Skip to main content
Log in

Non-Invasive and Non-Destructive Examination of Artistic Pigments, Paints, and Paintings by Means of X-Ray Methods

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists’ pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [21]

Fig. 2

Adapted from [156]

Fig. 3

Adapted from [222]

Fig. 4

Adapted from [163]

Fig. 5

Adapted from [161]

Fig. 6

Adapted from [170]

Fig. 7

Adapted from [234]

Fig. 8

Adapted from [236]

Fig. 9

Adapted from [152]

Fig. 10

Adapted from [157]

Similar content being viewed by others

References

  1. Cotte M, Checroun E, De Nolf W, Taniguchi Y, De Viguerie L, Burghammer M, Walter P, Rivard C, Salomé M, Janssens K, Susini J (2016) Lead soaps in paintings: friends or foes? Stud Conserv. doi:10.1080/00393630.2016.1232529

    Google Scholar 

  2. Hendriks E (2011) Van Gogh’s working practice: a technical study. In: Van Tilborgh L, Hendriks E (eds) Vincent Van Gogh Paintings 2: Antwerp & Paris, 1885–1888. Lund Humphries Publishers Ltd., London, pp 90–143

    Google Scholar 

  3. Jansen L, Luijten H, Bakker N (2009) Vincent van Gogh—The Letters. http://www.vangoghletters.org. Thames & Hudson Ltd., London

  4. Janssens K, Alfeld M, Van der Snickt G, De Nolf W, Vanmeert F, Radepont M, Monico L, Dik J, Cotte M, Falkenberg G, Miliani C, Brunetti BG (2013) The use of synchrotron radiation for the characterization of artists’ pigments and paintings. Ann Rev Anal Chem 6(6):399–425

    Article  CAS  Google Scholar 

  5. Colombini MP, Modugno F (2004) Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques. J Sep Sci 27:147–160

    Article  CAS  Google Scholar 

  6. Vandenabeele P, Wehling B, Moens L, Dekeyzer B, Cardon B, von Bohlen A, Klockenkamper R (1999) Pigment investigation of a late-medieval manuscript with total reflection X-ray fluorescence and micro-Raman spectroscopy. Analyst 124:169–172

    Article  CAS  Google Scholar 

  7. Wess TJ, Drakopoulos M, Snigirev A, Wouters J, Paris O, Fratzl P, Collins M, Hiller J, Nielsen K (2001) The use of small-angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry 43:117–129

    Article  CAS  Google Scholar 

  8. Cesaratto A, D’Andrea C, Nevin A, Valentini G, Tassone F, Alberti R, Frizzi T, Comelli D (2014) Analysis of cadmium-based pigments with time-resolved photoluminescence. Anal Methods 6:130–138

    Article  CAS  Google Scholar 

  9. Antunes V, Jose Oliveira M, Vargas H, Serrao V, Candeias A, Carvalho ML, Coroado J, Mirao J, Dias L, Longelin S, Seruya AI (2014) Characterization of glue sizing under calcium carbonate ground layers in Flemish and Luso-Flemish painting—analysis by SEM-EDS, mu-XRD and mu-Raman spectroscopy. Anal Methods 6:710–717

    Article  CAS  Google Scholar 

  10. Lluveras A, Boularand S, Roque J, Cotte M, Giraldez P, Vendrell-Saz M (2008) Weathering of gilding decorations investigated by SR: development and distribution of calcium oxalates in the case of Sant Benet de Bages (Barcelona, Spain). Appl Phys Mater Sci Process 90:23–33

    Article  CAS  Google Scholar 

  11. Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments (pre-similar to 1850 AD). Spectrochim Acta Part A Mol Biomol Spectrosc 53:2159–2179

    Article  Google Scholar 

  12. Van Der Snickt G, De Nolf W, Vekemans B, Janssens K (2008) mu-XRF/mu-RS vs. SR mu-XRD for pigment identification in illuminated manuscripts. Appl Phys A Mater Sci Process 92:59–68

    Article  CAS  Google Scholar 

  13. Andreotti A, Bonaduce I, Colombini MP, Gautier G, Modugno F, Ribechini E (2006) Combined GC/MS analytical procedure for the characterization of glycerolipid, waxy, resinous, and proteinaceous materials in a unique paint microsample. Anal Chem 78:4490–4500

    Article  CAS  Google Scholar 

  14. Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E (2010) Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res 43:715–727

    Article  CAS  Google Scholar 

  15. Degano I, Ribechini E, Modugno F, Colombini MP (2009) Analytical methods for the characterization of organic dyes in artworks and in historical textiles. Appl Spectrosc Rev 44:363–410

    Article  CAS  Google Scholar 

  16. Janssens K, Adams F, Rindby A (2000) Microscopic X-ray fluorescence analysis. Wiley, Chichester

    Google Scholar 

  17. Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43:705–714

    Article  CAS  Google Scholar 

  18. De Nolf W, Janssens K (2010) Micro X-ray diffraction and fluorescence tomography for the study of multilayered automotive paints. Surf Interface Anal 42:411–418

    Article  CAS  Google Scholar 

  19. Thoury M, Echard JP, Refregiers M, Berrie B, Nevin A, Jamme F, Bertrand L (2011) Synchrotron UV-visible multispectral luminescence microimaging of historical samples. Anal Chem 83:1737–1745

    Article  CAS  Google Scholar 

  20. Bertrand L, Robinet L, Thoury M, Janssens K, Cohen SX, Schoder S (2012) Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Appl Phys A Mater Sci Process 106:377–396

    Article  CAS  Google Scholar 

  21. Janssens K, Legrand S, Van der Snickt G, Vanmeert F (2016) Virtual archaeology of altered paintings: multiscale chemical imaging tools. Elements 12:39–44

    Article  CAS  Google Scholar 

  22. Janssens K, Dik J, Cotte M, Susini J (2010) Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc Chem Res 43:814–825

    Article  CAS  Google Scholar 

  23. Alfeld M, Broekaert JAC (2013) Mobile depth profiling and sub-surface imaging techniques for historical paintings—a review. Spectrochim Acta Part B 88:211–230

    Article  CAS  Google Scholar 

  24. Miliani C, Rosi F, Brunetti BG, Sgamellotti A (2010) In situ noninvasive study of artworks: the MOLAB multitechnique approach. Acc Chem Res 43:728–738

    Article  CAS  Google Scholar 

  25. Daffara C, Parisotto S, Mariotti PI (2015) Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography. In: Pezzati L, Targowski P (eds) Optics for arts, architecture, and archaeology V

  26. Alfeld M, Janssens K, Dik J, de Nolf W, van der Snickt G (2011) Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings. J Anal At Spectrom 26:899–909

    Article  CAS  Google Scholar 

  27. Dooley KA, Conover DM, Glinsman LD, Delaney JK (2014) Complementary standoff chemical imaging to map and identify artist materials in an early italian renaissance panel painting. Angew Chem Int Edit 53:13775–13779

    Article  CAS  Google Scholar 

  28. De Nolf W, Dik J, Van der Snickt G, Wallert A, Janssens K (2011) High energy X-ray powder diffraction for the imaging of (hidden) paintings. J Anal At Spectrom 26:910–916

    Article  CAS  Google Scholar 

  29. Legrand S, Alfeld M, Vanmeert F, De Nolf W, Janssens K (2014) Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range. Analyst 139:2489–2498

    Article  CAS  Google Scholar 

  30. Daffara C, Pampaloni E, Pezzati L, Barucci M, Fontana R (2010) Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics. Acc Chem Res 43:847–856

    Article  CAS  Google Scholar 

  31. Beckhoff B, Kanngiesser B, Langhoff N, Rainer W, Helmut W (2006) Handbook of practical X-ray fluorescence analysis. Springer, Berlin

    Book  Google Scholar 

  32. Vincze L, Somogyi A, Osan J, Vekemans B, Torok S, Janssens K, Adams F (2002) Quantitative trace element analysis of individual fly ash particles by means of X-ray microfluorescence. Anal Chem 74:1128–1135

    Article  CAS  Google Scholar 

  33. Vincze L, Janssens K, Adams F, Jones KW (1995) A general monte carlo simulation of energy-dispersive X-ray fluorescence spectrometers.3. Polarized polychromatic radiation, homogeneous samples. Spectrochim Acta Part B At Spectrosc 50:1481–1500

    Article  Google Scholar 

  34. Vincze L, Janssens K, Vekemans B, Adams F (1999) Monte Carlo simulation of X-ray fluorescence spectra: part 4. Photon scattering at high X-ray energies. Spectrochim Acta Part B At Spectrosc 54:1711–1722

    Article  Google Scholar 

  35. Lahanier C, Amsel G, Heitz C, Menu M, Andersen HH (1986) Proceedings of the international workshop on ion-beam analysis in the arts and archaeology—Pont-A-Mousson, Abbaye Des Premontres, France, February 18–20, 1985—Editorial. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 14: R7–R8

  36. Van Grieken R, Markowicz A (2002) Handbook of X-ray spectrometry. Marcel Dekker, New York

    Google Scholar 

  37. Van der Linden V, Meesdom E, Devos A, Van Dooren R, Nieuwdorp H, Janssen E, Balace S, Vekemans B, Vincze L, Janssens K (2011) PXRF, mu-XRF, Vacuum mu-XRF, and EPMA Analysis of Email Champleve Objects Present in Belgian Museums. Microsc Microanal 17:674–685

    Article  CAS  Google Scholar 

  38. Carvalho ML, Karydas A, Piorek S (2010) Special issue: the use and application of handheld and portable XRF spectrometers. X-Ray Spectrom 39:77

    Article  CAS  Google Scholar 

  39. Potts PJ, Ramsey MH, Carlisle J (2002) Portable X-ray fluorescence in the characterisation of arsenic contamination associated with industrial buildings at a heritage arsenic works site near Redruth, Cornwall, UK. J Environ Monit 4:1017–1024

    Article  CAS  Google Scholar 

  40. Jones MC, Williams-Thorpe O, Potts PJ, Webb PC (2005) Using field-portable XRF to assess geochemical variations within and between dolerite outcrops of Preseli, south Wales. Geostand Geoanal Res 29:251–269

    Article  CAS  Google Scholar 

  41. Piorek S (1997) Field-portable X-ray fluorescence spectrometry: past, present, and future. Field Anal Chem Technol 1:317–329

    Article  CAS  Google Scholar 

  42. Piorek S (2004) Ieee, Portable X-ray fluorescence analyzer for the first level screening of materials for prohibited substances, 2005 International Conference on Asian Green Electronics: Design for Manufacturability and Reliability, Proceedings, pp 7–13

  43. Piorek S, Puusaari E, Piorek E, McCann B (1999) Identification and quantitative analysis of alloys using x-ray fluorescence analyzer with a silicon “p-i-n” diode detector. In: Fernandez JE, Tartari A (eds) EDXRS-98: Proceedings of the European Conference on Energy Dispersive X-Ray Spectrometry 1998. Editrice Compositori, Bologna, p 280

    Google Scholar 

  44. Pages-Camagna S, Laval E, Vigears D, Duran A (2010) Non-destructive and in situ analysis of Egyptian wall paintings by X-ray diffraction and X-ray fluorescence portable systems. Appl Phys A Mater Sci Process 100:671–681

    Article  CAS  Google Scholar 

  45. Eveno M, Moignard B, Castaing J (2011) Portable apparatus for in situ X-ray diffraction and fluorescence analyses of artworks. Microsc Microanal 17:667–673

    Article  CAS  Google Scholar 

  46. Kriznar A, Munoz V, de la Paz F, Respaldiza MA, Vega M (2011) Portable XRF study of pigments applied in Juan Hispalense’s 15th century panel painting. X-Ray Spectrom 40:96–100

    Article  CAS  Google Scholar 

  47. Migliori A, Bonanni P, Carraresi L, Grassi N, Mando PA (2011) A novel portable XRF spectrometer with range of detection extended to low-Z elements. X-Ray Spectrom 40:107–112

    Article  CAS  Google Scholar 

  48. Kenna TC, Nitsche FO, Herron MM, Mailloux BJ, Peteet D, Sritrairat S, Sands E, Baumgarten J (2011) Evaluation and calibration of a Field Portable X-Ray Fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments. J Anal At Spectrom 26:395–405

    Article  CAS  Google Scholar 

  49. Tykot RH (2016) Using nondestructive portable X-ray fluorescence spectrometers on stone, ceramics, metals, and other materials in museums: advantages and limitations. Appl Spectrosc 70:42–56

    Article  CAS  Google Scholar 

  50. Galli A, Bonizzoni L (2014) True versus forged in the cultural heritage materials: the role of PXRF analysis. X-Ray Spectrom 43:22–28

    Article  CAS  Google Scholar 

  51. Beck L, Rousseliere H, Castaing J, Duran A, Lebon M, Moignard B, Plassard F (2014) First use of portable system coupling X-ray diffraction and X-ray fluorescence for in situ analysis of prehistoric rock art. Talanta 129:459–464

    Article  CAS  Google Scholar 

  52. Pitarch A, Ruiz JF, de Vallejuelo SFO, Hernanz A, Maguregui M, Madariaga JM (2014) In situ characterization by Raman and X-ray fluorescence spectroscopy of post-Paleolithic blackish pictographs exposed to the open air in Los Chaparros shelter (Albalate del Arzobispo, Teruel, Spain). Anal Methods 6:6641–6650

    Article  CAS  Google Scholar 

  53. Dayer L, d’Errico F, Garcia-Moreno R (2014) Searching for consistencies in Chatelperronian pigment use. J Archaeol Sci 44:180–193

    Article  CAS  Google Scholar 

  54. Bracci S, Caruso O, Galeotti M, Iannaccone R, Magrini D, Picchi D, Pinna D, Porcinai S (2015) Multidisciplinary approach for the study of an Egyptian coffin (late 22nd/early 25th dynasty): combining imaging and spectroscopic techniques. Spectrochim Acta Part A Mol Biomol Spectrosc 145:511–522

    Article  CAS  Google Scholar 

  55. Madariaga JM, Maguregui M, Castro K, Knuutinen U, Martinez-Arkarazo I (2016) Portable Raman, DRIFTS, and XRF analysis to diagnose the conservation state of two wall painting panels from pompeii deposited in the Naples National Archaeological Museum (Italy). Appl Spectrosc 70:137–146

    Article  CAS  Google Scholar 

  56. Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7:4848–4876

    Article  Google Scholar 

  57. Crupi V, Galli G, La Russa MF, Longo F, Maisano G, Majolino D, Malagodi M, Pezzino A, Ricca M, Rossi B, Ruffolo SA, Venuti V (2015) Multi-technique investigation of Roman decorated plasters from Villa dei Quintili (Rome, Italy). Appl Surf Sci 349:924–930

    Article  CAS  Google Scholar 

  58. Gomez-Moron MA, Ortiz P, Martin-Ramirez JM, Ortiz R, Castaing J (2016) A new insight into the vaults of the kings in the Alhambra (Granada, Spain) by combination of portable XRD and XRF. Microchem J 125:260–265

    Article  CAS  Google Scholar 

  59. Syta O, Rozum K, Choinska M, Zielinska D, Zukowska GZ, Kijowska A, Wagner B (2014) Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy. Spectrochim Acta Part B At Spectrosc 101:140–148

    Article  CAS  Google Scholar 

  60. Daveri A, Doherty B, Moretti P, Grazia C, Romani A, Fiorin E, Brunetti BG, Vagnini M (2015) An uncovered XIII century icon: particular use of organic pigments and gilding techniques highlighted by analytical methods. Spectrochim Acta Part A Mol Biomol Spectrosc 135:398–404

    Article  CAS  Google Scholar 

  61. Cechak T, Trojek T, Sefcu R, Chlumska S, Trestikova A, Kotrly M, Turkova I (2015) The use of powdered bismuth in Late Gothic painting and sculpture polychromy. J Cult Herit 16:747–752

    Article  Google Scholar 

  62. Hradil D, Hradilova J, Bezdicka P, Svarcova S, Cermakova Z, Kosarova V, Nemec I (2014) Crocoite PbCrO4 and mimetite Pb5(AsO4)3Cl: rare minerals in highly degraded mediaeval murals in Northern Bohemia. J Raman Spectrosc 45:848–858

    Article  CAS  Google Scholar 

  63. Van der Snickt G, Miliani C, Janssens K, Brunetti BG, Romani A, Rosi F, Walter P, Castaing J, De Nolf W, Klaassen L, Labarque I, Wittermann R (2011) Material analyses of ‘Christ with singing and music-making Angels’, a late 15th-C panel painting attributed to Hans Memling and assistants: part I. non-invasive in situ investigations. J Anal At Spectrom 26:2216–2229

    Article  CAS  Google Scholar 

  64. Duran A, Lopez-Montes A, Castaing J, Espejo T (2014) Analysis of a royal 15th century illuminated parchment using a portable XRF-XRD system and micro-invasive techniques. J Archaeol Sci 45:52–58

    Article  CAS  Google Scholar 

  65. Van de Voorde L, Van Pevenage J, De Langhe K, De Wolf R, Vekemans B, Vincze L, Vandenabeele P, Martens MPJ (2014) Non-destructive in situ study of “Mad Meg” by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers. Spectrochim Acta Part B At Spectrosc 97:1–6

    Article  CAS  Google Scholar 

  66. Veiga A, Teixeira DM, Candeias AJ, Mirao J, Manhita A, Miguel C, Rodrigues P, Teixeira JG (2015) Micro-analytical study of two seventeenth century gilded miniature portraits on copper. Microchem J 123:51–61

    Article  CAS  Google Scholar 

  67. Roldan C, Juanes D, Ferrazza L, Carballo J (2016) Characterization of Sorolla’s gouache pigments by means of spectroscopic techniques. Radiat Phys Chem 119:253–263

    Article  CAS  Google Scholar 

  68. Van der Snickt G, Janssens K, Schalm O, Aibeo C, Kloust H, Alfeld M (2010) James Ensor’s pigment use: artistic and material evolution studied by means of portable X-ray fluorescence spectrometry. X-Ray Spectrom 39:103–111

    Article  CAS  Google Scholar 

  69. Kosarova V, Hradil D, Hradilova J, Cermakova Z, Nemec I, Schreiner M (2016) The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: munch’s and Kupka’s paintings under study. Spectrochim Acta Part A Mol Biomol Spectrosc 156:36–46

    Article  CAS  Google Scholar 

  70. Kajiya EAM, Campos P, Rizzutto MA, Appoloni CR, Lopes F (2014) Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis. Radiat Phys Chem 95:373–377

    Article  CAS  Google Scholar 

  71. Cardeira AM, Longelin S, Costa S, Candeias A, Carvalho ML, Manso M (2014) Multi-analytical characterisation of D’Apres Cormon by Jose Veloso Salgado. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 331:271–274

    Article  CAS  Google Scholar 

  72. Izzo FC, Capogrosso V, Gironda M, Alberti R, Mazzei C, Nodari L, Gambirasi A, Zendri E, Nevin A (2015) Multi-analytical non-invasive study of modern yellow paints from postwar Italian paintings from the International Gallery of Modern Art Ca Pesaro, Venice. X-Ray Spectrom 44:296–304

    Article  CAS  Google Scholar 

  73. Trojek T, Trojkova D (2015) Several approaches to the investigation of paintings with the use of portable X-ray fluorescence analysis. Radiat Phys Chem 116:321–325

    Article  CAS  Google Scholar 

  74. Cardeira AM, Longelin S, Costa S, Candeias A, Carvalho ML, Manso M (2016) Analytical characterization of academic nude paintings by Jose Veloso Salgado. Spectrochim Acta Part A Mol Biomol Spectrosc 153:379–385

    Article  CAS  Google Scholar 

  75. Epley BA, Rogge CE (2015) Prior states: evolution of composition and color in two Barnett Newman paintings. Appl Phys A Mater Sci Process 121:987–998

    Article  CAS  Google Scholar 

  76. Janssens K, Vekemans B, Vincze L, Adams F, Rindby A (1996) A micro-XRF spectrometer based on a rotating anode generator and capillary optics. Spectrochim Acta Part B At Spectrosc 51:1661–1678

    Article  Google Scholar 

  77. Vincze L, Janssens K, Adams F, Rindby A, Engstrom P (1998) Interpretation of capillary generated spatial and angular distributions of x rays: theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line. Rev Sci Instrum 69:3494–3503

    Article  CAS  Google Scholar 

  78. Schroer CG, Boye P, Feldkamp JM, Patommel J, Samberg D, Schropp A, Schwab A, Stephan S, Falkenberg G, Wellenreuther G, Reimers N (2010) Hard X-ray nanoprobe at beamline P06 at PETRA III. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 616:93–97

    Article  CAS  Google Scholar 

  79. Lengeler B, Schroer CG, Benner B, Gerhardus A, Gunzler TF, Kuhlmann M, Meyer J, Zimprich C (2002) Parabolic refractive X-ray lenses. J Synchrotron Radiat 9:119–124

    Article  CAS  Google Scholar 

  80. Gorelick S, Vila-Comamala J, Guzenko VA, Barrett R, Salome M, David C (2011) High-Efficiency Gold Fresnel Zone Plates for Multi-keV X-rays. In: McNulty I, Eyberger C, Lai B (eds) 10th International Conference on X-Ray Microscopy, pp 88–91

  81. Sarkar SS, Sahoo PK, Solak HH, David C, Van der Veen JF (2008) Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region. J Vac Sci Technol B 26:2160–2163

    Article  CAS  Google Scholar 

  82. Alianelli L, Sawhney KJS, Barrett R, Pape I, Malik A, Wilson MC (2011) High efficiency nano-focusing kinoform optics for synchrotron radiation. Opt Express 19:11120–11127

    Article  CAS  Google Scholar 

  83. Barrett R, Baker R, Cloetens P, Dabin Y, Morawe C, Suhonen H, Tucoulou R, Vivo A, Zhang L (2011) Dynamically-figured mirror system for high-energy nanofocusing at the ESRF. In: Proceedings of SPIE, Advances in X-Ray/EUV optics and components VI, vol 8139, p 813904. doi:10.1117/12.894735

  84. Bichlmeier S, Janssens K, Heckel J, Gibson D, Hoffmann P, Ortner HM (2001) Component selection for a compact micro-XRF spectrometer. X-Ray Spectrom 30:8–14

    Article  CAS  Google Scholar 

  85. Trentelman K, Bouchard M, Ganio M, Namowicz C, Patterson CS, Walton M (2010) The examination of works of art using in situ XRF line and area scans. X-Ray Spectrom 39:159–166

    Article  CAS  Google Scholar 

  86. Buzanich G, Wobrauschek P, Streli C, Markowicz A, Wegrzynek D, Chinea-Cano E, Griesser M, Uhlir K (2010) PART II (Portable ART analyzer)—development of a XRF spectrometer adapted for the study of artworks in the Kunsthistorisches Museum, Vienna. X-Ray Spectrom 39:98–102

    Article  CAS  Google Scholar 

  87. Vittiglio G, Bichhneier S, Klinger P, Heckel J, Fuzhong W, Vincze L, Janssens K, Engstrom P, Rindby A, Dietrich K, Jembrih-Simburger D, Schreiner M, Denis D, Lakdar A, Lamotte A (2004) A compact mu-XRF spectrometer for (in situ) analyses of cultural heritage and forensic materials. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 213:693–698

    Article  CAS  Google Scholar 

  88. Bronk H, Rohrs S, Bjeoumikhov A, Langhoff N, Schmalz J, Wedell R, Gorny HE, Herold A, Waldschlager U (2001) ArtTAX—a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects. Fresenius J Anal Chem 371:307–316

    Article  CAS  Google Scholar 

  89. Rabin I, Hahn O (2013) Characterization of the Dead Sea Scrolls by advanced analytical techniques. Anal Methods 5:4648–4654

    Article  CAS  Google Scholar 

  90. Wolff T, Rabin I, Mantouvalou I, Kanngiesser B, Malzer W, Kindzorra E, Hahn O (2012) Provenance studies on Dead Sea scrolls parchment by means of quantitative micro-XRF. Anal Bioanal Chem 402:1493–1503

    Article  CAS  Google Scholar 

  91. Valerio P, Silva RJC, Araujo MF, Soares AMM, Barros L (2012) A multianalytical approach to study the Phoenician bronze technology in the Iberian Peninsula-A view from Quinta do Almaraz. Mater Charact 67:74–82

    Article  CAS  Google Scholar 

  92. Figueiredo E, Araujo MF, Silva RJC, Senna-Martinez JC, Vaz JLI (2011) Characterisation of Late Bronze Age large size shield nails by EDXRF, micro-EDXRF and X-ray digital radiography. Appl Radiat Isot 69:1205–1211

    Article  CAS  Google Scholar 

  93. Herm C (2008) Mobile micro-X-ray fluorescence analysis (XRF) on medieval paintings. Chimia 62:887–898

    Article  CAS  Google Scholar 

  94. Cheng L, Li MT, Youshi K, Fan CS, Wang SH, Pan QL, Liu ZG, Li RW (2011) The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 269:239–243

    Article  CAS  Google Scholar 

  95. Dietz G, Ketelsen T, Hoss M, Simon O, Wintermann C, Wolff T, Rabin I, Hahn O (2012) The Egmont Master phenomenon: X-ray fluorescence spectrometric and paper studies for art history research. Anal Bioanal Chem 402:1505–1515

    Article  CAS  Google Scholar 

  96. Sun TX, Ding XL (2015) Confocal X-ray technology based on capillary X-ray optics. Rev Anal Chem 34:45–59

    Article  CAS  Google Scholar 

  97. Janssens K, Proost K, Falkenberg G (2004) Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: characteristics and possibilities. Spectrochim Acta Part B At Spectrosc 59:1637–1645

    Article  CAS  Google Scholar 

  98. Woll AR, Agyeman-Budu D, Choudhury S, Coulthard I, Finnefrock AC, Gordon R, Hallin E, Mass J (2014) Lithographically-fabricated channel arrays for confocal X-ray fluorescence microscopy and XAFS. In: Arp U, Reversz P, Williams GP (eds) 17th Pan-American Synchrotron Radiation Instrumentation Conference (SRI 2013)

  99. Bjeoumikhov A, Erko M, Bjeoumikhova S, Erko A, Snigireva I, Snigirev A, Wolff T, Mantouvalou I, Malzer W, Kanngiesser B (2008) Capillary mu Focus X-ray lenses with parabolic and elliptic profile. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 587:458–463

    Article  CAS  Google Scholar 

  100. Luhl L, Mantouvalou I, Schaumann I, Vogt C, Kanngiesser B (2013) Three-dimensional chemical mapping with a confocal xrf setup. Anal Chem 85:3682–3689

    Article  CAS  Google Scholar 

  101. Woll AR, Agyeman-Budu D, Bilderback DH, Dale D, Kazimirov AY, Pfeifer M, Plautz T, Szebenyi T, Untracht G (2012) 3D X-ray fluorescence microscopy with 1.7 mu m resolution using lithographically fabricated micro-channel arrays. In: Goto S, Morawe C, Khounsary AM (eds.) Proceedings of SPIE, Advances in X-Ray/EUV optics and components VII, vol 8502, p 85020K. doi:10.1117/12.944365

  102. Beckhoff B, Fliegauf R, Ulm G, Weser J, Pepponi G, Streli C, Wobrauschek P, Ehmann T, Fabry L, Mantler C, Pahlke S, Kanngiesser B, Malzer W (2003) Ultra-trace analysis of light elements and speciation of minute organic contaminants on silicon wafer surfaces by means of TXRF in combination with NEXAFS. International Society for Optical Engineering, pp 120–128

  103. Woll AR, Bilderback DH, Gruner S, Gao N, Huang R, Bisulca C, Mass J (2005) Confocal x-ray fluorescence (XRF) microscopy: a new technique for the nondestructive compositional depth profiling of paintings. In: Vandiver PB, Mass JL, Murray A (eds) Materials issues in art and archaeology VII

  104. Woll AR, Mass J, Bisulca C, Huang R, Bilderback DH, Gruner S, Gao N (2006) Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl Phys A Mater Sci Process 83:235–238

  105. Smit Z, Janssens K, Proost K, Langus I (2004) Confocal mu-XRF depth analysis of paint layers. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 219:35–40

    Article  CAS  Google Scholar 

  106. Tsuji K, Matsuno T, Takimoto Y, Yamanashi M, Kometani N, Sasaki YC, Hasegawa T, Kato S, Yamada T, Shoji T, Kawahara N (2015) New developments of X-ray fluorescence imaging techniques in laboratory. Spectrochim Acta Part B At Spectrosc 113:43–53

    Article  CAS  Google Scholar 

  107. Polese C, Cappuccio G, Dabagov SB, Hampai D, Liedl A, Pace E (2015) 2D and 3D micro-XRF based on polycapillary optics at XLab Frascati. In: Goto S, Morawe C, Khounsary AM (eds) Proceedings of SPIE, Advances in X-Ray/EUV optics and components X, vol 9588, p 95880E. doi:10.1117/12.2189632

  108. Smolek S, Nakazawa T, Tabe A, Nakano K, Tsuji K, Streli C, Wobrauschek P (2014) Comparison of two confocal micro-XRF spectrometers with different design aspects. X-Ray Spectrom 43:93–101

    Article  CAS  Google Scholar 

  109. Nakazawa T, Tsuji K (2013) Development of a high-resolution confocal micro-XRF instrument equipped with a vacuum chamber. X-Ray Spectrom 42:374–379

    Article  CAS  Google Scholar 

  110. Mantouvalou I, Lange K, Wolff T, Grotzsch D, Luhl L, Haschke M, Hahn O, Kanngiesser B (2010) A compact 3D micro X-ray fluorescence spectrometer with X-ray tube excitation for archaeometric applications. J Anal At Spectrom 25:554–561

    Article  CAS  Google Scholar 

  111. Tsuji K, Tabe A, Wobrauscheck P, Streli C (2015) Secondary excitation process for quantitative confocal 3D-XRF analysis. Powder Diffr 30:109–112

    Article  CAS  Google Scholar 

  112. Wrobel P, Wegrzynek D, Czyzycki M, Lankosz M (2014) Depth profiling of element concentrations in stratified materials by confocal microbeam X-ray fluorescence spectrometry with polychromatic excitation. Anal Chem 86:11275–11280

    Article  CAS  Google Scholar 

  113. Mantouvalou I, Wolff T, Seim C, Stoytschew V, Malzer W, Kanngiesser B (2014) Reconstruction of confocal micro-X-ray fluorescence spectroscopy depth scans obtained with a laboratory setup. Anal Chem 86:9774–9780

    Article  CAS  Google Scholar 

  114. Czyzycki M, Wrobel P, Lankosz M (2014) Confocal X-ray fluorescence micro-spectroscopy experiment in tilted geometry. Spectrochim Acta Part B At Spectrosc 97:99–104

    Article  CAS  Google Scholar 

  115. Huber C, Smolek S, Streli C (2014) Simulation of layer measurement with confocal micro-XRF. X-Ray Spectrom 43:175–179

    Article  CAS  Google Scholar 

  116. Wrobel P, Czyzycki M (2013) Direct deconvolution approach for depth profiling of element concentrations in multi-layered materials by confocal micro-beam X-ray fluorescence spectrometry. Talanta 113:62–67

    Article  CAS  Google Scholar 

  117. Mantouvalou I, Malzer W, Kanngiesser B (2012) Quantification for 3D micro X-ray fluorescence. Spectrochim Acta Part B At Spectrosc 77:9–18

    Article  CAS  Google Scholar 

  118. Schoonjans T, Silversmit G, Vekemans B, Schmitz S, Burghammer M, Riekel C, Brenker FE, Vincze L (2012) Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis. Spectrochim Acta Part B At Spectrosc 67:32–42

    Article  CAS  Google Scholar 

  119. Laclavetine K, Ager FJ, Arquillo J, Respaldiza MA, Scrivano S (2016) Characterization of the new mobile confocal micro X-ray fluorescence (CXRF) system for in situ non-destructive cultural heritage analysis at the CNA: mu XRF-CONCHA. Microchem J 125:62–68

    Article  CAS  Google Scholar 

  120. Reiche I, Muller K, Mysak E, Eveno M, Mottin B (2015) Toward a three-dimensional vision of the different compositions and the stratigraphy of the painting L’Homme bless, by G. Courbet: coupling SEM-EDX and confocal micro-XRF. Appl Phys A Mater Sci Process 121:903–913

    Article  CAS  Google Scholar 

  121. Sun TX, Liu ZG, Wang GF, Ma YZ, Peng S, Sun WY, Li FZ, Sun XP, Ding XL (2014) Application of confocal X-ray fluorescence micro-spectroscopy to the investigation of paint layers. Appl Radiat Isot 94:109–112

    Article  CAS  Google Scholar 

  122. Woll AR, Mass J, Bisulca C, Cushi-Nan M, Griggs C, Wanzy T, Ocon N (2008) The Unique History of The Armorer’s Shop an application of confocal x-ray fluorescence microscopy. Stud Conserv 53:93–109

    Article  CAS  Google Scholar 

  123. Kanngiesser B, Malzer W, Mantouvalou I, Sokaras D, Karydas AG (2012) A deep view in cultural heritage-confocal micro X-ray spectroscopy for depth resolved elemental analysis. Appl Phys A Mater Sci Process 106:325–338

    Article  CAS  Google Scholar 

  124. Reiche I, Mueller K, Eveno M, Itie E, Menu M (2012) Depth profiling reveals multiple paint layers of Louvre Renaissance paintingsusing non-invasive compact confocal micro-X-ray fluorescence. J Anal At Spectrom 27:1715–1724

    Article  CAS  Google Scholar 

  125. Yi LT, Liu ZG, Wang K, Lin X, Chen M, Peng SQ, Yang K, Wang JB (2016) Combining depth analysis with surface morphology analysis to analyse the prehistoric painted pottery from Majiayao Culture by confocal 3D-XRF. Appl Phys A Mater Sci Process 122

  126. Choudhury S, Hormes J, Agyeman-Budu DN, Woll AR, George GN, Coulthard I, Pickering IJ (2015) Application of a spoked channel array to confocal X-ray fluorescence imaging and X-ray absorption spectroscopy of medieval stained glass. J Anal At Spectrom 30:759–766

    Article  CAS  Google Scholar 

  127. Kanngiesser B, Mantouvalou I, Malzer W, Wolff T, Hahn O (2008) Non-destructive, depth resolved investigation of corrosion layers of historical glass objects by 3D Micro X-ray fluorescence analysis. J Anal At Spectrom 23:814–819

    Article  CAS  Google Scholar 

  128. Yagi R, Tsuji K (2015) Confocal micro-XRF analysis of light elements with Rh X-ray tube and its application for painted steel sheet. X-Ray Spectrom 44:186–189

    Article  CAS  Google Scholar 

  129. Li FZ, Liu ZG, Sun TX, Yi LT, Zhao WG, He JL, Peng S, Wang LL, Zhao GC, Ding XL (2015) Application of three dimensional confocal micro X-Ray fluorescence technology based on polycapillary X-Ray lens in analysis of rock and mineral samples. Spectrosc Spectr Anal 35:2487–2491

    Google Scholar 

  130. Janssens K, Vittiglio G, Deraedt I, Aerts A, Vekemans B, Vincze L, Wei F, Deryck I, Schalm O, Adams F, Rindby A, Knochel A, Simionovici A, Snigirev A (2000) Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrom 29:73–91

    Article  CAS  Google Scholar 

  131. Terzano R, Spagnuolo M, Vekemans B, De Nolf W, Janssens K, Falkenberg G, Flore S, Ruggiero P (2007) Assessing the origin and fate of Cr, Ni, Cu, Zn, Ph, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods. Environ Sci Technol 41:6762–6769

    Article  CAS  Google Scholar 

  132. Janssens K, De Nolf W, Van Der Snickt G, Vincze L, Vekemans B, Terzano R, Brenker F (2010) Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. Trac Trends Anal Chem 29:464–478

    Article  CAS  Google Scholar 

  133. Fittschen UEA, Falkenberg G (2011) Trends in environmental science using microscopic X-ray fluorescence. Spectrochim Acta Part B At Spectrosc 66:567–580

    Article  CAS  Google Scholar 

  134. Salome M, Bleuet P, Bohic S, Cauzid J, Chalmin E, Cloetens P, Cotte M, De Andrade V, Martinez-Criado G, Petitgirard S, Rak M, Tresserras JAS, Szlachetko J, Tucoulou R, Susini J (2009) Fluorescence X-ray micro-spectroscopy activities at ESRF. In: David C, Nolting F, Quitmann C, Stampanoni M, Pfeiffer F (eds) 9th International Conference on X-Ray MicroscopyZurich, Switserland, pp 012014

  135. Hahn O, Oltrogge D, Bevers H (2004) Coloured prints of the 16th century: non-destructive analyses on coloured engravings from Albrecht Durer and contemporary artists. Archaeometry 46:273–282

    Article  CAS  Google Scholar 

  136. Paternoster G, Rinzivillo R, Nunziata F, Castellucci EM, Lofrumento C, Zoppi A, Felici AC, Fronterotta G, Nicolais C, Piacentini M, Sciuti S, Vendittelli M (2005) Study on the technique of the Roman age mural paintings by micro-XRF with Polycapillary Conic Collimator and micro-Raman analyses. J Cult Herit 6:21–28

    Article  Google Scholar 

  137. Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schoeder S (2012) Development and trends in synchrotron studies of ancient and historical materials. Phys Rep Rev Sect Phys Lett 519:51–96

    Google Scholar 

  138. Gervais C, Thoury M, Reguer S, Gueriau P, Mass J (2015) Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration. Appl Phys A Mater Sci Process 121:949–955

    Article  CAS  Google Scholar 

  139. Bertrand L, Schoeeder S, Anglos D, Breese MBH, Janssens K, Moini M, Simon A (2015) Mitigation strategies for radiation damage in the analysis of ancient materials. Trac Trends Anal Chem 66:128–145

    Article  CAS  Google Scholar 

  140. Nuyts G, Cagno S, Bugani S, Janssens K (2015) Micro-XANES study on Mn browning: use of quantitative valence state maps. J Anal At Spectrom 30:642–650

    Article  CAS  Google Scholar 

  141. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  142. Dik J, Janssens K, Van der Snickt G, van der Loeff L, Rickers K, Cotte M (2008) Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal Chem 80:6436–6442

    Article  CAS  Google Scholar 

  143. Alfeld M, Janssens K (2015) Strategies for processing mega-pixel X-ray fluorescence hyperspectral data: a case study on a version of Caravaggio’s painting Supper at Emmaus. J Anal At Spectrom 30:777–789

    Article  CAS  Google Scholar 

  144. Dik J, Wallert A, Van der Snickt G, Janssens K (2008) Silverpoint underdrawing? A note on its visualization with synchrotron radiation based x-ray fluorescence analysis. Zeitschrift für Kunsttechnologie und Konservierung 22:381–384

    Google Scholar 

  145. Struick van der Loeff L, Alfeld M, Meedendorp T, Dik J, Hendriks E, van der Snickt G, Janssens K, Chavennes M (2012) Rehabilitation of a flower still life in the Kröller-Müller Museum and a lost Antwerp painting by Van Gogh. In: van Tilborgh L (ed) Van Gogh: new findings. Van Gogh Museum, Amsterdam

    Google Scholar 

  146. Alfeld M, Janssens K, Appel K, Thijsse B, Blaas J, Dik J (2011) A portrait by Philipp Otto Runge—visualizing modifications to the painting using synchrotron-based X-ray fluorescence elemental scanning. Zeitschrift für Kunsttechnologie und Konservierung 25:157–163

    Google Scholar 

  147. Howard DL, de Jonge MD, Lau D, Hay D, Varcoe-Cocks M, Ryan CG, Kirkham R, Moorhead G, Paterson D, Thurrowgood D (2012) High-Definition X-ray fluorescence elemental mapping of paintings. Anal Chem 84:3278–3286

    Article  CAS  Google Scholar 

  148. Alfeld M, Siddons DP, Janssens K, Dik J, Woll A, Kirkham R, van de Wetering E (2013) Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF. Appl Phys A Mater Sci Process 111:157–164

    Article  CAS  Google Scholar 

  149. Alfeld M, Pedroso JV, Hommes MVE, Van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K (2013) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28:760–767

    Article  CAS  Google Scholar 

  150. Alfeld M, De Nolf W, Cagno S, Appel K, Siddons DP, Kuczewski A, Janssens K, Dik J, Trentelman K, Walton M, Sartorius A (2013) Revealing hidden paint layers in oil paintings by means of scanning macro-XRF: a mock-up study based on Rembrandt’s “An old man in military costume”. J Anal At Spectrom 28:40–51

    Article  CAS  Google Scholar 

  151. Trentelman K, Janssens K, van der Snickt G, Szafran Y, Woollett AT, Dik J (2015) Rembrandt’s An Old Man in Military Costume: the underlying image re-examined. Appl Phys A Mater Sci Process 121:801–811

    Article  CAS  Google Scholar 

  152. Janssens K, Van der Snickt G, Alfeld M, Noble P, van Loon A, Delaney J, Conover D, Zeibel J, Dik J (2016) Rembrandt’s ‘Saul and David’ (c. 1652): use of multiple types of smalt evidenced by means of non-destructive imaging. Microchem J 126:515–523

    Article  CAS  Google Scholar 

  153. Noble P, van Loon A, Alfeld M, Janssens K, Dik J (2012) Rembrandt and/or Studio, Saul and David, c. 1655: visualising the curtain using cross-section analyses and X-ray fluorescence imaging. Technè 36:35–45

    Google Scholar 

  154. Verslype I (2012) The restoration of Woman in Blue Reading a Letter by Johannes Vermeer. Rijksmuseum Bull 60:2–19

    Google Scholar 

  155. Bull D, Krekeler A, Alfeld M, Dik J, Janssens K (2011) An intrusive portrait by Goya. Burlingt Mag 153:668–673

    Google Scholar 

  156. Monico L, Janssens K, Hendriks E, Vanmeert F, Van der Snickt G, Cotte M, Falkenberg G, Brunetti BG, Miliani C (2015) Evidence for degradation of the chrome yellows in van gogh’s sunflowers: a study using noninvasive in situ methods and synchrotron-radiation-based X-ray techniques. Angew Chem Int Edit 54:13923–13927

    Article  CAS  Google Scholar 

  157. Van der Snickt G, Martins A, Delaney J, Janssens K, Zeibel J, Duffy M, McGlinchey C, Van Driel B, Dik J (2016) Exploring a hidden painting below the surface of Rene Magritte’s Le Portrait. Appl Spectrosc 70:57–67

    Article  CAS  Google Scholar 

  158. Martins A, Albertson C, McGlinchey C, Dik J (2016) Piet Mondrian’s Broadway Boogie Woogie: non invasive analysis using macro X-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least square (MCR-ALS). Herit Sci 4:22. doi:10.1186/s40494-016-0091-4

    Article  CAS  Google Scholar 

  159. Martins A, Coddington J, Van der Snickt G, Van Driel B, McGlinchey C, Dahlberg D, Janssens K, Dik J (2016) Jackson Pollock’s Number 1A, 1948: a non-invasive study using macro-x-ray fluorescence mapping (MA-XRF) and multivariate curve resolution—alternating least squares (MCR-ALS) analysis. Herit Sci 4:33. doi:10.1186/s40494-016-0105-2

  160. Ravaud E, Pichon L, Laval E, Gonzalez V, Eveno M, Calligaro T (2016) Development of a versatile XRF scanner for the elemental imaging of paintworks. Appl Phys A Mater Sci Process 122

  161. Anaf W, Schalm O, Janssens K, De Wael K (2015) Understanding the (in)stability of semiconductor pigments by a thermodynamic approach. Dyes Pigm 113:409–415

    Article  CAS  Google Scholar 

  162. Da Pieve F, Stankowski M, Hogan C (2014) Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere. Sci Total Environ 493:596–605

    Article  CAS  Google Scholar 

  163. Vanmeert F, Van der Snickt G, Janssens K (2015) Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting. Angew Chem Int Edit 54:3607–3610

    Article  CAS  Google Scholar 

  164. Anaf W, Trashin S, Schalm O, van Dorp D, Janssens K, De Wael K (2014) Electrochemical photodegradation study of semiconductor pigments: influence of environmental parameters. Anal Chem 86:9742–9748

    Article  CAS  Google Scholar 

  165. Hogan C, Da Pieve F (2015) Colour degradation of artworks: an ab initio approach to X-ray, electronic and optical spectroscopy analyses of vermilion photodarkening. J Anal At Spectrom 30:588–598

    Article  CAS  Google Scholar 

  166. Emslie SD, Brasso R, Patterson WP, Valera AC, McKenzie A, Silva AM, Gleason JD, Blum JD (2015) Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci Rep 5

  167. Radepont M, de Nolf W, Janssens K, Van der Snickt G, Coquinot Y, Klaassen L, Cotte M (2011) The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (α-Hg3S2Cl2), kenhsuite (γ-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings. J Anal At Spectrom 26:959–968

    Article  CAS  Google Scholar 

  168. Cotte M, Susini J, Metrich N, Moscato A, Gratziu C, Bertagnini A, Pagano M (2006) Blackening of Pompeian cinnabar paintings: X-ray microspectroscopy analysis. Anal Chem 78:7484–7492

    Article  CAS  Google Scholar 

  169. Cotte M, Susini J, Sole VA, Taniguchi Y, Chillida J, Checroun E, Walter P (2008) Applications of synchrotron-based micro-imaging techniques to the chemical analysis of ancient paintings. J Anal At Spectrom 23:820–828

    Article  CAS  Google Scholar 

  170. Radepont M, Coquinot Y, Janssens K, Ezrati J-J, de Nolf W, Cotte M (2015) Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide. J Anal At Spectrom 30:599–612

    Article  CAS  Google Scholar 

  171. Keune K, Boon JJ (2005) Analytical imaging studies clarifying the process of the darkening of vermilion in paintings. Anal Chem 77:4742–4750

    Article  CAS  Google Scholar 

  172. Da Pieve F, Hogan C, Lamoen D, Verbeeck J, Vanmeert F, Radepont M, Cotte M, Janssens K, Gonze X, Van Tendeloo G (2013) Casting light on the darkening of colors in historical paintings. Phys Rev Lett 111

  173. Anaf W, Janssens K, De Wael K (2013) Formation of Metallic Mercury During Photodegradation/Photodarkening of alpha-HgS: electrochemical Evidence. Angew Chem Int Ed 52:12568–12571

    Article  CAS  Google Scholar 

  174. Neiman MK, Balonis M, Kakoulli I (2015) Cinnabar alteration in archaeological wall paintings: an experimental and theoretical approach. Appl Phys A Mater Sci Process 121:915–938

    Article  CAS  Google Scholar 

  175. Uda M (2004) In situ characterization of ancient plaster and pigments on tomb walls in Egypt using energy dispersive X-ray diffraction and fluorescence. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 226:75–82

    Article  CAS  Google Scholar 

  176. Daniels V, Leach B (2004) The occurrence and alteration of realgar on ancient Egyptian papyri. Stud Conserv 49:73–84

    Article  Google Scholar 

  177. Muralha VSF, Burgio L, Clark RJH (2012) Raman spectroscopy analysis of pigments on 16-17th c. Persian manuscripts. Spectrochim Acta Part A Mol Biomol Spectrosc 92:21–28

    Article  CAS  Google Scholar 

  178. Deneckere A, De Reu M, Martens MPJ, De Coene K, Vekemans B, Vincze L, De Maeyer P, Vandenabeele P, Moens L (2011) The use of a multi-method approach to identify the pigments in the 12th century manuscript Liber Floridus. Spectrochim Acta Part A Mol Biomol Spectrosc 80:125–132

    Article  CAS  Google Scholar 

  179. Brown KL, Clark RJH (2004) The Lindisfarne Gospels and two other 8th century Anglo-Saxon/Insular manuscripts: pigment identification by Raman microscopy. J Raman Spectrosc 35:4–12

    Article  CAS  Google Scholar 

  180. Keune K, Mass J, Meirer F, Pottasch C, van Loon A, Hull A, Church J, Pouyet E, Cotte M, Mehta A (2015) Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses. J Anal At Spectrom 30:813–827

    Article  CAS  Google Scholar 

  181. Vermeulen M, Sanyova J, Janssens K (2015) Identification of artificial orpiment in the interior decorations of the Japanese tower in Laeken, Brussels, Belgium. Herit Sci 3:9

    Article  CAS  Google Scholar 

  182. Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68:1755–1761

    Article  CAS  Google Scholar 

  183. MunizMiranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectroscopic investigation and normal mode analysis of As4S4 polymorphs. Spectrochim Acta Part A Mol Biomol Spectrosc 52:1391–1401

    Article  Google Scholar 

  184. Bindi L, Bonazzi P (2007) Light-induced alteration of arsenic sulfides: a new product with an orthorhombic crystal structure. Am Miner 92:617–620

    Article  CAS  Google Scholar 

  185. Kyono A, Kimata M, Hatta T (2005) Light-induced degradation dynamics in realgar: in situ structural investigation using single-crystal X-ray diffraction study and X-ray photoelectron spectroscopy. Am Miner 90:1563–1570

    Article  CAS  Google Scholar 

  186. Macchia A, Cesaro SN, Campanella L, Maras A, Rocchia M, Roscioli G (2013) Which light for cultural heritage: comparison of light sources with respect to realgar photodegradation. J Appl Spectrosc 80:637–643

    Article  CAS  Google Scholar 

  187. Vermeulen M, Nuyts G, Sanyova J, Vila A, Buti D, Suuronen JP, Janssens K (2016) Visualization of As(III) and As(V) distributions in degraded paint micro-samples from Baroque- and Rococo-era paintings. J Anal At Spectrom 31:1913–1921

    Article  CAS  Google Scholar 

  188. Boon JJ, Keune K, van der Weerd J, Geldof M, de Boer J (2001) Imaging microspectroscopic, secondary ion mass spectrometric and electron microscopic studies on discoloured and partially discoloured smalt in cross-sections of 16th century paintings. Chimia 55:952–960

    CAS  Google Scholar 

  189. Panighello S, Kavcic A, Vogel-Mikus K, Tennent NH, Wallert A, Hocevar SB, van Elteren JT (2016) Investigation of smalt in cross-sections of 17th century paintings using elemental mapping by laser ablation ICP-MS. Microchem J 125:105–115

    Article  CAS  Google Scholar 

  190. Spring M, Higgitt C, Saunders D (2005) Investigation of Pigment-Medium Interaction Processes in Oil Paint containing Degraded Smalt. Natl Gallery Tech Bull 26:56–70

    Google Scholar 

  191. Robinet L, Spring M, Pages-Camagna S, Vantelon D, Trcera N (2011) Investigation of the discoloration of smalt pigment in historic paintings by micro-X-ray absorption spectroscopy at the Co K-Edge. Anal Chem 83:5145–5152

    Article  CAS  Google Scholar 

  192. Robinet L, Spring M, Pages-Camagna S (2013) Vibrational spectroscopy correlated with elemental analysis for the investigation of smalt pigment and its alteration in paintings. Anal Methods 5:4628–4638

    Article  CAS  Google Scholar 

  193. Cianchetta I, Colantoni I, Talarico F, d’Acapito F, Trapananti A, Maurizio C, Fantacci S, Davoli I (2012) Discoloration of the smalt pigment: experimental studies and ab initio calculations. J Anal At Spectrom 27:1941–1948

    Article  CAS  Google Scholar 

  194. Miliani C, Daveri A, Brunetti BG, Sgamellotti A (2008) CO(2) entrapment in natural ultramarine blue. Chem Phys Lett 466:141–148

    Article  CAS  Google Scholar 

  195. Gambardella AA, Patterson CMS, Webb SM, Walton MS (2016) Sulfur K-edge XANES of lazurite: toward determining the provenance of lapis lazuli. Microchem J 125:299–307

    Article  CAS  Google Scholar 

  196. Salvado N, Buti S, Aranda MAG, Pradell T (2014) New insights on blue pigments used in 15th century paintings by synchrotron radiation-based micro-FTIR and XRD. Anal Methods 6:3610–3621

    Article  CAS  Google Scholar 

  197. Pintus V, Wei SY, Schreiner M (2016) Accelerated UV ageing studies of acrylic, alkyd, and polyvinyl acetate paints: influence of inorganic pigments. Microchem J 124:949–961

    Article  CAS  Google Scholar 

  198. Del Federico E, Shofberger W, Schelvis J, Kapetanaki S, Tyne L, Jerschow A (2006) Insight into framework destruction in ultramarine pigments. Inorg Chem 45:1270–1276

    Article  CAS  Google Scholar 

  199. Cato E, Borca C, Huthwelker T, Ferreira ESB (2016) Aluminium X-ray absorption near-edge spectroscopy analysis of discoloured ultramarine blue in 20th century oil paintings. Microchem J 126:18–24

    Article  CAS  Google Scholar 

  200. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Verbeeck J, Tian H, Tan H, Dik J, Radepont M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 1. Artificially aged model samples. Anal Chem 83:1214–1223

    Article  CAS  Google Scholar 

  201. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Dik J, Radepont M, Hendriks E, Geldof M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 2. Original paint layer samples. Anal Chem 83:1224–1231

    Article  CAS  Google Scholar 

  202. Monico L, Janssens K, Miliani C, Brunetti BG, Vagnini M, Vanmeert F, Falkenberg G, Abakumov A, Lu Y, Tian H, Verbeeck J, Radepont M, Cotte M, Hendriks E, Geldof M, van der Loeff L, Salvant J, Menu M (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 3. Synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment. Anal Chem 85:851–859

    Article  CAS  Google Scholar 

  203. Monico L, Janssens K, Miliani C, Van der Snickt G, Brunetti BG, Guidi MC, Radepont M, Cotte M (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 4. Artificial aging of model samples of co-precipitates of lead chromate and lead sulfate. Anal Chem 85:860–867

    Article  CAS  Google Scholar 

  204. Monico L, Janssens K, Vanmeert F, Cotte M, Brunetti BG, Van der Snickt G, Leeuwestein M, Plisson JS, Menu M, Miliani C (2014) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. Part 5. Effects of nonoriginal surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints. Anal Chem 86:10804–10811

    Article  CAS  Google Scholar 

  205. Monico L, Janssens K, Cotte M, Romani A, Sorace L, Grazia C, Brunetti BG, Miliani C (2015) Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light. J Anal At Spectrom 30:1500–1510

    Article  CAS  Google Scholar 

  206. Monico L, Janssens K, Cotte M, Sorace L, Vanmeert F, Brunetti BG, Miliani C (2016) Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium. Microchem J 124:272–282

    Article  CAS  Google Scholar 

  207. Tan H, Tian H, Verbeeck J, Monico L, Janssens K, Van Tendeloo G (2013) Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative EELS mapping of Cr species. Angew Chem Int Ed 52:11360–11363

    Article  CAS  Google Scholar 

  208. Monico L, Janssens K, Hendriks E, Brunetti BG, Miliani C (2014) Raman study of different crystalline forms of PbCrO4 and PbCr1-xSxO4 solid solutions for the noninvasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. J Raman Spectrosc 45:1034–1045

    Article  CAS  Google Scholar 

  209. Monico L, Janssens K, Alfeld M, Cotte M, Vanmeert F, Ryan CG, Falkenberg G, Howard DL, Brunetti BG, Miliani C (2015) Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. J Anal At Spectrom 30:613–626

    Article  CAS  Google Scholar 

  210. Otero V, Pinto JV, Carlyle L, Vilarigues M, Cotte M, Melo MJ (2016) Nineteenth century chrome yellow and chrome deep from Windsor & Newton. Stud Conserv 61:1–27

    Article  Google Scholar 

  211. Amat A, Miliani C, Fantacci S (2016) Structural and electronic properties of the PbCrO4 chrome yellow pigment and of its light sensitive sulfate-substituted compounds. RSC Adv 6:36336–36344

  212. Munoz-Garcia AB, Massaro A, Pavone M (2016) Ab Initio Study of PbCr(1-x)SxO4 Solid Solution: an Inside Look at Van Gogh Yellow Degradation. Chem Sci 7:4197–4203

    Article  CAS  Google Scholar 

  213. Casadio F, Xie S, Rukes SC, Myers B, Gray KA, Warta R, Fiedler I (2011) Electron energy loss spectroscopy elucidates the elusive darkening of zinc potassium chromate in Georges Seurat’s A Sunday on La Grande Jatte-1884. Anal Bioanal Chem 399:2909–2920

    Article  CAS  Google Scholar 

  214. Zanella L, Casadio F, Gray KA, Warta R, Ma Q, Gaillard J-F (2011) The darkening of zinc yellow: XANES speciation of chromium in artist’s paints after light and chemical exposures. J Anal At Spectrom 26:1090–1097

    Article  CAS  Google Scholar 

  215. Rosi F, Grazia C, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban P, Miliani C (2016) UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd1-xZnxS solid solutions in cadmium yellow pigments. Microchem J 124:856–867

    Article  CAS  Google Scholar 

  216. Grazia C, Rosi F, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban P, Miliani C (2016) UV–Vis-NIR and microRaman spectroscopies for investigating the composition of ternary CdS1-xSex solid solutions employed as artists’ pigments. Microchem J 125:279–289

    Article  CAS  Google Scholar 

  217. Van der Snickt G, Dik J, Cotte M, Janssens K, Jaroszewicz J, De Nolf W, Groenewegen J, Van der Loeff L (2009) Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques. Anal Chem 81:2600–2610

    Article  CAS  Google Scholar 

  218. Van der Snickt G, Janssens K, Dik J, De Nolf W, Vanmeert F, Jaroszewicz J, Cotte M, Falkenberg G, Van der Loeff L (2012) Combined use of synchrotron radiation based micro-X-ray fluorescence, Micro-X-ray Diffraction, Micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh. Anal Chem 84:10221–10228

    Article  CAS  Google Scholar 

  219. Mass J, Sedlmair J, Patterson CS, Carson D, Buckley B, Hirschmugl C (2013) SR-FTIR imaging of the altered cadmium sulfide yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–6)—examination of visually distinct degradation regions. Analyst 138:6032–6043

    Article  CAS  Google Scholar 

  220. Mass JL, Opila R, Buckley B, Cotte M, Church J, Mehta A (2013) The photodegradation of cadmium yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–1906). Appl Phys A Mater Sci Process 111:59–68

    Article  CAS  Google Scholar 

  221. Uffelman ES, Hobbs PA, Barisas DAG, Mass JL (2013) pXRF analyses of Louise Herreshoff’s paintings in relation to CdS and other pigment degradation issues. Appl Phys A Mater Sci Process 111:9–14

    Article  CAS  Google Scholar 

  222. Pouyet E, Cotte M, Fayard B, Salome M, Meirer F, Mehta A, Uffelman ES, Hull A, Vanmeert F, Kieffer J, Burghammer M, Janssens K, Sette F, Mass J (2015) 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse. Appl Phys A Mater Sci Process 121:967–980

    Article  CAS  Google Scholar 

  223. Voras ZE, deGhetaldi K, Wiggins MB, Buckley B, Baade B, Mass JL, Beebe TP Jr (2015) ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse. Appl Phys A Mater Sci Process 121:1015–1030

    Article  CAS  Google Scholar 

  224. Ayalew E, Janssens K, De Wael K (2016) Unraveling the reactivity of minium toward bicarbonate and the role of lead oxides therein. Anal Chem 88:1564–1569

    Article  CAS  Google Scholar 

  225. Vila A, Monrad K, Wadum J, Filtenborg T (2014) As time passed by came sunset. Christen Købke’s ‘View of Lake Sortedam’, its genesis and colour changes. In: Sgamellotti A, Brunetti BG, Miliani C (eds) Science and art. The painted surface. Royal Society of Chemistry, London, pp 354–372

    Google Scholar 

  226. Samain L, Silversmit G, Sanyova J, Vekemans B, Salomon H, Gilbert B, Grandjean F, Long GJ, Hermann RP, Vincze L, Strivay D (2011) Fading of modern Prussian blue pigments in linseed oil medium. J Anal At Spectrom 26:930–941

    Article  CAS  Google Scholar 

  227. Samain L, Gilbert B, Grandjean F, Long GJ, Strivay D (2013) Redox reactions in Prussian blue containing paint layers as a result of light exposure. J Anal At Spectrom 28:524–535

    Article  CAS  Google Scholar 

  228. Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Strivay D (2013) Relationship between the synthesis of prussian blue pigments, their color, physical properties, and their behavior in paint layers. J Phys Chem C 117:9693–9712

    Article  CAS  Google Scholar 

  229. Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Sanyova J, Strivay D (2013) Synthesis and fading of eighteenth-century Prussian blue pigments: a combined study by spectroscopic and diffractive techniques using laboratory and synchrotron radiation sources. J Synchrotron Radiat 20:460–473

    Article  CAS  Google Scholar 

  230. Gervais C, Languille M-A, Reguer S, Gillet M, Pelletier S, Garnier C, Vicenzi EP, Bertrand L (2013) Why does Prussian blue fade? Understanding the role(s) of the substrate. J Anal At Spectrom 28:1600–1609

    Article  CAS  Google Scholar 

  231. Cotter MJ, Meyers P, Vanzelst L, Sayre EV (1973) Authentication of paintings by Blakelock, RA through neutron-activation autoradiography. J Radioanal Chem 15:265–285

    Article  CAS  Google Scholar 

  232. Alfeld M, Laurenze-Landsberg C, Denker A, Janssens K, Noble P (2015) Neutron activation autoradiography and scanning macro-XRF of Rembrandt van Rijn’s Susanna and the Elders (Gemaldegalerie Berlin): a comparison of two methods for imaging of historical paintings with elemental contrast. Appl Phys A Mater Sci Process 119:795–805

    Article  CAS  Google Scholar 

  233. Seim C, Laurenze-Landsberg C, Schroeder-Smeibidl B, Mantouvalou I, de Boer C, Kanngiesser B (2014) Old traces, read anew—’The Reading Hermit’ painting in the light of X-ray fluorescence. J Anal At Spectrom 29:1354–1360

    Article  CAS  Google Scholar 

  234. Van der Snickt G, Legrand S, Caen J, Vanmeert F, Alfeld M, Janssens K (2016) Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning. Microchem J 124:615–622

    Article  CAS  Google Scholar 

  235. Ricciardi P, Legrand S, Bertolotti G, Janssens K (2016) Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges. Microchem J 124:785–791

    Article  CAS  Google Scholar 

  236. Targowski P, Pronobis-Gajdzis M, Surmak A, Iwanicka M, Kaszewska EA, Sylwestrzak M (2015) The application of macro-X-ray fluorescence and optical coherence tomography for examination of parchment manuscripts. Stud Conserv 60:S167–S177

    Article  CAS  Google Scholar 

  237. Jackall Y, Delaney JK, Swicklik M (2015) ‘Portrait of a woman with a book’: a ‘newly discovered fantasy figure’ by Fragonard at the National Gallery of Art, Washington. Burlingt Mag 157:248–254

    Google Scholar 

  238. Bacci M, Picollo M (1996) Non-destructive spectroscopic detection of cobalt(II) in paintings and glass. Stud Conserv 41:136–144

    CAS  Google Scholar 

  239. Bacci M, Picollo M, Trumpy G, Tsukada M, Kunzelman D (2007) Non-invasive identification of white pigments on 20th-century oil paintings by using fiber optic reflectance spectroscopy. J Am Inst Conserv 46:27–37

    Article  Google Scholar 

  240. Delaney JK, Zeibel JG, Thoury M, Littleton R, Palmer M, Morales KM, de la Rie ER, Hoenigswald A (2010) Visible and infrared imaging spectroscopy of picasso’s harlequin musician: mapping and identification of artist materials in situ. Appl Spectrosc 64:584–594

    Article  CAS  Google Scholar 

  241. Gautier G, Bezur A, Muir K, Casadio F, Fiedler I (2009) Chemical fingerprinting of ready-mixed house paints of relevance to artistic production in the first half of the twentieth century. Part I: Inorganic and organic pigments. Appl Spectrosc 63:597–603

    Article  CAS  Google Scholar 

  242. Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74

    Article  Google Scholar 

  243. Nielsen AA (2011) Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Trans Image Process 20:612–624

    Article  Google Scholar 

  244. Thurrowgood D, Paterson D, de Jonge MD, Kirkham R, Thurrowgood Howard D (2016) A hidden portrait by Edgar Degas. Scientific Reports 6:29594. doi:10.1038/srep29594

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Janssens.

Additional information

This article is part of the Topical Collection "Analytical Chemistry for Cultural Heritage".

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssens, K., Van der Snickt, G., Vanmeert, F. et al. Non-Invasive and Non-Destructive Examination of Artistic Pigments, Paints, and Paintings by Means of X-Ray Methods. Top Curr Chem (Z) 374, 81 (2016). https://doi.org/10.1007/s41061-016-0079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0079-2

Keywords

Navigation