Skip to main content
Log in

Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-flux synchrotron techniques allow microspectroscopic analyses of artworks that were not feasible even a few years ago, allowing for a more detailed characterization of their constituent materials and a better understanding of their chemistry. However, interaction between high-flux photons and matter at the sub-microscale can generate damages which are not visually detectable. We show here different methodologies allowing to evidence the damages induced by microscopic X-ray absorption near-edge structure spectroscopy analysis (\(\mu\)XANES) at the Fe and Zn K-edges of a painting dating from the turn of the twentieth century containing Prussian blue and zinc white. No significant degradation of the pigments was noticed, in agreement with the excellent condition of the painting. However, synchrotron radiation damages occurred at several levels, from chemical changes of the binder, modification of crystal defects in zinc oxide, to Prussian blue photoreduction. They could be identified by using both the \(\mu\)XANES signal during analysis and with photoluminescence imaging in the deep ultraviolet and visible ranges after analysis. We show that recording accurately damaged areas is a key step to prevent misinterpretation of results during future re-examination of the sample. We conclude by proposing good practices that could help in integrating radiation damage avoidance into the analytical pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Cotte, J. Susini, J. Dik, K. Janssens, Acc. Chem. Res. 43(6), 705 (2010)

    Article  Google Scholar 

  2. L. Zanella, F. Casadio, Ka Gray, R. Warta, Q. Ma, J.F. Gaillard, J. Anal. At. Spectrom. 26(5), 1090 (2011)

    Article  Google Scholar 

  3. L. Monico, K. Janssens, C. Miliani, G. Van der Snickt, B.G. Brunetti, M. Cestelli Guidi, M. Radepont, M. Cotte, Anal. chem. 85, 860 (2013)

    Article  Google Scholar 

  4. L. Bertrand, M. Cotte, M. Stampanoni, M. Thoury, F. Marone, S. Schöder, Phys. Rep. 519, 51 (2012)

    Article  ADS  Google Scholar 

  5. M. van Schooneveld, S. DeBeer, J. Electron Spectrosc. Relat. Phenom. 198, 31 (2015)

    Article  Google Scholar 

  6. L. Bertrand, S. Schoeder, D. Anglos, M. Breese, K. Janssens, M. Moini, A. Simon. Mitigation strategies for radiation damage in the analysis of ancient materials. Trends Anal. Chem. 66, 128–145 (2015)

    Article  Google Scholar 

  7. K. Patten, L. Gonzalez, C. Kennedy, D. Mills, G. Davis, T. Wess, Herit. Sci. 1, 22 (2013)

    Article  Google Scholar 

  8. L. Samain, G. Silversmit, J. Sanyova, B. Vekemans, B. Gilbert, F. Grandjean, G.J. Long, P. Hermann, L. Vincze, D. Strivay, J. Anal. Atomic Spectrom. 26, 930 (2011)

    Article  Google Scholar 

  9. L. Samain, B. Gilbert, F. Grandjean, G.J. Long, D. Strivay, J. Anal. Atomic Spectrom. 28, 524 (2013)

    Article  Google Scholar 

  10. M. Newville, J. Synchrotron Radiat. 8, 322 (2001)

    Article  Google Scholar 

  11. C. Gervais, M.A. Languille, S. Reguer, M. Gillet, E.P. Vicenzi, S. Chagnot, F. Baudelet, L. Bertrand, Appl. Phys. A 111, 15 (2013)

    Article  ADS  Google Scholar 

  12. C. Gervais, M.A. Languille, G. Moretti, S. Reguer, Langmuir 31, 8168 (2015)

    Article  Google Scholar 

  13. F. Decremps, F. Datchi, a. Saitta, a. Polian, S. Pascarelli, a. Di Cicco, J. Itié, F. Baudelet, Phys. Rev. B 68, 104101 (2003)

  14. L. Bertrand, M. Refregiers, B. Berrie, J.P. Echard, M. Thoury, Analyst 138, 4463 (2013)

    Article  ADS  Google Scholar 

  15. A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006)

    Article  Google Scholar 

  16. C. Gervais, M.A. Languille, S. Réguer, M. Gillet, S. Pelletier, C. Garnier, E.P. Vicenzi, L. Bertrand, J. Anal. Atomic Spectrom. 28, 1600 (2013)

    Article  Google Scholar 

  17. L. Samain, F. Grandjean, G.J. Long, P. Martinetto, P. Bordet, D. Strivay, J. Phys. Chem. C 117, 9693 (2013)

    Article  Google Scholar 

  18. G. der Snickt, K. Janssens, J. Dik, W. De Nolf, F. Vanmeert, J. Jaroszewicz, M. Cotte, G. Falkenberg, L. der Loeff, Anal. Chem. 84, 10221 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We warmly thank Christophe Sandt for assisting Raman spectroscopy measurements, Sebastian Schoeder for fruitful comments on the work and Valerio Cugia for having prepared the mock-up paint samples. Claire Gervais acknowledges the Swiss National Science Foundation for the professorship Grant No. 138986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Gervais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gervais, C., Thoury, M., Réguer, S. et al. Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration. Appl. Phys. A 121, 949–955 (2015). https://doi.org/10.1007/s00339-015-9462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9462-z

Keywords

Navigation