Skip to main content

X-Ray Absorption Spectroscopy (XAS) Applied to Cultural Heritage

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis
  • 3121 Accesses

Abstract

X-ray absorption spectroscopy (XAS) is a powerful technique for the characterization of artifacts in the cultural heritage field. The recent development of data collection techniques with a high spatial resolution has considerably improved the level of comprehension of these intrinsically inhomogeneous materials. In this contribution the XAS technique and the related instrumentation and data collection strategies are presented as well as an overview of the main studies carried out in the last years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended x-ray absorption fine structure—its strengths and limitations as a structural tool. Rev Mod Phys 53:769–806

    Article  Google Scholar 

  2. Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72:621–654

    Article  Google Scholar 

  3. Ashley CA, Doniach S (1975) Theory of extended x-ray absorption edge fine structure (EXAFS) in crystalline solids. Phys Rev B 11:1279–1288

    Article  Google Scholar 

  4. Lee PA, Pendry JB (1975) Theory of the extended x-ray absorption fine structure. Phys Rev B 11:2795–2811

    Article  Google Scholar 

  5. Natoli CR, Benfatto M (1986) A unifying scheme of interpretation of x-ray absorption spectra based on the multiple scattering theory. J Phys Coll 47, No. C8, C8–11–C8–23

    Google Scholar 

  6. Rehr JJ, Kas JJ, Vila FD, Prange MP, Jorissnen K (2010) Parameter-free calculations of X-ray spectra with FEFF9. Phys Chem Chem Phys 12:5503–5513

    Article  Google Scholar 

  7. S. Tomic, B.G. Searle, A. Wander, Harrison N.M., A.J. Dent, J. F. W. Mosselmans, and Inglesfield J. E., New tools for the analysis of EXAFS: the DL EXCURV package. Tech. report, 2005. ISSN 1362-0207

    Google Scholar 

  8. Filipponi A, Di Cicco A (1995) X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications. Phys Rev B 52:15135–15149

    Article  Google Scholar 

  9. Cramer SP, Eccles TK, Kutzler FW, Hodgson KO, Mortenson LE (1976) Molybdenum x-ray absorption edge spectra. the chemical state of molybdenum in nitrogenase. J Am Chem Soc 98(5):1287–1288

    Article  Google Scholar 

  10. Galoisy L, Calas G, Arrio MA (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chem Geol 174(1):307–319, 6th International Silicate Melt Workshop

    Article  Google Scholar 

  11. Wilke M, Farges F, Petit PE, Brown GE Jr, Martin F (2001) Oxidation state and co-ordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineral 86(5–6):714–730

    Article  Google Scholar 

  12. Wasserman SR (1997) The analysis of mixtures: application of principal component analysis to XAS spectra. J Phys IV France 7-C2:203–205

    Google Scholar 

  13. Ressler T, Wong J, Roos J, Smith IL (2000) Quantitative speciation of mn-bearing particulates emitted from autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy. Environ Sci Technol 34(6):950–958

    Article  Google Scholar 

  14. Frenkel AI, Kleifeld O, Wasserman SR, Sagi I (2002) Phase speciation by extended x-ray absorption fine structure spectroscopy. J Chem Phys 116(21):9449–9456

    Article  Google Scholar 

  15. Joly Y, Bunau O, Lorenzo JE, Galra RM, Grenier B, Thomson S (2009) Self-consistency, Hubbard, spin-orbit and other advances in the FDMNES code to simulate XANES and RXD experiments. J Phys Conf Ser 190:012007

    Article  Google Scholar 

  16. Gougoussis C, Calandra M, Seitsonen AP, Mauri F (2009) First-principles calculations of x-ray absorption in a scheme based on ultrasoft pseudopotentials: from α-quartz to high-Tc compounds. Phys Rev B 80:075102

    Article  Google Scholar 

  17. Benfatto M, Della Longa S (2001) Geometrical fitting of experimental XANES spectra by a full multiple-scattering procedure. J Synchrotron Radiat 8(4):1087–1094

    Article  Google Scholar 

  18. Smolentsev G, Soldatov A (2005) Quantitative local structure refinement from XANES: multi-dimensional interpolation approach. J Synchrotron Rad 13:19–29

    Article  Google Scholar 

  19. Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based x-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43(6):705–714

    Article  Google Scholar 

  20. Cotte M, Pouyet E, Salom M, Rivard C, De Nolf W, Castillo-Michel H, Fabris T, Monico L, Janssens K, Wang T, Sciau P, Verger L, Cormier L, Dargaud O, Brun E, Bugnazet D, Fayard B, Hesse B, Pradas del Real AE, Veronesi G, Langlois J, Balcar N, Vandenberghe Y, Sol VA, Kieffer J, Barrett R, Cohen C, Cornu C, Baker R, Gagliardini E, Papillon E, Susini J (2017) The id21 x-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials. J Anal At Spectrom 32:477–493

    Article  Google Scholar 

  21. Ishikawa T, Tamasaku K, Yabashi M (2005) High-resolution x-ray monochromators. Nucl Instrum Methods Phys Res A 547(1):42–49

    Article  Google Scholar 

  22. Krause MO, Oliver JH (1979) Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J Phys Chem Ref Data 8(2):329–338

    Article  Google Scholar 

  23. Bearden JA, Burr AF (1967) Reevaluation of x-ray atomic energy levels. Rev Mod Phys 39:125–142

    Article  Google Scholar 

  24. Cotte M, Genty-Vincent A, Janssens K, Susini J (2018) Applications of synchrotron x-ray nano-probes in the field of cultural heritage. C R Phys 19(7):575–588, Physics and arts/Physique et arts

    Article  Google Scholar 

  25. Sakdinawat A, Attwood D (2010) Nanoscale x-ray imaging. Nat Photonics 4(6):840–848

    Article  Google Scholar 

  26. Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schder S (2012) Development and trends in synchrotron studies of ancient and historical materials. Phys Rep 519(2):51–96

    Article  Google Scholar 

  27. Chadwick AV, Berko A, Schofield EJ, Jones AM, Mosselmans JFW, Smith AD (2012) Application of microfocus x-ray beams from synchrotrons in heritage conservation. Int J Archit Herit 6(2):228–258

    Article  Google Scholar 

  28. Erko A, Zizak I (2009) Hard x-ray micro-spectroscopy at berliner elektronenspeicherring fr synchrotronstrahlung ii. Spectrochim Acta B At Spectrosc 64(9):833–848

    Article  Google Scholar 

  29. Edwards NP, Webb SM, Krest CM, van Campen D, Manning PL, Wogelius RA, Bergmann U (2018) A new synchrotron rapid-scanning X-ray fluorescence (SRS-XRF) imaging station at SSRL beamline 6-2. J Synchrotron Radiat 25(5):1565–1573

    Article  Google Scholar 

  30. Flank A-M, Cauchon G, Lagarde P, Bac S, Janousch M, Wetter J-M, Dubuisson R, Idir F, Langlois M, Moreno T, Vantelon D (2006) Lucia, a microfocus soft XAS beamline. Nucl Instrum Methods Phys Res B 246(1):269–274, Synchrotron Radiation and Materials Science

    Article  Google Scholar 

  31. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Verbeeck J, He Tian, Tan H, Dik J, Radepont M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron x-ray spectromicroscopy and related methods. 1. Artificially aged model samples. Anal Chem 83(4):1214–1223

    Article  Google Scholar 

  32. Eng PJ, Newville M, Rivers L, Sutton SR (1998) Dynamically figured Kirkpatrick Baez x-ray microfocusing optics. SPIE’s Int Symp Opt Sci Eng Instrum 3449:145–156

    Google Scholar 

  33. Monico L, Janssens K, Alfeld M, Cotte M, Vanmeert F, Ryan CG, Falkenberg G, Howard DL, Brunetti BG, Miliani C (2015) Full spectral XANES imaging using the MAIA detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. J Anal At Spectrom 30:613–626

    Article  Google Scholar 

  34. Cotte M, Szlachetko J, Lahlil S, Salome M, Sole VA, Biron I, Susini J (2011) Coupling a wavelength dispersive spectrometer with a synchrotron-based x-ray microscope: a winning combination for micro-x-ray fluorescence and micro-XANES analyses of complex artistic materials. J Anal At Spectrom 26:1051

    Article  Google Scholar 

  35. Ryan CG, Siddons DP, Kirkham R, Li ZY, de Jonge MD, Paterson DJ, Kuczewski A, Howard DL, Dunn PA, Falkenberg G, Boesenberg U, De Geronimo G, Fisher LA, Halfpenny A, Lintern MJ, Lombi E, Dyl KA, Jensen M, Moorhead GF, Cleverley JS, Hough RM, Godel B, Barnes SJ, James SA, Spiers KM, Alfeld M, Wellenreuther G, Vukmanovic Z, Borg S (2014) Maia x-ray fluorescence imaging: capturing detail in complex natural samples. J Phys Conf Ser 499:012002

    Article  Google Scholar 

  36. Boesenberg U, Ryan CG, Kirkham R, Siddons DP, Alfeld M, Garrevoet J, Núñez T, Claussen T, Kracht T, Falkenberg G (2016) Fast X-ray microfluorescence imaging with submicrometer-resolution integrating a Maia detector at beamline P06 at PETRAIII. J Synchrotron Radiat 23(6):1550–1560

    Article  Google Scholar 

  37. De Andrade V, Susini J, Salom M, Beraldin O, Rigault C, Heymes T, Lewin E, Vidal O (2011) Submicrometer hyperspectral x-ray imaging of heterogeneous rocks and geomaterials: applications at the Fe k-edge. Anal Chem 83(11):4220–4227

    Article  Google Scholar 

  38. Pouyet E, Fayard B, Salomé M, Taniguchi Y, Sette F, Cotte M (2015) Thin-sections of painting fragments: opportunities for combined synchrotron-based micro-spectroscopic techniques. Herit Sci 3(1):3

    Article  Google Scholar 

  39. Meirer F, Cabana J, Liu Y, Mehta A, Andrews JC, Pianetta P (2011) Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J Synchrotron Radiat 18(5):773–781

    Article  Google Scholar 

  40. Mangold S, Steininger R, dos Santos Rolo T, Gttlicher J (2013) Full field spectroscopic imaging at the ANKA-XAS- and -SUL-x-beamlines. J Phys Conf Ser 430:012130

    Article  Google Scholar 

  41. Sabbe PJ, Dowsett MG, De Keersmaecker M, Hand M, Thompson P, Adriaens A (2015) Synthesis and surface characterization of a patterned cuprite sample: preparatory step in the evaluation scheme of an x-ray-excited optical microscopy system. Appl Surf Sci 332:657–664

    Article  Google Scholar 

  42. Dowsett M, Hand M, Sabbe PJ, Thompson P, Adriaens A (2015) XEOM 1 – a novel microscopy system for the chemical imaging of heritage metal surfaces. Herit Sci 3(1):14

    Article  Google Scholar 

  43. Silversmit G, Vekemans B, Nikitenko S, Schmitz S, Schoonjans T, Brenker FE, Vincze L (2010) Spatially resolved 3d micro-XANES by a confocal detection scheme. Phys Chem Chem Phys 12:5653–5659

    Article  Google Scholar 

  44. Kanngiesser B, Malzer W, Mantouvalou I, Sokaras D, Karydas AG (2010) A deep view in cultural heritage confocal micro x-ray spectroscopy for depth resolved elemental analysis. Appl Phys A Mater Sci Process 106:325–338

    Article  Google Scholar 

  45. Martínez-Criado G, Tucoulou R, Cloetens P, Bleuet P, Bohic S, Cauzid J, Kieffer I, Kosior E, Labouré S, Petitgirard S, Rack A, Sans JA, Segura-Ruiz J, Suhonen H, Susini J, Villanova J (2012) Status of the hard X-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility. J Synchrotron Radiat 19(1):10–18

    Article  Google Scholar 

  46. Chen G, Chu S, Sun T, Sun X, Zheng L, An P, Zhu J, Wu S, Du Y, Zhang J (2017) Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility. J Synchrotron Radiat 24(5):1000–1005

    Article  Google Scholar 

  47. Lhl L, Hesse B, Mantouvalou I, Wilke M, Mahlkow S, Aloupi-Siotis E, Kanngiesser B (2014) Confocal XANES and the attic black glaze: the three-stage firing process through modern reproduction. Anal Chem 86(14):6924–6930

    Article  Google Scholar 

  48. Erbil A, Cargill GS III, Frahm R, Boehme RF (1988) Total-electron-yield current measurements for near-surface extended x-ray-absorption fine structure. Phys Rev B37:2450–2464

    Article  Google Scholar 

  49. Padovani S, Borgia I, Brunetti B, Sgamellotti A, Giulivi A, d’Acapito F, Mazzoldi P, Sada C, Battaglin G (2004) Silver and copper nanoclusters in the lustre decoration of Italian renaissance pottery: an exafs study. Appl Phys A Mater Sci Process 79(2):229–233

    Article  Google Scholar 

  50. Zanella L, Casadio F, Gray KA, Warta R, Ma Q, Gaillard J-F (2011) The darkening of zinc yellow: XANES speciation of chromium in artist’s paints after light and chemical exposures. J Anal At Spectrom 26:1090–1097

    Article  Google Scholar 

  51. Gervais C, Languille MA, Rguer S, Gillet M, Vicenzi EP, Chagnot S, Baudelet F, Bertrand L (2013) Live Prussian blue fading by time-resolved x-ray absorption spectroscopy. Appl Phys A Mater Sci Process 111:15–22

    Article  Google Scholar 

  52. Bertrand L, Scheder S, Anglos D, Breese MBH, Janssens K, Moini M, Simon A (2015) Mitigation strategies for radiation damage in the analysis of ancient materials. TrAC Trend Anal Chem 66:128–145

    Article  Google Scholar 

  53. Howells MR, Beetz T, Chapman HN, Cui C, Holton JM, Jacobsen CJ, Kirz J, Lima E, Marchesini S, Miao H, Sayre D, Shapiro DA, Spence JCH, Starodub D (2009) An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J Electron Spectrosc Relat Phenom 170(1):4–12, Radiation Damage

    Article  Google Scholar 

  54. d’Acapito F, Lepore GO, Puri A, Laloni A, La Manna F, Dettona E, De Luisa A, Martin A (2019) The LISA beamline at ESRF. J Synchrotron Radiat 26(2):551–558

    Article  Google Scholar 

  55. Gervais C, Thoury M, Rguer S, Gueriau P, Mass J (2015) Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration. Appl Phys A Mater Sci Process 121:949

    Article  Google Scholar 

  56. Colomban P (2009) The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J Nano Res 8:109–132

    Article  Google Scholar 

  57. Bertrand L, Bernard S, Marone F, Thoury M, Reiche I, Gourrier A, Sciau P, Bergmann U (2016) Emerging approaches in synchrotron studies of materials from cultural and natural history collections. Top Curr Chem (Z) 374:7

    Article  Google Scholar 

  58. Janssens K, Van der Snickt G, Vanmeert F, Legrand S, Nuyts G, Alfeld M, Monico L, Anaf W, De Nolf W, Vermeulen MM, Verbeeck J, De Wael K (2016) Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of x-ray methods. Top Curr Chem 374:81

    Article  Google Scholar 

  59. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Dik J, Radepont M, Hendriks E, Geldof M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron x-ray spectromicroscopy and related methods. 2. Original paint layer samples. Anal Chem 83(4):1224–1231

    Article  Google Scholar 

  60. Monico L, Janssens K, Miliani C, Brunetti BG, Vagnini M, Vanmeert F, Falkenberg G, Abakumov A, Lu Y, Tian H, Verbeeck J, Radepont M, Cotte M, Hendriks E, Geldof M, van der Loeff L, Salvant J, Menu M (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 3. Synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment. Anal Chem 85(2):851–859

    Article  Google Scholar 

  61. L. Monico, K. Janssens, C. Miliani, G. Van der Snickt, B.G. Brunetti, M. Cestelli Guidi, M. Radepont, and M. Cotte, Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 4. artificial aging of model samples of co-precipitates of lead chromate and lead sulfate, Anal Chem 85 (2013), no. 2, 860–867,

    Google Scholar 

  62. L. Monico, K. Janssens, F. Vanmeert, M. Cotte, B.G. Brunetti, G. Van der Snickt, M. Leeuwestein, J. Salvant Plisson, M. Menu, and C. Miliani, Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. Part 5. Effects of nonoriginal surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints, Anal. Chem. 86 (2014), no. 21, 10804–10811,

    Google Scholar 

  63. Monico L, Janssens K, Hendriks E, Vanmeert F, VanderSnickt G, Cotte M, Falkenberg G, Brunetti BG, Miliani C (2015) Evidence for degradation of the chrome yellows in van Gogh’s Sunflowers: a study using noninvasive in situ methods and synchrotron-radiation based X-ray techniques. Angew Chem Int Ed 54(47):13923–13927

    Article  Google Scholar 

  64. Monico L, Chieli A, DeMeyer S, Cotte M, deNolf W, Falkenberg G, Janssens K, Romani A, Miliani C (2018) Role of the relative humidity and the Cd/Zn stoichiometry in the photooxidation process of cadmium yellows (CdS/Cd1-xZnxS) in oil paintings. Chem Eur J 24(45):11584–11593

    Article  Google Scholar 

  65. Robinet L, Spring M, Pags-Camagna S, Vantelon D, Trcera N (2011) Investigation of the discoloration of smalt pigment in historic paintings by micro-x-ray absorption spectroscopy at the Co k-edge. Anal Chem 83(13):5145–5152

    Article  Google Scholar 

  66. Cianchetta I, Colantoni I, Talarico F, d’Acapito F, Trapananti A, Maurizio C, Fantacci S, Davoli I (2012) Discoloration of the smalt pigment: experimental studies and ab initio calculations. J Anal At Spectrom 27:1941–1948

    Article  Google Scholar 

  67. Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Strivay D (2013) Relationship between the synthesis of prussian blue pigments, their color, physical properties, and their behavior in paint layers. J Phys Chem C 117(19):9693–9712

    Article  Google Scholar 

  68. Samain L, Silversmit G, Sanyova J, Vekemans B, Salomon H, Gilbert B, Grandjean F, Long GJ, Hermann RP, Vincze L, Strivay D (2011) Fading of modern prussian blue pigments in linseed oil medium. J Anal At Spectrom 26:930–941

    Article  Google Scholar 

  69. Gervais C, Languille M-A, Rguer S, Gillet M, Pelletier S, Garnier C, Vicenzi EP, Bertrand L (2013) Why does prussian blue fade? understanding the role(s) of the substrate. J Anal At Spectrom 28:1600–1609

    Article  Google Scholar 

  70. M.O. Figueiredo, T.P. Silva, J.P. Veiga, M.I. Prudencio, M.I. Dias, M.A. Matos, and A.M. Pais, 2010. Blue pigments in XVI-XVII century glazes: a comparative study between Portuguese faiences and Chinese porcelains. In: Ruvalcaba Sil JL, Reyes Trujeque J, Arenas Alatorre JA, Velzquez Castro A (eds) 2nd Latin-American symposium on physical and chemical methods in archaeology, art and cultural heritage conservation (LASMAC 2009). Symposium on archaeological and arts issues in materials science IMRC 2009. Selected papers. Publ. Instituto Nacional de Antropologa e Historia, Mexico. ISBN: 978-607-02-2017-3

    Google Scholar 

  71. Figueiredo MO, Silva TP, Veiga JP (2012) A XANES study of cobalt speciation state in blue-and-white glazes from 16th to 17th century Chinese porcelains. J Electron Spectrosc Relat Phenom 185(3):97–102

    Article  Google Scholar 

  72. Wang L, Wang C (2011) Co speciation in blue decorations of blue-and-white porcelains from Jingdezhen kiln by using XAFS spectroscopy. J Anal At Spectrom 26:1796–1801

    Article  Google Scholar 

  73. Wang T, Zhu TQ, Feng ZY, Fayard B, Pouyet E, Cotte M, De Nolf W, Salome M, Sciau P (2016) Synchrotron radiation-based multi-analytical approach for studying underglaze color: the microstructure of Chinese Qinghua blue decors (Ming dynasty). Anal Chim Acta 928:20–31

    Article  Google Scholar 

  74. Li Y, Yang Y, Zhu J, Zhang X, Jiang S, Zhang Z, Yao Z, Solbrekken G (2016) Colour-generating mechanism of copper-red porcelain from Changsha Kiln (A.D. 7th-10th century), China. Ceram Int 42(7):8495–8500

    Article  Google Scholar 

  75. Zhu J, Duan H, Yang Y, Guan L, Xu W, Chen D, Zhang J, Wang L, Huang Y, Wang C (2014) Colouration mechanism of underglaze copper-red decoration porcelain (AD 13th–14th century), China. J Synchrotron Radiat 21(4):751–755

    Article  Google Scholar 

  76. Hao W, Yang Y, Zhu J, Gu Z, Xie Y, Zhang J, Wang L (2014) XANES investigation of Chinese faience excavated from Peng state cemetery site in western Zhou period (BC1046-BC771). J Electron Spectrosc Relat Phenom 196:133–135, Advances in Vacuum Ultraviolet and X-ray Physics, The 38th International Conference on Vacuum Ultraviolet and X-ray Physics (VUVX2013), University of Science and Technology of China

    Article  Google Scholar 

  77. Li Y, Zhang B, Cheng H, Zheng J (2019) Revealing the coloration mechanism in the earliest Chinese celadon glaze. J Eur Ceram Soc 39(4):1675–1682

    Article  Google Scholar 

  78. Walton M, Trentelman K, Cummings M, Poretti G, Maish J, Saunders D, Foran B, Brodie M, Mehta A (2013) Material evidence for multiple firings of ancient Athenian redfigure pottery. J Am Ceram Soc 96(7):2031–2035

    Article  Google Scholar 

  79. Bardelli F, Barone G, Crupi V, Longo F, Maisano G, Majolino D, Mazzoleni P, Venuti V (2012) Iron speciation in ancient Attic pottery pigments: a non-destructive SR-XAS investigation. J Synchrotron Radiat 19(5):782–788

    Article  Google Scholar 

  80. Cianchetta I, Trentelman K, Maish J, Saunders D, Foran B, Walton M, Sciau P, Wang T, Pouyet E, Cotte M, Meirer F, Liu Y, Pianetta P, Mehta A (2015) Evidence for an unorthodox firing sequence employed by the berlin painter: deciphering ancient ceramic firing conditions through high-resolution material characterization and replication. J Anal At Spectrom 30:666–676

    Article  Google Scholar 

  81. Meirer F, Liu Y, Pouyet E, Fayard B, Cotte M, Sanchez C, Andrews JC, Mehta A, Sciau P (2013) Full-field XANES analysis of roman ceramics to estimate firing conditions – a novel probe to study hierarchical heterogeneous materials. J Anal At Spectrom 28:1870–1883

    Article  Google Scholar 

  82. Walton MS, Svoboda M, Mehta A, Webb S, Trentelman K (2010) Material evidence for the use of attic white-ground lekythoi ceramics in cremation burials. J Archaeol Sci 37(5):936–940

    Article  Google Scholar 

  83. Barilaro D, Crupi V, Majolino D, Venuti V, Barone G, DAcapito F, Bardelli F, Giannici F (2007) Decorated pottery study: analysis of pigments by x-ray absorbance spectroscopy measurements. J Appl Phys 101(6):064909

    Article  Google Scholar 

  84. Barilaro D, Crupi V, Interdonato S, Majolino V, Venuti D, Barone G, La Russa MF, Bardelli F (2008) Characterization of blue decorated renaissance pottery fragments from Caltagirone (Sicily, Italy). Appl Phys A Mater Sci Process 92:91–96

    Article  Google Scholar 

  85. Crupi V, Majolino D, Venuti V, Barone G, Mazzoleni P, Pezzino A, La Russa MF, Ruffolo SA, Bardelli F (2010) Non-destructive identification of green and yellow pigments: the case of some Sicilian renaissance glazed pottery. Appl Phys A Mater Sci Process 100(3):845–853

    Article  Google Scholar 

  86. Bardelli F, Barone G, Crupi V, Longo F, Majolino D, Mazzoleni P, Venuti V (2011) Combined non-destructive XRF and SR-XAS study of archaeological artefacts. Anal Bioanal Chem 399:3147

    Article  Google Scholar 

  87. Cartechini L, Rosi F, Miliani C, d’Acapito F, Brunetti BG, Sgamellotti A (2011) Modified Naples yellow in renaissance majolica: study of Pb-Sb-Zn and Pb-Sb-Fe ternary pyroantimonates by x-ray absorption spectroscopy. J Anal At Spectrom 26:2500–2507

    Article  Google Scholar 

  88. Quartieri S, Arletti R (2013) The use of x-ray absorption spectroscopy in historical glass research, ch. 4.3. Wiley, pp 301–309

    Google Scholar 

  89. Mastelaro VR, Zanotto ED (2018) X-ray absorption fine structure (XAFS) studies of oxide glasses a 45-year overview. Materials 11:204

    Article  Google Scholar 

  90. Zhao C, Zhang Y, Wang C, Hou M, Li A (2019) Recent progress in instrumental techniques for architectural heritage materials. Herit Sci 7(1):36

    Article  Google Scholar 

  91. Ceglia A, Nuyts G, Cagno S, Meulebroeck W, Baert K, Cosyns P, Nys K, Thienpont H, Janssens K, Terryn H (2014) A XANES study of chromophores: the case of black glass. Anal Methods 6:2662–2671

    Article  Google Scholar 

  92. Ceglia A, Nuyts G, Meulebroeck W, Cagno S, Silvestri A, Zoleo A, Nys K, Janssens K, Thienpont H, Terryn H (2015) Iron speciation in soda-lime-silica glass: a comparison of XANES and UV-Vis-NIR spectroscopy. J Anal At Spectrom 30:1552–1561

    Article  Google Scholar 

  93. Arletti R, Quartieri S, Freestone IC (2013) A XANES study of chromophores in archaeological glass. Appl Phys A Mater Sci Process 111:99

    Article  Google Scholar 

  94. Arletti R, Giacobbe C, Quartieri S, Sabatino G, Tigano G, Triscari M, Vezzalini G (2010) Archaeometrical investigation of Sicilian early byzantine glass: chemical and spectroscopic data. Archaeometry 52(1):99–114

    Article  Google Scholar 

  95. Gliozzo E, Santagostino Barbone A, d’Acapito F, Turchiano M, Turbanti Memmi I, Volpe G (2010) The sectilia panels of Faragola (Ascoli Satriano, Southern Italy): a multi-analytical study of the green, marbled (green and yellow), blue and blackish glass slabs. Archaeometry 52(3):389–415

    Article  Google Scholar 

  96. Gliozzo E, Santagostino Barbone A, d’Acapito F (2013) Waste glass, vessels and window-panes from Thamusida (Morocco): grouping natron-based bluegreen and colourless Roman glasses. Archaeometry 55(4):609–639

    Article  Google Scholar 

  97. Klysubun W, Ravel B, Klysubun P, Sombunchoo P, Deenan W (2013) XAS study of Mn, Fe and Cu as indicators of historical glass decay. Appl Phys A Mater Sci Process 111:775

    Article  Google Scholar 

  98. Hunault M, Bauchau F, Loisel C, Hrold M, Galoisy L, Newville M, Calas G (2016) Spectroscopic investigation of the coloration and fabrication conditions of medieval blue glasses. J Am Ceram Soc 99(1):89–97

    Article  Google Scholar 

  99. Choudhury S, Hormes J, Agyeman-Budu DN, Woll AR, George GN, Coulthard I, Pickering IJ (2015) Application of a spoked channel array to confocal X-ray fluorescence imaging and x-ray absorption spectroscopy of medieval stained glass. J Anal At Spectrom 30:759–766

    Article  Google Scholar 

  100. Abuin M, Serrano A, Chaboy J, Garca MA, Carmona N (2013) XAS study of Mn, Fe and Cu as indicators of historical glass decay. J Anal At Spectrom 28:1118–1124

    Article  Google Scholar 

  101. Klysubun W, Thongkam Y, Pongkrapan S, Won-in K, Thienprasert JT, Dararutana P (2011) XAS study on copper red in ancient glass beads from Thailand. Anal BioAnal Chem 399:3033

    Article  Google Scholar 

  102. Cagno S, Nuyts G, Bugani S, De Vis K, Schalm O, Caen J, Helfen L, Cotte M, Reischig P, Janssens K (2011) Evaluation of manganese-bodies removal in historical stained glass windows via Sr-μ-XANES/XRF and Sr-μ-CT. J Anal At Spectrom 26:2442–2451

    Article  Google Scholar 

  103. Lahlil S, Biron I, Cotte M, Susini J, Menguy N (2010) Synthesis of calcium antimonate nano-crystals by the 18th dynasty Egyptian glassmakers. Appl Phys A Mater Sci Process 98:1

    Article  Google Scholar 

  104. Lahlil S, Biron I, Cotte M, Susini J (2010) New insight on the in situ crystallization of calcium antimonate opacified glass during the roman period. Appl Phys A Mater Sci Process 100:683

    Article  Google Scholar 

  105. Li Y, Zhu J, Ji L, Shan Y, Jiang S, Chen G, Sciau P, Wang W, Wang C (2018) Study of arsenic in famille rose porcelain from the imperial palace of Qing dynasty, Beijing, China. Ceram Int 44(2):1627–1632

    Article  Google Scholar 

  106. Young ML (2012) Archaeometallurgy using synchrotron radiation: a review. Rep Prog Phys 75(3):036504

    Article  Google Scholar 

  107. Monnier J, Neff D, Rguer S, Dillmann P, Bellot-Gurlet L, Leroy E, Foy E, Legrand L, Guillot I (2010) A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. phase characterisation and localisation by various microprobes techniques. Corros Sci 52(3):695–710

    Article  Google Scholar 

  108. Monnier J, Vantelon D, Reguer S, Dillmann P (2011) X-ray absorption spectroscopy study of the various forms of phosphorus in ancient iron samples. J Anal At Spectrom 26:885–891

    Article  Google Scholar 

  109. Adriaens A, Dowsett M (2010) The coordinated use of synchrotron spectroelectrochemistry for corrosion studies on heritage metals. Acc Chem Res 43(6):927–935

    Article  Google Scholar 

  110. Mirambet F, Reguer S, Rocca E, Hollner S, Testemale D (2010) A complementary set of electrochemical and x-ray synchrotron techniques to determine the passivation mechanism of iron treated in a new corrosion inhibitor solution specifically developed for the preservation of metallic artefacts. Appl Phys A Mater Sci Process 99(2):341–349

    Article  Google Scholar 

  111. Almkvist G, Persson I (2011) Distribution of iron and sulfur and their speciation in relation to degradation processes in wood from the Swedish warship Vasa. New J Chem 35:1491–1502

    Article  Google Scholar 

  112. Schofield EJ, Sarangi R, Mehta A, Jones AM, Mosselmans FJW, Chadwick AV (2011) Nanoparticle de-acidification of the Mary Rose. Mater Today 14(7–8):358

    Google Scholar 

  113. Fors Y, Jalilehvand M, Sandstrom F (2011) Analytical aspects of waterlogged wood in historical shipwrecks. Anal Sci 27(8):785–785

    Article  Google Scholar 

  114. Fors Y, Jalilehvand F, Risberg ED, Bjordal C, Phillips E, Sandstrom M (2012) Sulfur and iron analyses of marine archaeological wood in shipwrecks from the Baltic sea and Scandinavian waters. J Archaeol Sci 39(7):2521–2532

    Article  Google Scholar 

  115. Fors H, Grudd Y, Rindby A, Jalilehvand F, Sandström M, Cato I, Bornmalm L (2014) Sulfur and iron accumulation in three marine-archaeological shipwrecks in the Baltic sea: the ghost, the crown and the sword. Sci Rep 4:4222

    Article  Google Scholar 

  116. Frank P, Caruso F, Caponetti E (2012) Ancient wood of the Acqualadrone rostrum: materials history through gas chromatography/mass spectrometry and sulfur x-ray absorption spectroscopy. Anal Chem 84(10):4419–4428

    Article  Google Scholar 

  117. Chadwick AV, Berko A, Schofield EJ, Smith AD, Mosselmans JFW, Jones AM, Cibin G (2016) The application of x-ray absorption spectroscopy in archaeological conservation: example of an artefact from henry viii warship, the Mary Rose. J Non-Cryst Solids 451:49–55, Structure, dynamics and applications of non-crystalline solids and disordered materials

    Article  Google Scholar 

  118. Zougrou IM, Katsikini M, Pinakidou F, Paloura EC, Papadopoulou L, Tsoukala E (2014) Study of fossil bones by synchrotron radiation micro-spectroscopic techniques and scanning electron microscopy. J Synchrotron Radiat 21(1):149–160

    Article  Google Scholar 

  119. Keenan SW, Engel AS, Roy GL, Bovenkamp-Langlois A (2015) Evaluating the consequences of diagenesis and fossilization on bioapatite lattice structure and composition. Chem Geol 413:18–27

    Article  Google Scholar 

  120. Kakoulli I, Prikhodko SV, Fischer C, Cilluffo M, Uribe M, Bechtel HA, Fakra SC, Marcus MA (2014) Distribution and chemical speciation of arsenic in ancient human hair using synchrotron radiation. Anal Chem 86(1):521–526

    Article  Google Scholar 

  121. Meyer M, Borca CN, Huthwelker T, Bieber M, Messlinger K, Fink RH, Spath A (2017) XRF studies on the colour brilliance in ancient wool carpets. Scanning 2017:6346212

    Article  Google Scholar 

  122. Christiansen T, Cotte M, Loredo-Portales R, Lindelof PE, Mortensen K, Ryholt K, Larsen S (2017) The nature of ancient Egyptian copper-containing carbon inks is revealed by synchrotron radiation based x-ray microscopy. Sci Rep 7(1):15346

    Article  Google Scholar 

  123. R. Dimper, H. Reichert, P. Raimondi, L. Sanchez Ortiz, F. Sette, and J. Susini., ESRF upgrade programme phase ii (2015–2022) technical design study, 2014

    Google Scholar 

  124. Bertrand L, Languille M-A, Cohen SX, Robinet L, Gervais C, Leroy S, Bernard D, Le Pennec E, Josse W, Doucet J, Schöder S (2011) European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials. J Synchrotron Radiat 18(5):765–772

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco D’Acapito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

D’Acapito, F. (2022). X-Ray Absorption Spectroscopy (XAS) Applied to Cultural Heritage. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_4

Download citation

Publish with us

Policies and ethics