Skip to main content

Sedation in the Pediatric Intensive Care Unit: Current Practice in Europe

  • Chapter
  • First Online:
Pediatric Sedation Outside of the Operating Room

Abstract

Of all the treatments that intensive care entails, the ones most commonly utilized are sedation and analgesia; yet many other treatments applied in intensive care are generally subject to far more scrutiny and debate. Sedation and analgesia are often seen as simply the means by which all other treatments can be facilitated, if only that were true and that sedation could be turned on and off at will—with no side effects, tolerance, withdrawal, toxicity, and danger of producing neurologic and psychiatric effects well after the episode of intensive care has passed. So it is fortunate that there are enthusiastic workers in the specialty of pediatric intensive care who highlight the fact that this aspect of intensive care is far more complex than it first seems and that advancing our understanding and critically revisiting entrenched habits in this field is also required for the conduct of responsible intensive care practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duhigg C. The power of habit—why we do what we do in life and business. New York: Random House; 2012.

    Google Scholar 

  2. Peitz GJ, Balas MC, Olsen KM, Pun BT, Ely EW. Top 10 myths regarding sedation and delirium in the ICU. Crit Care Med. 2013;41(9 Suppl 1):S46–56.

    Article  PubMed  Google Scholar 

  3. Wolf AR, Jackman L. Analgesia and sedation after pediatric cardiac surgery. Paediatr Anaesth. 2011;21(5):567–76. [Review].

    Article  PubMed  Google Scholar 

  4. Grant MJ, Balas MC, Curley MA. Defining sedation-related adverse events in the pediatric intensive care unit. Heart Lung. 2013;42(3):171–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Curley MA, Harris SK, Fraser KA, Johnson RA, Arnold JH. State behavioral scale: a sedation assessment instrument for infants and young children supported on mechanical ventilation. Pediatr Crit Care Med. 2006;7(2):107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Franck LS, Harris SK, Soetenga DJ, Amling JK, Curley MA. The withdrawal assessment tool-1 (WAT-1): an assessment instrument for monitoring opioid and benzodiazepine withdrawal symptoms in pediatric patients. Pediatr Crit Care Med. 2008;9(6):573–80.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Curley MA, Wypij D, Watson RS, Grant MJ, Asaro LA, Cheifetz IM, Dodson BL, Franck LS, Gedeit RG, Angus DC, Matthay MA, RESTORE Study Investigators and the Pediatric Acute Lung Injury and Sepsis Investigators Network. Protocolized sedation versus usual care in pediatric patient mechanically ventilated for acute respiratory failure: a randomized clinical trial. JAMA. 2015;313(4):379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watson RS, Asaro LA, Hertzog JH, Sorce LR, Kachmar AG, Dervan LA, Angus DC, Wypij D, Curley MAQ, RESTORE Study Investigators and the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Long-term outcomes after protocolized sedation versus usual care in ventilated pediatric patients. Am J Respir Crit Care Med. 2018;197(11):1457–67.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bradley BD, Green G, Ramsay T, Seely AJ. Impact of sedation and organ failure on continuous heart and respiratory rate variability monitoring in critically ill patients: a pilot study. Crit Care Med. 2013;41(2):433–44. [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  10. Menon G, Boyle EM, Bergqvist LL, McIntosh N, Barton BA, Anand KJ. Morphine analgesia and gastrointestinal morbidity in preterm infants: secondary results from the NEOPAIN trial. Arch Dis Child Fetal Neonatal Ed. 2008;93(5):F362–7. [Multicenter Study Randomized Controlled Trial].

    Article  CAS  PubMed  Google Scholar 

  11. Shehabi Y, Bellomo R, Reade MC, Bailey M, Bass F, Howe B, et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med. 2012;186(8):724–31. [Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  12. Tanaka LM, Azevedo LC, Park M, Schettino G, Nassar AP, Réa-Neto A, Tannous L, de Souza-Dantas VC, Torelly A, Lisboa T, Piras C, Carvalho FB, Maia Mde O, Giannini FP, Machado FR, Dal-Pizzol F, de Carvalho AG, dos Santos RB, Tierno PF, Soares M, Salluh JI, ERICC study investigators. Early sedation and clinical outcomes of mechanically ventilated patients: a prospective multicenter cohort study. Crit Care. 2014;18(4):R156.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shehabi Y, Chan L, Kadiman S, Alias A, Ismail WN, Tan MA, et al. Sedation depth and long-term mortality in mechanically ventilated critically ill adults: a prospective longitudinal multicentre cohort study. Intensive Care Med. 2013;39(5):910–8. [Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aragón RE, Proaño A, Mongilardi N, de Ferrari A, Herrera P, Roldan R, Paz E, Jaymez AA, Chirinos E, Portugal J, Quispe R, Brower RG, Checkley W. Sedation practices and clinical outcomes in mechanically ventilated patients in a prospective multicenter cohort. Crit Care. 2019;23(1):130.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hill S. Pharmacokinetics of drug infusions. Cont Educ Anaesth Crit Care Pain. 2004;4(3):76–80.

    Article  Google Scholar 

  16. Jenkins IA, Playfor SD, Bevan C, Davies G, Wolf AR. Current United Kingdom sedation practice in pediatric intensive care. Paediatr Anaesth. 2007;17(7):675–83.

    Article  PubMed  Google Scholar 

  17. Hemstapat K, Le L, Edwards SR, Smith MT. Comparative studies of the neuro-excitatory behavioural effects of morphine-3-glucuronide and dynorphin a(2-17) following spinal and supraspinal routes of administration. Pharmacol Biochem Behav. 2009;93(4):498–505. [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  18. Hemstapat K, Monteith GR, Smith D, Smith MT. Morphine-3-glucuronide’s neuro-excitatory effects are mediated via indirect activation of n-methyl-d-aspartic acid receptors: mechanistic studies in embryonic cultured hippocampal neurones. Anesth Analg. 2003;97(2):494–505, table of contents [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  19. Spina SP, Ensom MH. Clinical pharmacokinetic monitoring of midazolam in critically ill patients. Pharmacotherapy. 2007;27(3):389–98. [Review].

    Article  CAS  PubMed  Google Scholar 

  20. Segredo V, Caldwell JE, Wright PM, Sharma ML, Gruenke LD, Miller RD. Do the pharmacokinetics of vecuronium change during prolonged administration in critically ill patients? Br J Anaesth. 1998;80(6):715–9. [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  21. Durrmeyer X, Vutskits L, Anand KJ, Rimensberger PC. Use of analgesic and sedative drugs in the NICU: integrating clinical trials and laboratory data. Pediatr Res. 2010;67(2):117–27.

    Article  PubMed  Google Scholar 

  22. Anand KJ, Anderson BJ, Holford NH, Hall RW, Young T, Shephard B, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101(5):680–9. [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.

    Article  PubMed  Google Scholar 

  24. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7. [Clinical Trial Randomized Controlled Trial].

    Article  CAS  PubMed  Google Scholar 

  25. Mehta S, Burry L, Cook D, Fergusson D, Steinberg M, Granton J, Herridge M, Ferguson N, Devlin J, Tanios M, Dodek P, Fowler R, Burns K, Jacka M, Olafson K, Skrobik Y, Hébert P, Sabri E, Meade M, SLEAP Investigators, Canadian Critical Care Trials Group. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA. 2012;308(19):1985–92.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta K, Gupta VK, Jayashree M, Singhi S. Randomized controlled trial of interrupted versus continuous sedative infusions in ventilated children. Pediatr Crit Care Med. 2012;13(2):131–5. [Randomized Controlled Trial].

    Article  PubMed  Google Scholar 

  27. Verlaat CW, Heesen GP, Vet NJ, de Hoog M, van der Hoeven JG, Kox M, Pickkers P. Randomized controlled trial of daily interruption of sedatives in critically ill children. Paediatr Anaesth. 2014;24:151–6.

    Article  PubMed  Google Scholar 

  28. Vet NJ, de Wildt SN, Verlaat CW, Knibbe CA, Mooij MG, van Woensel JB, van Rosmalen J, Tibboel D, de Hoog M. A randomized controlled trial of daily sedation interruption in critically ill children. Intensive Care Med. 2016;42(2):233–44.

    Article  CAS  PubMed  Google Scholar 

  29. Blackwood B, Agus A, Boyle R, Clarke M, Hemming K, Jordan J, Macrae D, McAuley DF, McDowell C, McIlmurray L, Morris KP, Murray M, Parslow R, Peters MJ, Tume LN, Walsh T, Paediatric Intensive Care Society Study Group (PICS-SG). Sedation AND Weaning In Children (SANDWICH): protocol for a cluster randomised stepped wedge trial. BMJ Open. 2019;9(11):e031630.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kress JP, Hall JB. The changing landscape of ICU sedation. JAMA. 2012;308(19):2030–1. [Comment Editorial].

    Article  CAS  PubMed  Google Scholar 

  31. Dale CR, Bryson CL, Fan VS, Maynard C, Yanez ND 3rd, Treggiari MM. A greater analgesia, sedation, delirium order set quality score is associated with a decreased duration of mechanical ventilation in cardiovascular surgery patients. Crit Care Med. 2013;41(11):2610–7.

    Article  CAS  PubMed  Google Scholar 

  32. Deindl P, Unterasinger L, Kappler G, Werther T, Czaba C, Giordano V, et al. Successful implementation of a neonatal pain and sedation protocol at 2 NICUs. Pediatrics. 2013;132(1):e211–8.

    Article  PubMed  Google Scholar 

  33. Le Guen M, Liu N, Bourgeois E, Chazot T, Sessler DI, Rouby JJ, et al. Automated sedation outperforms manual administration of propofol and remifentanil in critically ill patients with deep sedation: a randomized phase ii trial. Intensive Care Med. 2013;39(3):454–62.

    Article  CAS  PubMed  Google Scholar 

  34. Sun H, Kimchi E, Akeju O, Nagaraj SB, McClain LM, Zhou DW, Boyle E, Zheng WL, Ge W, Westover MB. Automated tracking of level of consciousness and delirium in critical illness using deep learning. NPJ Digit Med. 2019;2:89.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cuello-Garcia CA, Mai SHC, Simpson R, Al-Harbi S, Choong K. Early mobilization in critically ill children: a systematic review. J Pediatr. 2018;203:25–33.

    Article  PubMed  Google Scholar 

  36. Kosarac B, Fox AA, Collard CD. Effect of genetic factors on opioid action. Curr Opin Anaesthesiol. 2009;22(4):476–82. [Review].

    Article  PubMed  Google Scholar 

  37. Borgland SL. Acute opioid receptor desensitization and tolerance: is there a link? Clin Exp Pharmacol Physiol. 2001;28(3):147–54.

    Article  CAS  PubMed  Google Scholar 

  38. Anand KJ, Willson DF, Berger J, Harrison R, Meert KL, Zimmerman J, et al. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics. 2010;125(5):e1208–25. [Research Support, N.I.H., Extramural Review].

    Article  PubMed  PubMed Central  Google Scholar 

  39. Crawford MW, Hickey C, Zaarour C, Howard A, Naser B. Development of acute opioid tolerance during infusion of remifentanil for pediatric scoliosis surgery. Anesth Analg. 2006;102(6):1662–7.

    Article  CAS  PubMed  Google Scholar 

  40. Vinik HR, Kissin I. Rapid development of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg. 1998;86(6):1307–11. [Comparative Study Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  41. Engelhardt T, Zaarour C, Naser B, Pehora C, de Ruiter J, Howard A, et al. Intraoperative low-dose ketamine does not prevent a remifentanil-induced increase in morphine requirement after pediatric scoliosis surgery. Anesth Analg. 2008;107(4):1170–5.

    Article  CAS  PubMed  Google Scholar 

  42. Fraser GL, Devlin JW, Worby CP, Alhazzani W, Barr J, Dasta JF, et al. Benzodiazepine versus nonbenzodiazepine-based sedation for mechanically ventilated, critically ill adults: a systematic review and meta-analysis of randomized trials. Crit Care Med. 2013;41(9 Suppl 1):S30–8.

    Article  CAS  PubMed  Google Scholar 

  43. Jarman A, Duke G, Reade M, Casamento A. The association between sedation practices and duration of mechanical ventilation in intensive care. Anaesth Intensive Care. 2013;41(3):311–5.

    Article  PubMed  Google Scholar 

  44. Hatch DJ. Propofol in paediatric intensive care. Br J Anaesth. 1997;79(3):274–5. [Comment Editorial].

    Article  CAS  PubMed  Google Scholar 

  45. Martin PH, Murthy BV, Petros AJ. Metabolic, biochemical and haemodynamic effects of infusion of propofol for long-term sedation of children undergoing intensive care. Br J Anaesth. 1997;79(3):276–9. [Clinical Trial].

    Article  CAS  PubMed  Google Scholar 

  46. Parke TJ, Stevens JE, Rice AS, Greenaway CL, Bray RJ, Smith PJ, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ. 1992;305(6854):613–6. [Case Reports].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trotter C, Serpell MG. Neurological sequelae in children after prolonged propofol infusion. Anaesthesia. 1992;47(4):340–2.

    Article  CAS  PubMed  Google Scholar 

  48. Wolf A, Weir P, Segar P, Stone J, Shield J. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001;357(9256):606–7. [Case Reports Letter].

    Article  CAS  PubMed  Google Scholar 

  49. Rowe K, Fletcher S. Sedation in the intensive care unit. Contin Educ Anaesth Crit Care Pain. 2008;8(2):50–5.

    Article  Google Scholar 

  50. Pandharipande P, Shintani A, Peterson J, Pun BT, Wilkinson GR, Dittus RS, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  51. Smith HA, Boyd J, Fuchs DC, Melvin K, Berry P, Shintani A, et al. Diagnosing delirium in critically ill children: validity and reliability of the pediatric confusion assessment method for the intensive care unit. Crit Care Med. 2011;39(1):150–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fonsmark L, Rasmussen YH, Carl P. Occurrence of withdrawal in critically ill sedated children. Crit Care Med. 1999;27(1):196–9.

    Article  CAS  PubMed  Google Scholar 

  53. Koinig H, Marhofer P. S(+)-ketamine in paediatric anaesthesia. Paediatr Anaesth. 2003;13(3):185–7. [Editorial].

    Article  CAS  PubMed  Google Scholar 

  54. Turner CP, Gutierrez S, Liu C, Miller L, Chou J, Finucane B, et al. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience. 2012;210:384–92. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhutta AT, Schmitz ML, Swearingen C, James LP, Wardbegnoche WL, Lindquist DM, et al. Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: a pilot randomized, double-blind, placebo-controlled trial. Pediatr Crit Care Med. 2012;13(3):328–37. [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  56. Lahtinen P, Kokki H, Hakala T, Hynynen M. S(+)-ketamine as an analgesic adjunct reduces opioid consumption after cardiac surgery. Anesth Analg. 2004;99(5):1295–301, table of contents [Clinical Trial Randomized Controlled Trial].

    Article  CAS  PubMed  Google Scholar 

  57. Laulin JP, Maurette P, Corcuff JB, Rivat C, Chauvin M, Simonnet G. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance. Anesth Analg. 2002;94(5):1263–9.

    Article  CAS  PubMed  Google Scholar 

  58. Filanovsky Y, Miller P, Kao J. Myth: ketamine should not be used as an induction agent for intubation in patients with head injury. CJEM. 2010;12(2):154–7. [Review].

    Article  PubMed  Google Scholar 

  59. Sehdev RS, Symmons DA, Kindl K. Ketamine for rapid sequence induction in patients with head injury in the emergency department. Emerg Med Australas. 2006;18(1):37–44. [Review].

    PubMed  Google Scholar 

  60. Albanese J, Arnaud S, Rey M, Thomachot L, Alliez B, Martin C. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology. 1997;87(6):1328–34.

    Article  CAS  PubMed  Google Scholar 

  61. Chang LC, Raty SR, Ortiz J, Bailard NS, Mathew SJ. The emerging use of ketamine for anesthesia and sedation in traumatic brain injuries. CNS Neurosci Ther. 2013;19(6):390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Denmark TK, Crane HA, Brown L. Ketamine to avoid mechanical ventilation in severe pediatric asthma. J Emerg Med. 2006;30(2):163–6. [Case Reports].

    Article  PubMed  Google Scholar 

  63. Jat KR, Chawla D. Ketamine for management of acute exacerbations of asthma in children. Cochrane Database Syst Rev. 2012;11:CD009293. [Review].

    PubMed  Google Scholar 

  64. Allen JY, Macias CG. The efficacy of ketamine in pediatric emergency department patients who present with acute severe asthma. Ann Emerg Med. 2005;46(1):43–50. [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  65. Williams GD, Philip BM, Chu LF, Boltz MG, Kamra K, Terwey H, et al. Ketamine does not increase pulmonary vascular resistance in children with pulmonary hypertension undergoing sevoflurane anesthesia and spontaneous ventilation. Anesth Analg. 2007;105(6):1578–84, table of contents [Comparative Study Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  Google Scholar 

  66. Sheth RD, Gidal BE. Refractory status epilepticus: response to ketamine. Neurology. 1998;51(6):1765–6. [Case Reports].

    Article  CAS  PubMed  Google Scholar 

  67. Ilvento L, Rosati A, Marini C, L’Erario M, Mirabile L, Guerrini R. Ketamine in refractory convulsive status epilepticus in children avoids endotracheal intubation. Epilepsy Behav. 2015;49:343–6.

    Article  PubMed  Google Scholar 

  68. Gaspard N, Foreman B, Judd LM, Brenton JN, Nathan BR, McCoy BM, et al. Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia. 2013;54(8):1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kong KL, Willatts SM, Prys-Roberts C. Isoflurane compared with midazolam for sedation in the intensive care unit. BMJ. 1989;298(6683):1277–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wheeler DS, Clapp CR, Ponaman ML, Bsn HM, Poss WB. Isoflurane therapy for status asthmaticus in children: a case series and protocol. Pediatr Crit Care Med. 2000;1(1):55–9.

    Article  CAS  PubMed  Google Scholar 

  71. Sackey PV, Martling CR, Nise G, Radell PJ. Ambient isoflurane pollution and isoflurane consumption during intensive care unit sedation with the anesthetic conserving device. Crit Care Med. 2005;33(3):585–90.

    Article  CAS  PubMed  Google Scholar 

  72. Eifinger F, Hunseler C, Roth B, Vierzig A, Oberthuer A, Mehler K, et al. Observations on the effects of inhaled isoflurane in long-term sedation of critically ill children using a modified AnaConDa©-system. Klin Padiatr. 2013;225(4):206–11.

    Article  CAS  PubMed  Google Scholar 

  73. Arnold JH, Truog RD, Molengraft JA. Tolerance to isoflurane during prolonged administration. Anesthesiology. 1993;78(5):985–8.

    Article  CAS  PubMed  Google Scholar 

  74. Sackey PV, Martling CR, Radell PJ. Three cases of PICU sedation with isoflurane delivered by the ‘AnaConDa’. Paediatr Anaesth. 2005;15(10):879–85.

    Article  PubMed  Google Scholar 

  75. Jung C, Granados M, Marsol P, Murat I, Gall O. Use of sevoflurane sedation by the AnaConDa device as an adjunct to extubation in a pediatric burn patient. Burns. 2008;34(1):136–8.

    Article  CAS  PubMed  Google Scholar 

  76. Mencía S, Palacios A, García M, Llorente AM, Ordóñez O, Toledo B, López-Herce J. An exploratory study of sevoflurane as an alternative for difficult sedation in critically ill children. Pediatr Crit Care Med. 2018;19(7):e335–41.

    Article  PubMed  Google Scholar 

  77. Soukup J, Scharff K, Kubosch K, Pohl C, Bomplitz M, Kompardt J. State of the art: sedation concepts with volatile anesthetics in critically ill patients. J Crit Care. 2009;24(4):535–44. [Review].

    Article  CAS  PubMed  Google Scholar 

  78. Kirkland LL. Protecting both heart and brain: a noble goal for a noble gas. Crit Care Med. 2013;41(9):2228–9.

    Article  PubMed  Google Scholar 

  79. Goto T, Nakata Y, Morita S. Will xenon be a stranger or a friend?: the cost, benefit, and future of xenon anesthesia. Anesthesiology. 2003;98(1):1–2.

    Article  PubMed  Google Scholar 

  80. Rossaint R, Reyle-Hahn M, Schulte Am Esch J, Scholz J, Scherpereel P, Vallet B, et al. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology. 2003;98(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  81. Bedi A, Murray JM, Dingley J, Stevenson MA, Fee JP. Use of xenon as a sedative for patients receiving critical care. Crit Care Med. 2003;31(10):2470–7. [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  82. Hanss R, Bein B, Turowski P, Cavus E, Bauer M, Andretzke M, et al. The influence of xenon on regulation of the autonomic nervous system in patients at high risk of perioperative cardiac complications. Br J Anaesth. 2006;96(4):427–36.

    Article  CAS  PubMed  Google Scholar 

  83. Dingley J, Tooley J, Porter H, Thoresen M. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke. 2006;37(2):501–6.

    Article  CAS  PubMed  Google Scholar 

  84. Hobbs C, Thoresen M, Tucker A, Aquilina K, Chakkarapani E, Dingley J. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke. 2008;39(4):1307–13.

    Article  PubMed  Google Scholar 

  85. Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010;112(3):614–22.

    Article  CAS  PubMed  Google Scholar 

  86. Arola OJ, Laitio RM, Roine RO, Gronlund J, Saraste A, Pietila M, et al. Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest. Crit Care Med. 2013;41(9):2116–24.

    Article  CAS  PubMed  Google Scholar 

  87. Lockwood GG, Franks NP, Downie NA, Taylor KM, Maze M. Feasibility and safety of delivering xenon to patients undergoing coronary artery bypass graft surgery while on cardiopulmonary bypass: phase I study. Anesthesiology. 2006;104(3):458–65.

    Article  PubMed  Google Scholar 

  88. Jungwirth B, Gordan ML, Blobner M, Schmehl W, Kochs EF, Mackensen GB. Xenon impairs neurocognitive and histologic outcome after cardiopulmonary bypass combined with cerebral air embolism in rats. Anesthesiology. 2006;104(4):770–6.

    Article  PubMed  Google Scholar 

  89. Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology. 2000;93(5):1345–9. [Review].

    Article  CAS  PubMed  Google Scholar 

  90. Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 2001;14(1):13–21.

    CAS  Google Scholar 

  91. Fleetwood-Walker SM, Mitchell R, Hope PJ, Molony V, Iggo A. An alpha 2 receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurones. Brain Res. 1985;334(2):243–54. [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  92. Kuraishi Y, Hirota N, Sato Y, Kaneko S, Satoh M, Takagi H. Noradrenergic inhibition of the release of substance p from the primary afferents in the rabbit spinal dorsal horn. Brain Res. 1985;359(1–2):177–82. [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  93. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology. 1992;76(6):948–52. [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  94. Tobias JD, Chrysostomou C. Dexmedetomidine: antiarrhythmic effects in the pediatric cardiac patient. Pediatr Cardiol. 2013;34(4):779–85. [Review].

    Article  PubMed  Google Scholar 

  95. Bhana N, Goa KL, McClellan KJ. Dexmedetomidine. Drugs. 2000;59(2):263–8; discussion 269–270.

    Article  CAS  PubMed  Google Scholar 

  96. Iirola T, Aantaa R, Laitio R, Kentala E, Lahtinen M, Wighton A, et al. Pharmacokinetics of prolonged infusion of high-dose dexmedetomidine in critically ill patients. Crit Care. 2011;15(5):R257. [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  97. Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, et al. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108(3):460–8. [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  98. Potts AL, Larsson P, Eksborg S, Warman G, Lonnqvist PA, Anderson BJ. Clonidine disposition in children; a population analysis. Paediatr Anaesth. 2007;17(10):924–33. [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  99. Ambrose C, Sale S, Howells R, Bevan C, Jenkins I, Weir P, et al. Intravenous clonidine infusion in critically ill children: dose-dependent sedative effects and cardiovascular stability. Br J Anaesth. 2000;84(6):794–6.

    Article  CAS  PubMed  Google Scholar 

  100. Arenas-Lopez S, Riphagen S, Tibby SM, Durward A, Tomlin S, Davies G, et al. Use of oral clonidine for sedation in ventilated paediatric intensive care patients. Intensive Care Med. 2004;30(8):1625–9. [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  101. Wolf A, McKay A, Spowart C, Granville H, Boland A, Petrou S, et al. Prospective multicentre randomised, double-blind, equivalence study comparing clonidine and midazolam as intravenous sedative agents in critically ill children: the SLEEPS (Safety profiLe, Efficacy and Equivalence in Paediatric intensive care Sedation) study. Health Technol Assess. 2014;18(71):1–212.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the mends randomized controlled trial. JAMA. 2007;298(22):2644–53.

    Article  CAS  PubMed  Google Scholar 

  103. Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489–99. [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  104. Goodwin HE, Gill RS, Murakami PN, Thompson CB, Lewin JJ III, Mirski MA. Dexmedetomidine preserves attention/calculation when used for cooperative and short-term intensive care unit sedation. J Crit Care. 2013;28(6):1113.e7–e10.

    Article  CAS  Google Scholar 

  105. Devabhakthuni S, Pajoumand M, Williams C, Kufera JA, Watson K, Stein DM. Evaluation of dexmedetomidine: safety and clinical outcomes in critically ill trauma patients. J Trauma. 2011;71(5):1164–71.

    CAS  PubMed  Google Scholar 

  106. Gerlach AT, Dasta JF, Steinberg S, Martin LC, Cook CH. A new dosing protocol reduces dexmedetomidine-associated hypotension in critically ill surgical patients. J Crit Care. 2009;24(4):568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mann NS, Shinkle JM. Effect of clonidine on gastrointestinal transit time. Hepato-Gastroenterology. 1998;45(22):1023–5.

    CAS  PubMed  Google Scholar 

  108. Memis D, Dokmeci D, Karamanlioglu B, Turan A, Ture M. A comparison of the effect on gastric emptying of propofol or dexmedetomidine in critically ill patients: preliminary study. Eur J Anaesthesiol. 2006;23(8):700–4.

    Article  CAS  PubMed  Google Scholar 

  109. Iirola T, Vilo S, Aantaa R, Wendelin-Saarenhovi M, Neuvonen PJ, Scheinin M, et al. Dexmedetomidine inhibits gastric emptying and oro-caecal transit in healthy volunteers. Br J Anaesth. 2011;106(4):522–7. [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  110. Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307(11):1151–60. [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  111. Tobias JD, Berkenbosch JW. Sedation during mechanical ventilation in infants and children: dexmedetomidine versus midazolam. South Med J. 2004;97(5):451–5. [Clinical Trial Comparative Study Randomized Controlled Trial].

    Article  PubMed  Google Scholar 

  112. Buck ML, Willson DF. Use of dexmedetomidine in the pediatric intensive care unit. Pharmacotherapy. 2008;28(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  113. Hosokawa K, Shime N, Kato Y, et al. Dexmedetomidine sedation in children after cardiac surgery. Pediatr Crit Care Med. 2010;11(1):39–43.

    Article  PubMed  Google Scholar 

  114. Su F, Nicolson SC, Zuppa AF. A dose-response study of dexmedetomidine administered as the primary sedative in infants following open heart surgery. Pediatr Crit Care Med. 2013;14(5):499–507.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Malviya S, Voepel-Lewis T, Tait AR, Merkel S, Tremper K, Naughton N. Depth of sedation in children undergoing computed tomography: validity and reliability of the University of Michigan Sedation Scale (UMSS). Br J Anaesth. 2002;88(2):241–5.

    Article  CAS  PubMed  Google Scholar 

  116. Su F, Nicolson SC, Gastonguay MR, Barrett JS, Adamson PC, Kang DS, et al. Population pharmacokinetics of dexmedetomidine in infants after open heart surgery. Anesth Analg. 2010;110(5):1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Darnell C, Steiner J, Szmuk P, Sheeran P. Withdrawal from multiple sedative agent therapy in an infant: is dexmedetomidine the cause or the cure? Pediatr Crit Care Med. 2010;11(1):e1–3.

    Article  PubMed  Google Scholar 

  118. Burbano NH, Otero AV, Berry DE, Orr RA, Munoz RA. Discontinuation of prolonged infusions of dexmedetomidine in critically ill children with heart disease. Intensive Care Med. 2012;38(2):300–7. [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  Google Scholar 

  119. Shehabi Y, Ruettimann U, Adamson H, Innes R, Ickeringill M. Dexmedetomidine infusion for more than 24 hours in critically ill patients: sedative and cardiovascular effects. Intensive Care Med. 2004;30(12):2188–96.

    Article  PubMed  Google Scholar 

  120. Walker J, Maccallum M, Fischer C, Kopcha R, Saylors R, McCall J. Sedation using dexmedetomidine in pediatric burn patients. J Burn Care Res. 2006;27(2):206–10.

    Article  PubMed  Google Scholar 

  121. Hammer GB, Philip BM, Schroeder AR, Rosen FS, Koltai PJ. Prolonged infusion of dexmedetomidine for sedation following tracheal resection. Paediatr Anaesth. 2005;15(7):616–20.

    Article  PubMed  Google Scholar 

  122. Tobias JD. Dexmedetomidine: are tolerance and withdrawal going to be an issue with long-term infusions? Pediatr Crit Care Med. 2010;11(1):158–60.

    Article  PubMed  Google Scholar 

  123. Tobias JD. Subcutaneous dexmedetomidine infusions to treat or prevent drug withdrawal in infants and children. J Opioid Manag. 2008;4(4):187–91.

    Article  PubMed  Google Scholar 

  124. Farling PA, Johnston JR, Coppel DL. Propofol infusion for sedation of patients with head injury in intensive care. A preliminary report. Anaesthesia. 1989;44(3):222–6.

    Article  CAS  PubMed  Google Scholar 

  125. Marik PE. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10(29):3639–49.

    Article  CAS  PubMed  Google Scholar 

  126. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8(6):491–9.

    Article  CAS  PubMed  Google Scholar 

  127. Reed MD, Blumer JL. Propofol bashing: the time to stop is now! Crit Care Med. 1996;24(1):175–6.

    Article  CAS  PubMed  Google Scholar 

  128. Reed MD, Yamashita TS, Marx CM, Myers CM, Blumer JL. A pharmacokinetically based propofol dosing strategy for sedation of the critically ill, mechanically ventilated pediatric patient. Crit Care Med. 1996;24(9):1473–81.

    Article  CAS  PubMed  Google Scholar 

  129. Cornfield DN, Tegtmeyer K, Nelson MD, Milla CE, Sweeney M. Continuous propofol infusion in 142 critically ill children. Pediatrics. 2002;110(6):1177–81.

    Article  PubMed  Google Scholar 

  130. Withington DE, Decell MK, Al Ayed T. A case of propofol toxicity: further evidence for a causal mechanism. Paediatr Anaesth. 2004;14(6):505–8.

    Article  PubMed  Google Scholar 

  131. Wolf AR, Potter F. Propofol infusion in children: when does an anesthetic tool become an intensive care liability? Paediatr Anaesth. 2004;14(6):435–8.

    Article  PubMed  Google Scholar 

  132. Vanlander AV, Jorens PG, Smet J, De Paepe B, Verbrugghe W, Van den Eynden GG, et al. Inborn oxidative phosphorylation defect as risk factor for propofol infusion syndrome. Acta Anaesthesiol Scand. 2012;56(4):520–5. [Case Reports].

    Article  CAS  PubMed  Google Scholar 

  133. Anonymous. Propofol (Diprivan) infusion: sedation in children aged 16 years or younger contraindicated. Curr Probl Pharmacovigil. 2001;27:10.

    Google Scholar 

  134. Wooltorton E. Propofol: contraindicated for sedation of pediatric intensive care patients. CMAJ. 2002;167(5):507.

    PubMed  PubMed Central  Google Scholar 

  135. Svensson ML, Lindberg L. The use of propofol sedation in a paediatric intensive care unit. Nurs Crit Care. 2012;17(4):198–203.

    Article  PubMed  Google Scholar 

  136. Kumar MA, Urrutia VC, Thomas CE, Abou-Khaled KJ, Schwartzman RJ. The syndrome of irreversible acidosis after prolonged propofol infusion. Neurocrit Care. 2005;3(3):257–9.

    Article  PubMed  Google Scholar 

  137. Eriksen J, Povey HM. A case of suspected non-neurosurgical adult fatal propofol infusion syndrome. Acta Anaesthesiol Scand. 2006;50(1):117–9.

    Article  CAS  PubMed  Google Scholar 

  138. Fudickar A, Bein B, Tonner PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol. 2006;19(4):404–10.

    Article  PubMed  Google Scholar 

  139. Liolios A, Guerit JM, Scholtes JL, Raftopoulos C, Hantson P. Propofol infusion syndrome associated with short-term large-dose infusion during surgical anesthesia in an adult. Anesth Analg. 2005;100(6):1804–6.

    Article  PubMed  Google Scholar 

  140. Cremer OL, Moons KG, Bouman EA, Kruijswijk JE, de Smet AM, Kalkman CJ. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2001;357(9250):117–8.

    Article  CAS  PubMed  Google Scholar 

  141. Vernooy K, Delhaas T, Cremer OL, Di Diego JM, Oliva A, Timmermans C, et al. Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm. 2006;3(2):131–7.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ernest D, French C. Propofol infusion syndrome—report of an adult fatality. Anaesth Intensive Care. 2003;31(3):316–9.

    Article  CAS  PubMed  Google Scholar 

  143. Kang TM. Propofol infusion syndrome in critically ill patients. Ann Pharmacother. 2002;36(9):1453–6.

    Article  PubMed  Google Scholar 

  144. Mijzen EJ, Jacobs B, Aslan A, Rodgers MG. Propofol infusion syndrome heralded by ECG changes. Neurocrit Care. 2012;17(2):260–4. [Case Reports].

    Article  CAS  PubMed  Google Scholar 

  145. Murray DM, Thorne GC, Rigby-Jones AE, Tonucci D, Grimes S, Tooley MA, et al. Electroencephalograph variables, drug concentrations and sedation scores in children emerging from propofol infusion anaesthesia. Paediatr Anaesth. 2004;14(2):143–51.

    Article  PubMed  Google Scholar 

  146. Al-Hashimi M, Scott SW, Thompson JP, Lambert DG. Opioids and immune modulation: more questions than answers. Br J Anaesth. 2013;111(1):80–8.

    Article  CAS  PubMed  Google Scholar 

  147. Bidri M, Royer B, Averlant G, Bismuth G, Guillosson JJ, Arock M. Inhibition of mouse mast cell proliferation and proinflammatory mediator release by benzodiazepines. Immunopharmacology. 1999;43(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  148. Webster NR. Opioids and the immune system. Br J Anaesth. 1998;81(6):835–6.

    Article  CAS  PubMed  Google Scholar 

  149. Platt M, Platt S, Royston D. Lymphocyte proliferation: dichotomy of effect of related anaesthetic agents. Br J Anaesth. 1986;58(1):132P.

    Google Scholar 

  150. Helmy SA, Al-Attiyah RJ. The immunomodulatory effects of prolonged intravenous infusion of propofol versus midazolam in critically ill surgical patients. Anaesthesia. 2001;56(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  151. Massoco C, Palermo-Neto J. Effects of midazolam on equine innate immune response: a flow cytometric study. Vet Immunol Immunopathol. 2003;95(1–2):11–9. [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  152. Mikawa K, Akamatsu H, Nishina K, Shiga M, Maekawa N, Obara H, et al. Propofol inhibits human neutrophil functions. Anesth Analg. 1998;87(3):695–700.

    Article  CAS  PubMed  Google Scholar 

  153. Nishina K, Akamatsu H, Mikawa K, Shiga M, Maekawa N, Obara H, et al. The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions. Anesth Analg. 1998;86(1):159–65.

    Article  CAS  PubMed  Google Scholar 

  154. Nishina K, Akamatsu H, Mikawa K, Shiga M, Maekawa N, Obara H, et al. The effects of clonidine and dexmedetomidine on human neutrophil functions. Anesth Analg. 1999;88(2):452–8.

    Article  CAS  PubMed  Google Scholar 

  155. Sanders RD, Ma D, Brooks P, Maze M. Balancing paediatric anaesthesia: preclinical insights into analgesia, hypnosis, neuroprotection, and neurotoxicity. Br J Anaesth. 2008;101(5):597–609. [Review].

    Article  CAS  PubMed  Google Scholar 

  156. Roze JC, Denizot S, Carbajal R, Ancel PY, Kaminski M, Arnaud C, et al. Prolonged sedation and/or analgesia and 5-year neurodevelopment outcome in very preterm infants: results from the EPIPAGE cohort. Arch Pediatr Adolesc Med. 2008;162(8):728–33.

    Article  PubMed  Google Scholar 

  157. Anand KJ, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62(3):283–90. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  158. Batt J, dos Santos CC, Cameron JI, Herridge MS. Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med. 2013;187(3):238–46. [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  159. Hund E. Neurological complications of sepsis: critical illness polyneuropathy and myopathy. J Neurol. 2001;248(11):929–34. [Review].

    Article  CAS  PubMed  Google Scholar 

  160. Tabarki B, Coffinieres A, Van Den Bergh P, Huault G, Landrieu P, Sebire G. Critical illness neuromuscular disease: clinical, electrophysiological, and prognostic aspects. Arch Dis Child. 2002;86(2):103–7. [Case Reports Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bolton CF, Young GB. Critical illness polyneuropathy. Curr Treat Options Neurol. 2000;2(6):489–98.

    Article  CAS  PubMed  Google Scholar 

  162. Robinson BR, Berube M, Barr J, Riker R, Gelinas C. Psychometric analysis of subjective sedation scales in critically ill adults. Crit Care Med. 2013;41(9 Suppl 1):S16–29.

    Article  PubMed  Google Scholar 

  163. Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2983–91.

    Article  PubMed  Google Scholar 

  164. Riker RR, Fraser GL, Cox PM. Continuous infusion of haloperidol controls agitation in critically ill patients. Crit Care Med. 1994;22(3):433–40.

    Article  CAS  PubMed  Google Scholar 

  165. Riker RR, Picard JT, Fraser GL. Prospective evaluation of the sedation-agitation scale for adult critically ill patients. Crit Care Med. 1999;27(7):1325–9.

    Article  CAS  PubMed  Google Scholar 

  166. Harris J, Ramelet A-S, van Dijk M, Pokorna P, Wielenga J, Tume L, Tibboel D, Ista E. Clinical recommendations for pain, sedation, withdrawal and delirium assessment in critically ill infants and children: an ESPNIC position statement for healthcare professionals. Intensive Care Med. 2016;42(6):972–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ambuel B, Hamlett KW, Marx CM, Blumer JL. Assessing distress in pediatric intensive care environments: the comfort scale. J Pediatr Psychol. 1992;17(1):95–109.

    Article  CAS  PubMed  Google Scholar 

  168. Marx CM, Smith PG, Lowrie LH, Hamlett KW, Ambuel B, Yamashita TS, et al. Optimal sedation of mechanically ventilated pediatric critical care patients. Crit Care Med. 1994;22(1):163–70.

    Article  CAS  PubMed  Google Scholar 

  169. van Dijk M, de Boer JB, Koot HM, Tibboel D, Passchier J, Duivenvoorden HJ. The reliability and validity of the comfort scale as a postoperative pain instrument in 0 to 3-year-old infants. Pain. 2000;84(2–3):367–77.

    Article  PubMed  Google Scholar 

  170. Carnevale FA, Razack S. An item analysis of the comfort scale in a pediatric intensive care unit. Pediatr Crit Care Med. 2002;3(2):177–80.

    Article  PubMed  Google Scholar 

  171. Ista E, van Dijk M, Tibboel D, de Hoog M. Assessment of sedation levels in pediatric intensive care patients can be improved by using the comfort “behavior” scale. Pediatr Crit Care Med. 2005;6(1):58–63.

    Article  PubMed  Google Scholar 

  172. Hartwig S, Roth B, Theisohn M. Clinical experience with continuous intravenous sedation using midazolam and fentanyl in the paediatric intensive care unit. Eur J Pediatr. 1991;150(11):784–8.

    Article  CAS  PubMed  Google Scholar 

  173. Hunseler C, Merkt V, Gerloff M, Eifinger F, Kribs A, Roth B. Assessing pain in ventilated newborns and infants: validation of the Hartwig score. Eur J Pediatr. 2011;170(7):837–43.

    Article  PubMed  Google Scholar 

  174. Shields CH, Styadi-Park G, McCown MY, Creamer KM. Clinical utility of the bispectral index score when compared to the University of Michigan Sedation Scale in assessing the depth of outpatient pediatric sedation. Clin Pediatr. 2005;44(3):229–36. [Clinical Trial Comparative Study].

    Article  Google Scholar 

  175. Kerson AG, DeMaria R, Mauer E, Joyce C, Gerber LM, Greenwald BM, Silver G, Traube C. Validity of the Richmond Agitation-Sedation Scale (RASS) in critically ill children. J Intensive Care. 2016;4:65.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Cravero JP, Askins N, Sriswasdi P, Tsze DS, Zurakowski D, Sinnott S. Validation of the pediatric sedation state scale. Pediatrics. 2017;139(5):e20162897.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Aneja R, Heard AM, Fletcher JE, Heard CM. Sedation monitoring of children by the Bispectral index in the pediatric intensive care unit. Pediatr Crit Care Med. 2003;4(1):60–4. [Comparative Study].

    Article  PubMed  Google Scholar 

  178. Davidson AJ, McCann ME, Devavaram P, Auble SA, Sullivan LJ, Gillis JM, et al. The differences in the bispectral index between infants and children during emergence from anesthesia after circumcision surgery. Anesth Analg. 2001;93(2):326–30, 2nd contents page [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  179. Playfor SD. The use of bispectral index monitors in paediatric intensive care. Crit Care. 2005;9(1):25–6. [Comment].

    Article  PubMed  Google Scholar 

  180. Triltsch AE, Nestmann G, Orawa H, Moshirzadeh M, Sander M, Grosse J, et al. Bispectral index versus COMFORT score to determine the level of sedation in paediatric intensive care unit patients: a prospective study. Crit Care. 2005;9(1):R9–17. [Clinical Trial].

    Article  PubMed  Google Scholar 

  181. Amigoni A, Mozzo E, Brugnaro L, Gentilomo C, Stritoni V, Michelin E, et al. Assessing sedation in a pediatric intensive care unit using comfort behavioural scale and bispectral index: these tools are different. Minerva Anestesiol. 2012;78(3):322–9.

    CAS  PubMed  Google Scholar 

  182. Berkenbosch JW, Fichter CR, Tobias JD. The correlation of the bispectral index monitor with clinical sedation scores during mechanical ventilation in the pediatric intensive care unit. Anesth Analg. 2002;94(3):506–11, table of contents.

    Article  PubMed  Google Scholar 

  183. Courtman SP, Wardurgh A, Petros AJ. Comparison of the bispectral index monitor with the COMFORT score in assessing level of sedation of critically ill children. Intensive Care Med. 2003;29(12):2239–46.

    Article  PubMed  Google Scholar 

  184. Messner M, Beese U, Romstock J, Dinkel M, Tschaikowsky K. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg. 2003;97(2):488–91, table of contents.

    Article  CAS  PubMed  Google Scholar 

  185. LeBlanc JM, Dasta JF, Pruchnicki MC, Gerlach A, Cook C. Bispectral index values, sedation-agitation scores, and plasma lorazepam concentrations in critically ill surgical patients. Am J Crit Care. 2012;21(2):99–105. [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  186. Froom SR, Malan CA, Mecklenburgh JS, Price M, Chawathe MS, Hall JE, et al. Bispectral index asymmetry and COMFORT score in paediatric intensive care patients. Br J Anaesth. 2008;100(5):690–6.

    Article  CAS  PubMed  Google Scholar 

  187. Fernandez Nievas IF, Spentzas T, Bogue CW. Snap II index: an alternative to the COMFORT scale in assessing the level of sedation in mechanically ventilated pediatric patients. J Intensive Care Med. 2013;29(4):225–8.

    Article  Google Scholar 

  188. Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286(21):2703–10.

    Article  CAS  PubMed  Google Scholar 

  189. Traube C, Silver G, Reeder RW, Doyle H, Hegel E, Wolfe HA, Schneller C, Chung MG, Dervan LA, DiGennaro JL, Buttram SD, Kudchadkar SR, Madden K, Hartman ME, deAlmeida ML, Walson K, Ista E, Baarslag MA, Salonia R, Beca J, Long D, Kawai Y, Cheifetz IM, Gelvez J, Truemper EJ, Smith RL, Peters ME, O’Meara AM, Murphy S, Bokhary A, Greenwald BM, Bell MJ. Delirium in critically ill children: an international point prevalence study. Crit Care Med. 2017;45(4):584–90.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Morandi A, Pandharipande P, Trabucchi M, Rozzini R, Mistraletti G, Trompeo AC, et al. Understanding international differences in terminology for delirium and other types of acute brain dysfunction in critically ill patients. Intensive Care Med. 2008;34(10):1907–15.

    Article  CAS  PubMed  Google Scholar 

  191. Traube C, Silver G, Gerber LM, Kaur S, Mauer EA, Kerson A, Joyce C, Greenwald BM. Delirium and mortality in critically ill children: epidemiology and outcomes of pediatric delirium. Crit Care Med. 2017;45(5):891–8.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Traube C, Mauer EA, Gerber LM, Kaur S, Joyce C, Kerson A, Carlo C, Notterman D, Worgall S, Silver G, Greenwald BM. Cost associated with pediatric delirium in the ICU. Crit Care Med. 2016;44(12):e1175–9.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Gehlbach BK, Chapotot F, Leproult R, Whitmore H, Poston J, Pohlman M, et al. Temporal disorganization of circadian rhythmicity and sleep-wake regulation in mechanically ventilated patients receiving continuous intravenous sedation. Sleep. 2012;35(8):1105–14. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  194. Yoshitaka S, Egi M, Morimatsu H, Kanazawa T, Toda Y, Morita K. Perioperative plasma melatonin concentration in postoperative critically ill patients: its association with delirium. J Crit Care. 2013;28(3):236–42. [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  195. Gunther ML, Jackson JC, Ely EW. Loss of IQ in the ICU brain injury without the insult. Med Hypotheses. 2007;69(6):1179–82.

    Article  PubMed  Google Scholar 

  196. Svenningsen H, Egerod I, Videbech P, Christensen D, Frydenberg M, Tonnesen EK. Fluctuations in sedation levels may contribute to delirium in ICU patients. Acta Anaesthesiol Scand. 2013;57(3):288–93. [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  197. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Crit Care Med. 2001;29(7):1370–9.

    Article  CAS  PubMed  Google Scholar 

  198. Mac Sweeney R, Barber V, Page V, Ely EW, Perkins GD, Young JD, et al. A national survey of the management of delirium in UK intensive care units. QJM. 2010;103(4):243–51.

    Article  CAS  PubMed  Google Scholar 

  199. Routsi C, Stamataki E, Nanas S, Psachoulia C, Stathopoulos A, Koroneos A, et al. Increased levels of serum S100B protein in critically ill patients without brain injury. Shock. 2006;26(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  200. Cotton BA, Girard TD, Ely EW. Increased levels of serum S100B protein in critically ill patients without brain injury. Shock. 2006;26(1):20–4. Shock. United States 2007. p. 338; author reply 339.

    Article  Google Scholar 

  201. Pandharipande PP, Morandi A, Adams JR, Girard TD, Thompson JL, Shintani AK, et al. Plasma tryptophan and tyrosine levels are independent risk factors for delirium in critically ill patients. Intensive Care Med. 2009;35(11):1886–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mody K, Kaur S, Mauer EA, Gerber LM, Greenwald BM, Silver G4, Traube C. Benzodiazepines and development of delirium in critically ill children: estimating the causal effect. Crit Care Med. 2018;46(9):1486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Sikich N, Lerman J. Development and psychometric evaluation of the pediatric anesthesia emergence delirium scale. Anesthesiology. 2004;100(5):1138–45. [Validation Studies].

    Article  PubMed  Google Scholar 

  205. Turkel SB, Trzepacz PT, Tavare CJ. Comparing symptoms of delirium in adults and children. Psychosomatics. 2006;47(4):320–4. [Comparative Study].

    Article  PubMed  Google Scholar 

  206. Schieveld JN, Leroy PL, van Os J, Nicolai J, Vos GD, Leentjens AF. Pediatric delirium in critical illness: phenomenology, clinical correlates and treatment response in 40 cases in the pediatric intensive care unit. Intensive Care Med. 2007;33(6):1033–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Turkel SB, Jacobson JR, Tavare CJ. The diagnosis and management of delirium in infancy. J Child Adolesc Psychopharmacol. 2013;23(5):352–6.

    Article  CAS  PubMed  Google Scholar 

  208. Traube C, Silver G, Kearney J, Patel A, Atkinson TM, Yoon MJ, Halpert S, Augenstein J, Sickles LE, Li C, Greenwald B. Cornell assessment of pediatric delirium: a valid, rapid, observational tool for screening delirium in the PICU. Crit Care Med. 2014;42(3):656–63.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Smith HA, Gangopadhyay M, Goben CM, Jacobowski NL, Chestnut MH, Savage S, Rutherford MT, Denton D, Thompson JL, Chandrasekhar R, Acton M, Newman J, Noori HP, Terrell MK, Williams SR, Griffith K, Cooper TJ, Ely EW, Fuchs DC, Pandharipande PP. The preschool confusion assessment method for the ICU: valid and reliable delirium monitoring for critically ill infants and children. Crit Care Med. 2016;44(3):592–600.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Barr J, Fraser GL, Puntillo K, Ely EW, Gelinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306. [Consensus Development Conference Practice Guideline Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  211. Page V, Ely E, Gates S, Xiao B, Alce T, Shintani A, et al. Effect of intravenous haloperidol on the duration of delirium and coma in critically ill patients (Hope-ICU): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2013;1(7):515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. van Eijk MM, Roes KC, Honing ML, Kuiper MA, Karakus A, van der Jagt M, et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet. 2010;376(9755):1829–37. [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  213. Arnold JH, Truog RD, Orav EJ, Scavone JM, Hershenson MB. Tolerance and dependence in neonates sedated with fentanyl during extracorporeal membrane oxygenation. Anesthesiology. 1990;73(6):1136–40.

    Article  CAS  PubMed  Google Scholar 

  214. Jenkins IA. Tolerance and addiction; the patient, the parent or the clinician? Paediatr Anaesth. 2011;21(7):794–9. [Review].

    Article  PubMed  Google Scholar 

  215. Tobias JD. Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Crit Care Med. 2000;28(6):2122–32.

    Article  CAS  PubMed  Google Scholar 

  216. Ypsilantis P, Mikroulis D, Politou M, Tsoukali H, Pitiakoudis M, Didilis V, et al. Tolerance to propofol’s sedative effect in mechanically ventilated rabbits. Anesth Analg. 2006;103(2):359–65.

    Article  CAS  PubMed  Google Scholar 

  217. Cunliffe M, McArthur L, Dooley F. Managing sedation withdrawal in children who undergo prolonged PICU admission after discharge to the ward. Paediatr Anaesth. 2004;14(4):293–8. [Case Reports Review].

    Article  CAS  PubMed  Google Scholar 

  218. Ista E, van Dijk M, Gischler S, de Leeuw M, Poley MJ, Tibboel D. Weaning of opioids and benzodiazepines at home after critical illness in infants: a cost-effective approach. J Opioid Manag. 2010;6(1):55–62. [Comparative Study].

    Article  PubMed  Google Scholar 

  219. Greenberg M, Sauberan J. Clonidine withdrawal in a 3 month old premature male infant. Internet J Pediatr Neonatol. 2009. http://ispub.com/IJPN/10/1/8312.

  220. Bachiocco V, Lorenzini L, Baroncini S. Severe withdrawal syndrome in three newborns subjected to continuous opioid infusion and seizure activity dependent on brain hypoxia—ischemia. A possible link. Paediatr Anaesth. 2006;16(10):1057–62.

    Article  PubMed  Google Scholar 

  221. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93(2):409–17.

    Article  CAS  PubMed  Google Scholar 

  222. Katz R, Kelly HW, Hsi A. Prospective study on the occurrence of withdrawal in critically ill children who receive fentanyl by continuous infusion. Crit Care Med. 1994;22(5):763–7. [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  223. Smith HA, Fuchs DC, Pandharipande PP, Barr FE, Ely EW. Delirium: an emerging frontier in the management of critically ill children. Anesthesiol Clin. 2011;29(4):729–50.

    Article  PubMed  Google Scholar 

  224. Finnegan LP, Connaughton JF Jr, Kron RE, Emich JP. Neonatal abstinence syndrome: assessment and management. Addict Dis. 1975;2(1–2):141–58.

    CAS  PubMed  Google Scholar 

  225. Ista E, van Dijk M, Gamel C, Tibboel D, de Hoog M. Withdrawal symptoms in critically ill children after long-term administration of sedatives and/or analgesics: a first evaluation. Crit Care Med. 2008;36(8):2427–32.

    Article  CAS  PubMed  Google Scholar 

  226. Ista E, van Dijk M, de Hoog M, Tibboel D, Duivenvoorden HJ. Construction of the Sophia observation withdrawal symptoms-scale (SOS) for critically ill children. Intensive Care Med. 2009;35(6):1075–81.

    Article  PubMed  Google Scholar 

  227. Franck LS, Scoppettuolo LA, Wypij D, Curley MA. Validity and generalizability of the withdrawal assessment tool-1 (WAT-1) for monitoring iatrogenic withdrawal syndrome in pediatric patients. Pain. 2012;153(1):142–8. [Validation Studies].

    Article  PubMed  Google Scholar 

  228. Sanchez-Pinto LN, Nelson LP, Lieu P, Koh JY, Rodgers JW, Larson KA, Huson JM, Amirnovin R. Implementation of a risk stratified opioid weaning protocol in a pediatric intensive care unit. J Crit Care. 2018;43:214–9.

    Article  PubMed  Google Scholar 

  229. Ista E, de Hoog M, Tibboel D, Duivenvoorden HJ, van Dijk M. Psychometric evaluation of the Sophia observation withdrawal symptoms scale in critically ill children. Pediatr Crit Care Med. 2013;14(8):761–9.

    Article  PubMed  Google Scholar 

  230. Mazurier E, Cambonie G, Barbotte E, Grare A, Pinzani V, Picaud JC. Comparison of chlorpromazine versus morphine hydrochloride for treatment of neonatal abstinence syndrome. Acta Paediatr. 2008;97(10):1358–61.

    CAS  PubMed  Google Scholar 

  231. Mayall RM. Substance abuse in anaesthetists. BJA Educ. 2016;16(7):236–41.

    Article  Google Scholar 

  232. Warner DO, Berge K, Sun H, Harman A, Hanson A, Schroeder DR. Substance use disorder among anesthesiology residents, 1975–2009. J Am Med Assoc. 2013;310(21):2289–96.

    Article  CAS  Google Scholar 

  233. Wischmeyer PE, Johnson BR, Wilson JE, Dingmann C, Bachman HM, Roller E, et al. A survey of propofol abuse in academic anesthesia programs. Anesth Analg. 2007;105(4):1066–71, table of contents.

    Article  CAS  PubMed  Google Scholar 

  234. Fry RA, Fry LE, Castanelli DJ. A retrospective survey of substance abuse in anaesthetists in Australia and New Zealand from 2004 to 2013. Anaesth Intensive Care. 2015;43(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  235. Wilson C, Canning P, Caravati EM. The abuse potential of propofol. Clin Toxicol. 2010;48(3):165–70.

    Article  CAS  Google Scholar 

  236. Zacny JP, Lichtor JL, Thompson W, Apfelbaum JL. Propofol at a subanesthetic dose may have abuse potential in healthy volunteers. Anesth Analg. 1993;77(3):544–52.

    Article  CAS  PubMed  Google Scholar 

  237. Berge KH, Seppala MD, Lanier WL. The anesthesiology community’s approach to opioid- and anesthetic-abusing personnel: time to change course. Anesthesiology. 2008;109(5):762–4.

    Article  PubMed  Google Scholar 

  238. McAuliffe PF, Gold MS, Bajpai L, Merves ML, Frost-Pineda K, Pomm RM, et al. Second-hand exposure to aerosolized intravenous anesthetics propofol and fentanyl may cause sensitization and subsequent opiate addiction among anesthesiologists and surgeons. Med Hypotheses. 2006;66(5):874–82.

    Article  CAS  PubMed  Google Scholar 

  239. Li KY, Xiao C, Xiong M, Delphin E, Ye JH. Nanomolar propofol stimulates glutamate transmission to dopamine neurons: a possible mechanism of abuse potential? J Pharmacol Exp Ther. 2008;325(1):165–74.

    Article  CAS  PubMed  Google Scholar 

  240. Joshi ST, editor. H.L. Mencken on religion. Amherst: Prometheus Books; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Playfor, S.D., Jenkins, I.A. (2021). Sedation in the Pediatric Intensive Care Unit: Current Practice in Europe. In: Mason, MD, K.P. (eds) Pediatric Sedation Outside of the Operating Room. Springer, Cham. https://doi.org/10.1007/978-3-030-58406-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58406-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58405-4

  • Online ISBN: 978-3-030-58406-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics