungi in crop production is a core area of research to make use of its benefits in sustainable agriculture. In this chapter, we emphasize the role of AM fungi in ecological functioning, crop production, and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdedaiem R, Rejili M, Mahdhi M, de Lajudie P, Mars M (2020) Soil properties shape species diversity and community composition of native arbuscular mycorrhizal fungi in Retama raetam roots growing on arid ecosystems of Tunisia. Int J Agric Biol 23(2):438–446

    CAS  Google Scholar 

  • Ahanger MA, Agarwal R (2017) Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma 254(4):1471–1486

    Article  CAS  PubMed  Google Scholar 

  • Alexander T, Toth R, Meier R, Weber HC (1989) Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular–arbuscular mycorrhizae in grasses. Can J Bot 67(8):2505–2513

    Article  Google Scholar 

  • Al-Yahya’ei MN, Oehl F, Vallino M, Lumini E, Redecker D, Wiemken A et al (2011) Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza 21(3):195–209

    Article  PubMed  Google Scholar 

  • Bago B, Bécard G (2002) Bases of the obligate biotrophy of arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrrhizal technology in agriculture. Springer, Switzerland AG. pp 33–48

    Google Scholar 

  • Barrow C (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Article  Google Scholar 

  • Bauddh K, Singh RP (2012) Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Saf 85:13–22

    Article  CAS  PubMed  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ahmed N et al (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Ames RN, Thomas RS (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol Plant 72(3):565–571

    Article  CAS  Google Scholar 

  • Binet MN, Sage L, Malan C, Clément JC, Redecker D, Wipf D et al (2013) Effects of mowing on fungal endophytes and arbuscular mycorrhizal fungi in subalpine grasslands. Fungal Ecol 6(4):248–255. https://doi.org/10.1016/j.funeco.2013.04.001

    Article  Google Scholar 

  • BÅ‚aszkowski J, Chwat G, Góralska A, Ryszka P, Orfanoudakis M (2014) Septoglomus jasnowskae and Septoglomus turnauae, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycol Prog 13(4):985

    Article  Google Scholar 

  • Bonfante P, Genre A (2015) Arbuscular mycorrhizal dialogues: do you speak ‘plantish’or ‘fungish’? Trends Plant Sci 20(3):150–154

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Selosse M-A (2010) A glimpse into the past of land plants and of their mycorrhizal affairs: from fossils to evo-devo. New Phytol 186(2):267–270

    Article  PubMed  Google Scholar 

  • Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fertil Soils 48(8):911–922. https://doi.org/10.1007/s00374-012-0683-4

    Article  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55(407):2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Bryla DR, Duniway JM (1997) Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat. Plant Soil 197(1):95–103

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Sánchez-Romera B, Aroca R, Asins MJ, Declerck S, Dodd IC et al (2016) Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131:47–57

    Article  CAS  Google Scholar 

  • Cameron DD, Neal AL, van Wees SC, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18(10):539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanelli A, Ruta C, De Mastro G, Morone-Fortunato I (2013) The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis 59(2):65–76

    Article  Google Scholar 

  • Carballar-Hernández S, Hernández-Cuevas LV, Montaño NM, Larsen J, Ferrera-Cerrato R, Taboada-Gaytán OR et al (2017) Native communities of arbuscular mycorrhizal fungi associated with Capsicum annuum L. respond to soil properties and agronomic management under field conditions. Agric Ecosyst Environ 245:43–51

    Article  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235(6):1431–1447

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20(5):283–290

    Article  CAS  PubMed  Google Scholar 

  • Champagne A, Boutry M (2016) Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species. BBA-Proteins Proteomics 1864(8):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T (2019) Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci 10:457

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen B, Li X, Tao H, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50(6):839–846

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci 9:1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa A, Cruz C, Ferrol N (2015) Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25(7):499–515. https://doi.org/10.1007/s00572-015-0627-6

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Moora M, Öpik M, Ainsaar L, Ducousso M, Hiiesalu I et al (2018) Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME 12(9):2211–2224

    Article  CAS  Google Scholar 

  • de Araujo Pereira AP, Santana MC, Bonfim JA, de Lourdes Mescolotti D, Cardoso EJBN (2018) Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Appl Soil Ecol 128:1–11

    Article  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbiol Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Duc NH, Csintalan Z, Posta K (2018) Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem 132:297–307

    Article  CAS  PubMed  Google Scholar 

  • Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93(3):931–940

    Article  CAS  PubMed  Google Scholar 

  • El Abbassi A, Khalid N, Zbakh H, Ahmad A (2014) Physicochemical characteristics, nutritional properties, and health benefits of argan oil: a review. Crit Rev Food Sci Nutr 54(11):1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Elmes R, Mosse B (1984) Vesicular–arbuscular endomycorrhizal inoculum production. II. Experiments with maize (Zea mays) and other hosts in nutrient flow culture. Can J Bot 62(7):1531–1536

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facelli E, Smith SE, Facelli JM, Christophersen HM, Andrew Smith F (2010) Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol 185(4):1050–1061

    Article  PubMed  Google Scholar 

  • Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 3(1):1–8

    Article  Google Scholar 

  • Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67(22):6253–6265

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111(5):769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French KE (2017) Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Front Microbiol 8:1403

    Article  PubMed  PubMed Central  Google Scholar 

  • Gai JP, Tian H, Yang FY, Christie P, Li XL, Klironomos JN (2012) Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia 55(3):145–151. https://doi.org/10.1016/j.pedobi.2011.12.004

    Article  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L.(Millsp.) genotypes. Mycorrhiza 25(3):165–180

    Article  PubMed  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15(3–4):257–270

    Article  Google Scholar 

  • Goto BT, Silva GA, Assis D, Silva DK, Souza RG, Ferreira AC et al (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119(1):117–132

    Article  Google Scholar 

  • Gui W, Ren H, Liu N, Zhang Y, Cobb AB, Wilson GW et al (2018) Plant functional group influences arbuscular mycorrhizal fungal abundance and hyphal contribution to soil CO2 efflux in temperate grasslands. Plant Soil 432(1–2):157–170

    Article  CAS  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242

    Article  Google Scholar 

  • Helgason T, Daniell T, Husband R, Fitter AH, Young J (1998) Ploughing up the wood-wide web? Nature 394(6692):431–431

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95(4):623–630

    Article  CAS  Google Scholar 

  • Higo M, Isobe K, Yamaguchi M, Drijber RA, Jeske ES, Ishii R (2013) Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biol Fertil Soils 49(8):1085–1096

    Article  Google Scholar 

  • Hijri M (2016) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26(3):209–214

    Article  PubMed  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154(5–6):709–717

    Article  CAS  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13(3):394–407

    Article  PubMed  Google Scholar 

  • Jarstfer A, Sylvia D (1995) Aeroponic culture of VAM fungi. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, Heidelberg, pp 427–441

    Chapter  Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock B (ed) Fungal associations. Springer, Berlin, Heidelberg, pp 95–113

    Chapter  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38(6):651–664

    Article  CAS  PubMed  Google Scholar 

  • Kaldorf M, Kuhn A, Schröder W, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154(5–6):718–728

    Article  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 2: Perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487

    Article  Google Scholar 

  • Krüger C, Kohout P, JanouÅ¡ková M, Püschel D, Frouz J, Rydlová J (2017) Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Front Microbiol 8:719

    Article  PubMed  PubMed Central  Google Scholar 

  • Landolt M, Stroheker S, Queloz V, Gall A, Sieber TN (2020) Does water availability influence the abundance of species of the Phialocephala fortinii sl–Acephala applanata complex (PAC) in roots of pubescent oak (Quercus pubescens) and Scots pine (Pinus sylvestris)? Fungal Ecol 44:100904

    Article  Google Scholar 

  • Latef AAHA, Chaoxing H (2014) Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33(3):644–653

    Article  CAS  Google Scholar 

  • Leake J, Read D (2017) Mycorrhizal symbioses and pedogenesis throughout Earth’s history. In: Johnson NC, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil. Elsevier, Amsterdam, pp 9–33

    Chapter  Google Scholar 

  • Lee E-H, Eo J-K, Ka K-H, Eom A-H (2013) Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41(3):121–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Christie P (2001) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (1991) Mycorrhizal interactions in the rhizosphere. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth: papers presented at a symposium held May 8–11, 1989, at the Beltsville Agricultural Research Center (BARC), Beltsville, Maryland. Springer Netherlands, Dordrecht, pp 343–348. https://doi.org/10.1007/978-94-011-3336-4_73

    Chapter  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B et al (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153(1):137–147

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He J, Shi G, An L, Öpik M, Feng H (2011) Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau. FEMS Microbiol Ecol 78(2):355–365

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Pozo MJ (2013) Chemical signalling in the arbuscular mycorrhizal symbiosis: biotechnological applications. In: Aroca R (ed) Symbiotic endophytes. Springer, Berlin, pp 215–232

    Chapter  Google Scholar 

  • Lovelock CE, Andersen K, Morton JB (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135(2):268–279

    Article  PubMed  Google Scholar 

  • Lu X, Lu X, Liao Y (2018) Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content. Front Microbiol 9:2986. https://doi.org/10.3389/fmicb.2018.02986

    Article  PubMed  PubMed Central  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79(4):544–567

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66(8):2199–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean AM, Bravo A, Harrison MJ (2017) Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29(10):2319–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328):58–63

    Article  CAS  PubMed  Google Scholar 

  • McGonigle T, Fitter A (1988) Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proc R Soc Edinb 94:25–32

    Google Scholar 

  • Meddad-Hamza A, Beddiar A, Gollotte A, Lemoine M, Kuszala C, Gianinazzi S (2010) Arbuscular mycorrhizal fungi improve the growth of olive trees and their resistance to transplantation stress. Afr J Biotechnol 9(8):1159–1167

    Article  Google Scholar 

  • Meharg A, Cairney JW (1999) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. In: Advances in ecological research, vol 30. Elsevier, Switzerland AG. pp 69–112

    Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12(4):563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2017) Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 147–161

    Chapter  Google Scholar 

  • Moradi M, Naji HR, Imani F, Behbahani SM, Ahmadi MT (2017) Arbuscular mycorrhizal fungi changes by afforestation in sand dunes. J Arid Environ 140:14–19

    Article  Google Scholar 

  • Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20(7):483–496

    Article  PubMed  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77(7):1045–1050

    Article  Google Scholar 

  • Müller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: recent developments. Plant Sci 112(1):1–9

    Article  Google Scholar 

  • Njeru EM, Avio L, Bocci G, Sbrana C, Turrini A, Bàrberi P et al (2015) Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biol Fertil Soils 51(2):151–166

    Article  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, da Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsson P, Thingstrup I, Jakobsen I, Bååth E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31(13):1879–1887

    Article  CAS  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23(5):411–430

    Article  PubMed  Google Scholar 

  • Ortas I (2015) Comparative analyses of Turkey agricultural soils: potential communities of indigenous and exotic mycorrhiza species’ effect on maize (Zea mays L.) growth and nutrient uptakes. Eur J Soil Biol 69:79–87

    Article  Google Scholar 

  • Ortas I, Ustuner O (2014) Determination of different growth media and various mycorrhizae species on citrus growth and nutrient uptake. Sci Hortic 166:84–90

    Article  CAS  Google Scholar 

  • OrtaÅŸ I, Rafique M, Ahmed Ä°A (2017) Application of arbuscular mycorrhizal fungi into agriculture. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 305–327

    Chapter  Google Scholar 

  • Ouahmane L, Hafidi M, Thioulouse J, Ducousso M, Kisa M, Prin Y et al (2007) Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi. J Appl Microbiol 103(3):683–690

    Article  CAS  PubMed  Google Scholar 

  • Ouledali S, Ennajeh M, Zrig A, Gianinazzi S, Khemira H (2018) Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol Plant 40(5):81

    Article  CAS  Google Scholar 

  • Pan J, Peng F, Tedeschi A, Xue X, Wang T, Liao J et al (2020) Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. Bot Stud 61(1):13. https://doi.org/10.1186/s40529-020-00290-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszkowski U, Gutjahr C (2013) Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4:204

    PubMed  PubMed Central  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30(9):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi: a review. Agron Sustain Dev 32(1):181–200

    Article  CAS  Google Scholar 

  • Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA et al (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168(2):445–454

    Article  CAS  PubMed  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  • Querejeta J (2017) Soil water retention and availability as influenced by mycorrhizal symbiosis: consequences for individual plants, communities, and ecosystems. In: Johnson NC, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil. Elsevier, Amsterdam, pp 299–317

    Chapter  Google Scholar 

  • Querejeta J, Allen M, Caravaca F, Roldán A (2006) Differential modulation of host plant δ13C and δ18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment. New Phytol 169(2):379–387

    Article  CAS  PubMed  Google Scholar 

  • Rai M (2006) Handbook of microbial biofertilizers. CRC Press, Boca Raton

    Book  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 21–42

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23(7):515–531

    Article  PubMed  Google Scholar 

  • Rillig MC, Field CB (2003) Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil 254(2):383–391

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233(2):167–177

    Article  CAS  Google Scholar 

  • Rosendahl S, Mcgee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18(20):4316–4329

    Article  PubMed  Google Scholar 

  • Rossi L, Sebastiani L, Tognetti R, d’Andria R, Morelli G, Cherubini P (2013) Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant Soil 372(1–2):567–579

    Article  CAS  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M et al (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Roy-Bolduc A, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopestici 2(104):1–5

    Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13(6):309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167(11):862–869

    Article  PubMed  CAS  Google Scholar 

  • Säle V, Aguilera P, Laczko E, Mäder P, Berner A, Zihlmann U et al (2015) Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol Biochem 84:38–52

    Article  CAS  Google Scholar 

  • Saxena B, Shukla K, Giri B (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Johnson NC, Gehring C, Jansa J (eds) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 67–97

    Chapter  Google Scholar 

  • Schubert A, Lubraco G (2000) Mycorrhizal inoculation enhances growth and nutrient uptake of micropropagated apple rootstocks during weaning in commercial substrates of high nutrient availability. Appl Soil Ecol 15(2):113–118

    Article  Google Scholar 

  • Schüßler A, Christopher W (2011) 7 evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In: Poggeler S, Wostemeyer J (eds) Evolution of fungi and fungal-like organisms, vol 14. Springer Science & Business Media, Berlin, Heidelberg

    Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421

    Article  Google Scholar 

  • Shabani L, Sabzalian MR (2016) Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26(1):67–76

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Prasad R, Varma A, Sharma AK (2017) Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian J Plant Pathol 11(4):199–202

    Article  Google Scholar 

  • Sieverding E, Friedrichsen J, Suden W (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Sonderpublikation der GTZ (Germany)

    Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363(6424):67–69

    Article  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh PK, Singh M, Tripathi BN (2013) Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma 250(3):663–669

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Smith S, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39(1):221–244

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, Amsterdam

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1–2):3–20

    Article  CAS  Google Scholar 

  • Sonjak S, Beguiristain T, Leyval C, Regvar M (2009) Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant Soil 314(1):25–34. https://doi.org/10.1007/s11104-008-9702-5

    Article  CAS  Google Scholar 

  • Sosa-Hernández MA, Roy J, Hempel S, Kautz T, Köpke U, Uksa M et al (2018a) Subsoil arbuscular mycorrhizal fungal communities in arable soil differ from those in topsoil. Soil Biol Biochem 117:83–86

    Article  CAS  Google Scholar 

  • Sosa-Hernández MA, Roy J, Hempel S, Rillig MC (2018b) Evidence for subsoil specialization in arbuscular mycorrhizal fungi. Front Ecol Evol 6:67

    Article  Google Scholar 

  • Sridhar K (2005) Diversity of fungi in mangrove ecosystems. Microbial diversity: current perspectives and potential applications. IK International Pvt. Ltd, New Delhi

    Google Scholar 

  • Sridhar K, Bhagya B (2007) Coastal sand dune vegetation: a potential source of food, fodder and pharmaceuticals. Livest Res Rural 19(6):84

    Google Scholar 

  • Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22(4):247–258

    Article  PubMed  Google Scholar 

  • Sweatt MR, Davies FT Jr (1984) Mycorrhizae, water relations, growth, and nutrient uptake of geranium grown under moderately high phosphorus regimes. J Am Soc Hortic Sci 109(2):210–213

    Article  Google Scholar 

  • Taylor L, Leake J, Quirk J, Hardy K, Banwart S, Beerling D (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7(2):171–191

    Article  CAS  PubMed  Google Scholar 

  • Uibopuu A, Moora M, Saks U, Daniell T, Zobel M, Oepik M (2009) Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along management gradient on the growth of forest understorey plant species. Soil Biol Biochem 41(10):2141–2146

    Article  CAS  Google Scholar 

  • Vangronsveld J, Colpaert JV, Gonzalez-Chavez C, Leyval C (2005) Arbuscular mycorrhizal fungi and heavy metals: tolerance mechanisms and potential use in bioremediation. https://doi.org/10.1201/9781420032048.CH12

  • Varga S, Finozzi C, Vestberg M, Kytöviita M-M (2015) Arctic arbuscular mycorrhizal spore community and viability after storage in cold conditions. Mycorrhiza 25(5):335–343

    Article  CAS  PubMed  Google Scholar 

  • Virginia R, Jenkins M, Jarrell W (1986) Depth of root symbiont occurrence in soil. Biol Fertil Soils 2(3):127–130

    Article  Google Scholar 

  • Wagner W, Wiemken A, Matile P (1986) Regulation of fructan metabolism in leaves of barley (Hordeum vulgare L. cv Gerbel). Plant Physiol 81(2):444–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F-Y, Liu R-J, Lin X-G, Zhou J-M (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14(2):133–137. https://doi.org/10.1007/s00572-003-0248-3

    Article  PubMed  Google Scholar 

  • Watts-Williams SJ, Patti AF, Cavagnaro TR (2013) Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil 371(1–2):299–312

    Article  CAS  Google Scholar 

  • Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60(5):437–440

    Article  CAS  PubMed  Google Scholar 

  • Wu Q-S, Zou Y-N (2017) Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In: Johnson NC, Gehring C, Jansa J (eds) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 25–41

    Chapter  Google Scholar 

  • Wu Z, McGrouther K, Huang J, Wu P, Wu W, Wang H (2014) Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biol Biochem 68:283–290

    Article  CAS  Google Scholar 

  • Xiang D, Veresoglou SD, Rillig MC, Xu T, Li H, Hao Z et al (2016) Relative importance of individual climatic drivers shaping arbuscular mycorrhizal fungal communities. Microb Ecol 72(2):418–427

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, vol 1: Perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, vol 2: Functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yang W, Zheng Y, Gao C, Duan JC, Wang SP, Guo LD (2016) Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau. Sci Rep 6:36606. https://doi.org/10.1038/srep36606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin N, Zhang Z, Wang L, Qian K (2016) Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ Sci Pollut R 23(17):17840–17849

    Article  CAS  Google Scholar 

  • Zhang T, Hu Y, Zhang K, Tian C, Guo J (2018) Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind Crop Prod 117:13–19

    Article  CAS  Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104(12):1421–1426

    Article  Google Scholar 

  • Zhu X, Song F, Liu F (2017) Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants. In: Johnson NC, Gehring C, Jansa J (eds) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 163–194

    Chapter  Google Scholar 

  • Zipfel C, Oldroyd GE (2017) Plant signalling in symbiosis and immunity. Nature 543(7645):328–336

    Article  CAS  PubMed  Google Scholar 

  • Zou Y-N, Srivastava A, Ni Q-D, Wu Q-S (2015) Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Front Microbiol 6:203

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudheer, S., Hagh-Doust, N., Pratheesh, P.T. (2021). Arbuscular Mycorrhizal Fungi: Interactions with Plant and Their Role in Agricultural Sustainability. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60659-6_2

Download citation

Publish with us

Policies and ethics