Skip to main content

Bioactive Compounds of Ajwain (Trachyspermum ammi [L.] Sprague)

  • Reference work entry
  • First Online:
Bioactive Compounds in Underutilized Vegetables and Legumes

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 912 Accesses

Abstract

Plants are the rich source of valuable biochemical and bioactive compounds and therefore have been widely utilized for the management of variety of disorders. Current estimate reveal that 25% of the commonly used modern medicines contain compounds isolated from plants. Ajwain or Trachyspermum ammi Linn. (T. ammi) is a medicinal herb belonging to the Apiaceae family; its leaves and seed-like fruits are used as spice. It possesses many extractable compounds such as carbohydrates, proteins, sterols, fibers, alkaloid, tannins, saponins, and flavonoids. Volatile oil extracted from the fruit of ajwain includes thymol, p-cymene, c-terpinene, and α- and β-pinene. Minerals included calcium, iron, phosphorus, and nicotinic acid. Fruits extract revealed the presence of monoterpenes, monoterpenoids, gluside, glucoside, and aromatic compounds. Choline and acetylcholine and anticalcifying agents were also reportedly present in ajwain seeds. Scientific reports exhibited that ajwain possesses carminative, diuretic, anticancer, hepatoprotective, stimulant, antiviral, bronchodilatory, antihypertensive, antihyperlipidemic, antiseptic, nematicidal, antiulcer, antiplatelet, antitussive, and anesthetic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asif HM, Sultana S, Akhtar N (2014) A panoramic view on phytochemical, nutritional, ethanobotanical uses and pharmacological values of Trachyspermum ammi Linn. Asian Pac J Trop Biomed 4:S545–S553

    Article  Google Scholar 

  2. Farahinia P, Ahamad Sadat-Noori S, Mortazavian MM, Soltani E, Foghi B (2017) Hydrotime model analysis of Trachyspermum ammi (L.) Sprague seed germination. J Appl Res Med Aromat Plants 5:88–91

    Google Scholar 

  3. Choudhury S, Ahmed R, Kanjilal PB, Leclercq PA (1998) Composition of the seed oil of Trachyspermum ammi (L.) Sprague from Northeast India. J Essent Oil Res 10(5):588–590

    Article  CAS  Google Scholar 

  4. Kambouche N, El-Abed D (2003) Composition of the volatile oil from the aerial parts of Trachyspermum ammi (L.) Sprague from Oran (Algeria). J Essent Oil Res 15:39–40

    Article  CAS  Google Scholar 

  5. Javed S, Shahid AA, Haider MS, Umeera A, Ahmad R, Mushtaq S (2012) Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain). J Med Plant Res 6:768–775

    CAS  Google Scholar 

  6. Kavoosi G, Tafsiry A, Ebdam AA, Rowshan V (2013) Evaluation of antioxidant and antimicrobial activities of essential oils from Carum copticum seed and Ferula assafoetida latex. J Food Sci 78:T356–T361

    Article  CAS  PubMed  Google Scholar 

  7. Bairwa R, Sodha RS, Rajawat BS (2012) Trachyspermum ammi. Pharmacogn Rev 6:56–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uma PK, Geervani P, Eggum BO (1993) Common Indian spices. Nutrient composition, consumption and contribution to dietary value. Plant Foods Hum Nutr 44:137–148

    Article  Google Scholar 

  9. Boskabady MH, Alitaneh S, Alavinezhad A (2014) Carumcopticum L.: a herbal medicine with various pharmacological effects. Biomed Res Int 2014:569087

    PubMed  PubMed Central  Google Scholar 

  10. Ishikawa T, Sega Y, Kitajima J (2001) Water-soluble constituents of ajowan. Chem Pharm Bull (Tokyo) 49:840–844

    Article  CAS  Google Scholar 

  11. Devasankaraiah G, Hanin I, Haranath PSRK, Ramanamurthy PSV (1974) Cholinomimetic effects of aqueous extracts from Carum coptiucm seeds. Br J Pharmacol 52:613–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaur T, Bijarnia RK, Singla SK, Tandon C (2009) Purification and characterization of an anticalcifying protein from the seeds of Trachyspermum ammi (L.). Protein Pept Lett 16:173–181

    Article  CAS  PubMed  Google Scholar 

  13. Shruthi RR, Venkatesh YP, Muralikrishna GS (2017) Structural and functional characterization of a novel immunomodulatory glycoprotein isolated from ajowan (Trachyspermum ammi L.). Glycoconj J 34:499–514

    Article  CAS  PubMed  Google Scholar 

  14. Gandomi H, Abbaszadeh S, JebelliJavan A, Sharifzadeh A (2014) Chemical constituents, antimicrobial and antioxidative effects of Trachyspermum ammi essential oil. J Food Process Preserv 38:1690–1695

    Article  CAS  Google Scholar 

  15. Mathew N, Misra-Bhattacharya S, Perumal V, Muthuswamy K (2008) Antifilarial lead molecules isolated from Trachyspermum ammi. Molecules 13:2156–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qureshi AA, Eswar KK (2010) Phytochemical constituents and pharmacological activities of Trachyspermum ammi. Plant Arch 10:955–959

    Google Scholar 

  17. Asima C, Satyesh CP (1995) The treatise of Indian medicinal plants, vol 1. Publication and Information Directorate, New Delhi

    Google Scholar 

  18. Özcan MM, Akbulut M (2008) Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem 106:852–858

    Article  CAS  Google Scholar 

  19. Duke JA (1992) Database of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca Raton, p 47

    Google Scholar 

  20. Mohagheghzadeh A, Faridi P, Ghasemi Y (2007) Carum coptiucm Benth. & Hook essential oil chemotypes. Food Chem 100:1217–1219

    Article  CAS  Google Scholar 

  21. Khan N, Jamila N, Ejaz R, Nishan U, Kim KS (2020) Volatile oil, phytochemical, and biological activities evaluation of Trachyspermum ammi seeds by chromatographic and spectroscopic methods. Anal Lett 53:984–1001

    Article  CAS  Google Scholar 

  22. Ramya N, Priyadharshini XX, Prakash R, Dhivya R (2017) Anti-cancer activity of Trachyspermum ammi against MCF7 cell lines mediates by p53 and Bcl-2 mRNA levels. J Phytopharmacol 6:78–83

    Article  Google Scholar 

  23. Sharma E, Arora BS (2017) Phytochemical investigation of seeds of Trachyspermum ammi Linn. by GC-MS. J Chem Environ Sci Appl 3:91–100

    Article  Google Scholar 

  24. Deb DD, Parimala G, Devi SS, Chakraborty T (2011) Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact 193:97–106

    Article  PubMed  CAS  Google Scholar 

  25. De La Chapa JJ, Singha PK, Lee DR, Gonzales CB (2018) Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J Oral Pathol Med 47:674–682

    Article  CAS  Google Scholar 

  26. Hsu SS, Lin KL, Chou CT, Chiang AJ, Liang WZ, Chang HT, Tsai JY, Liao WC, Huang FD, Huang JK, Chen IS (2011) Effect of thymol on Ca2+ homeostasis and viability in human glioblastomacells. Eur J Pharmacol 670:85–91

    Article  CAS  PubMed  Google Scholar 

  27. Yeh JH, Chou CT, Chen IS, Lu T, Lin KL, Yu CC, Liang WZ, Chang HT, Kuo CC, Ho CM, Chang WT (2017) Effect of thymol on Ca 2+ homeostasis and viability in PC3 human prostate cancer cells. Chin J Physiol 60:32–40

    Article  CAS  PubMed  Google Scholar 

  28. Lee KP, Kim JE, Park WH, Hong H (2016) Regulation of C6 glioma cell migration by thymol. Oncol Lett 11:2619–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seresht HR, Albadry BJ, Al-mosawi AK, Gholami O, Cheshomi H (2019) The cytotoxic effects of thymol as the major component of Trachyspermum ammi on breast cancer (MCF-7) cells. Pharm Chem J 53:101–107

    Article  CAS  Google Scholar 

  30. Mohammadpour G, Tahmasbpour R, Rahmani A, Esfahani AA (2018) Chemical compounds, in vitro antitumor and antibacterial activities of Trachyspermum copticum L. essential oil. Iranian J Pharmacol Ther 16:1–6

    Google Scholar 

  31. Abdel-Hameed ES, Bazaid SA, Al Zahrani O, El-Halmouch Y, El-Sayed MM, El-Wakil E (2014) Chemical composition of volatile components, antimicrobial and anticancer activity of n-hexane extract and essential oil from Trachyspermum ammi L. seeds. Orient J Chem 30:1653–1662

    Article  CAS  Google Scholar 

  32. NagoorMeeran MF, StanelyMainzen Prince P (2012) Protective effects of thymol on altered plasma lipid peroxidation and nonenzymic antioxidants in isoproterenol-induced myocardial infarcted rats. J Biochem Mol Toxicol 26:368–373

    Article  CAS  Google Scholar 

  33. Meeran MF, Jagadeesh GS, Selvaraj P (2015) Thymol attenuates altered lipid metabolism in β-adrenergic agonist induced myocardial infarcted rats by inhibiting tachycardia, altered electrocardiogram, apoptosis and cardiac hypertrophy. J Funct Foods 14:51–62

    Article  CAS  Google Scholar 

  34. Archana PR, NageshwarRao B, SatishRao BS (2011) Modulation of gamma ray–induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integr Cancer Ther 10:374–383

    Article  CAS  PubMed  Google Scholar 

  35. Pérez-Rosés R, Risco E, Vila R, Peñalver P, Cañigueral S (2016) Biological and nonbiological antioxidant activity of some essential oils. J Agric Food Chem 64:4716–4724

    Article  PubMed  CAS  Google Scholar 

  36. El-Nekeety AA, Mohamed SR, Hathout AS, Hassan NS, Aly SE, Abdel-Wahhab MA (2011) Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon 57:984–991

    Article  CAS  PubMed  Google Scholar 

  37. Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A (2003) Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett Appl Microbiol 37:448–451

    Google Scholar 

  38. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Zhou F, Ji BP, Pei RS, Xu N (2008) Carvacrol and thymol had desired antimicrobial effect on E. coli. The antibacterial effects were attributed to their ability to permeabilize and depolarize the cytoplasmatic membrane. Lett Appl Microbiol 47:174–179

    Article  CAS  PubMed  Google Scholar 

  40. Palaniappan K, Holley RA (2010) Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol 140:164–168

    Article  CAS  PubMed  Google Scholar 

  41. Rivas L, McDonnell MJ, Burgess CM, O’Brien M, Navarro-Villa A, Fanning S, Duffy G (2010) Inhibition of verocytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol. Int J Food Microbiol 139:70–78

    Google Scholar 

  42. Mathela CS, Singh KK, Gupta VK (2010) Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Pol Pharm 67:375–380

    CAS  PubMed  Google Scholar 

  43. de Morais SM, Vila-Nova NS, Bevilaqua CM, Rondon FC, Lobo CH, Moura AD, Sales AD, Rodrigues AP, de Figuereido JR, Campello CC, Wilson ME (2014) Thymol and eugenol derivatives as potential antileishmanial agents. Bioorg Med Chem 22:6250–6255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pemmaraju SC, Pruthi PA, Prasad R, Pruthi V (2013) Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J Exp Biol 51:1032–1037

    CAS  PubMed  Google Scholar 

  45. Jafarpour M, Golparvar AR, Lotfi A (2013) Antibacterial activity of essential oils from Thymus vulgaris, Trachyspermum ammi and Mentha aquatica against Erwinia carotovora in vitro. J Herb Drugs 4:115–118

    Google Scholar 

  46. Vigo E, Cepeda A, Perez-Fernandez R, Gualillo O (2004) In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A. 1 murine macrophages. J Pharm Pharmacol 56:257–263

    Article  CAS  PubMed  Google Scholar 

  47. Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Marabini L (2006) Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology 77:130–136

    Article  CAS  PubMed  Google Scholar 

  48. Marsik P, Kokoska L, Landa P, Nepovim A, Soudek P, Vanek T (2005) In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1-and-2-catalyzed prostaglandin E2 biosyntheses. Planta Med 71:739–742

    Google Scholar 

  49. Hejazian SH (2006) Analgesic effect of essential oil (EO) from Carum copticum in mice. World J Med Sci 1:95–99

    CAS  Google Scholar 

  50. Chauhan PS, Satti NK, Suri KA, Amina M, Bani S (2010) Stimulatory effects of Cuminum cyminum and flavonoid glycoside on Cyclosporine-A and restraint stress induced immune-suppression in Swiss albino mice. Chem Int 185:66–72

    CAS  Google Scholar 

  51. Ueda T, Yamada T, Ugawa S, Ishida Y, Shimada S (2009) TRPV3 a thermosensitive channel is expressed in mouse distal colon epithelium. Biochem Biophys Res Commun 383:130–134

    Article  CAS  PubMed  Google Scholar 

  52. Manouchehrabadi M, Farhadi M, Azizi Z, Torkaman-Boutorabi A (2020) Carvacrol protects against 6-Hydroxydopamine-induced neurotoxicity in in vivo and in vitro models of Parkinson’s disease. Neurotox Res 37:156–170

    Article  CAS  PubMed  Google Scholar 

  53. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  54. Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    Article  CAS  PubMed  Google Scholar 

  55. Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65:1545–1560

    Article  CAS  PubMed  Google Scholar 

  56. Rattanachaikunsopon P, Phumkhachorn P (2010) Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J Biosci Bioeng 110:614–619

    Article  CAS  PubMed  Google Scholar 

  57. Ultee A, Kets EP, Alberda M, Hoekstra FA, Smid EJ (2000) Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch Microbiol 174:233–238

    Article  CAS  PubMed  Google Scholar 

  58. Ultee A, Bennik MH, Moezelaar RJ (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella entericaserovar Typhimurium. Appl Environ Microbiol 71:797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523

    Google Scholar 

  61. Dalleau S, Cateau E, Bergès T, Berjeaud JM, Imbert C (2008) In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Agents 31:572–576

    Article  CAS  PubMed  Google Scholar 

  62. Rao A, Zhang Y, Muend S, Rao R (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 54:5062–5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ahmad A, Khan A, Akhtar F, Yousuf S, Xess I, Khan LA, Manzoor N (2011) Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis 30:41–50

    Article  CAS  PubMed  Google Scholar 

  64. Jayakumar S, Madankumar A, Asokkumar S, Raghunand Hakumar S, Kamaraj S, Divya MG, Devaki T (2012) Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol Cell Biochem 360:51–60

    Article  CAS  PubMed  Google Scholar 

  65. Aeschbach R, Löliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36

    Article  CAS  PubMed  Google Scholar 

  66. Cho S, Choi Y, Park S, Park T (2012) Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J Nutr Biochem 23(2):192–201

    Article  CAS  PubMed  Google Scholar 

  67. Peixoto-Neves D, Silva-Alves KS, Gomes MD, Lima FC, Lahlou S, Magalhães PJ, Ceccatto VM, Coelho-de-Souza AN, Leal-Cardoso JH (2010) Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta. Fundam Clin Pharmacol 24:341–350

    Article  CAS  PubMed  Google Scholar 

  68. Van Den Broucke CO, Lemli JA (1980) Antispasmodic activity of Origanum compactum. Planta Med 38:317–331

    Article  Google Scholar 

  69. Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H (2010) Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J Lipid Res 51:132–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Guimarães AG, Xavier MA, de Santana MT, Camargo EA, Santos CA, Brito FA, Barreto EO, Cavalcanti SC, Antoniolli ÂR, Oliveira RC, Quintans-Júnior LJ (2012) Carvacrol attenuates mechanical hypernociception and inflammatory response. N-S Arch Pharmacol 385:253–263

    Article  CAS  Google Scholar 

  71. Jayakumar S, Madankumar A, Asokkumar S, Raghunandhakumar S, Kamaraj S, Divya MG, Devaki T (2012) Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol Cell Biochem 360:51–60

    Article  CAS  PubMed  Google Scholar 

  72. Karkabounas S, Kostoula OK, Daskalou T, Veltsistas P, Karamouzis M, Zelovitis I, Metsios A, Lekkas P, Evangelou AM, Kotsis N, Skoufos I (2006) Anticarcinogenic and antiplatelet effects of carvacrol. Exp Oncol 28:121–125

    CAS  PubMed  Google Scholar 

  73. Hosseinkhani F, Jabalameli F, Banar M, Abdellahi N, Taherikalani M, Leeuwen WB, Emaneini M (2016) Monoterpene isolated from the essential oil of Trachyspermum ammi is cytotoxic to multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus strains. Rev Soc Bras Med Trop 49:172–176

    Article  PubMed  Google Scholar 

  74. Moein MR, Zomorodian K, Pakshir K, Yavari F, Motamedi M, Zarshenas MM (2015) Trachyspermumammi (L.) sprague: Chemical composition of essential oil and antimicrobial activities of respective fractions. Evid Based Complement Altern 20:50–56

    Article  Google Scholar 

  75. Kedia A, Prakash B, Mishra PK, Dwivedy AK, Dubey NK (2015) Trachyspermumammi L. essential oil as plant based preservative in food system. Ind Crop Prod 69:104–109

    Article  CAS  Google Scholar 

  76. Shukla AC, Dikshit A (2011) Role of phylogenetic analysis for anti-bacterial activity of essential oil of Trachyspermum ammi L. against water borne pathogens. Adv Environ Biol 5:1271–1278

    Google Scholar 

  77. Chatterjee S, Goswami N, Kothari N (2013) Evaluation of antioxidant activity of essential oil from Ajwain (Trachyspermum ammi) seeds. Int J Green Pharm 7:140–144

    Article  Google Scholar 

  78. Vitali LA, Beghelli D, Nya PC, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F, Petrelli D (2016) Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab J Chem 9:775–786

    Article  CAS  Google Scholar 

  79. Hagan EC, Hansen WH, Fitzhugh OG, Jenner PM, Jones WI, Taylor JM, Long EL, Nelson AA, Brouwer JB (1967) Food flavourings and compounds of related structure. II. Subacute and chronic toxicity. Food Chem Toxicol 5:141–157

    Article  CAS  Google Scholar 

  80. Andersen A (2006) Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int J Toxicol 25:29

    Article  CAS  PubMed  Google Scholar 

  81. Llana-Ruiz-Cabello M, Gutiérrez-Praena D, Pichardo S, Moreno FJ, Bermúdez JM, Aucejo S, Cameán AM (2014) Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem Toxicol 64:281–290

    Article  CAS  PubMed  Google Scholar 

  82. Monzote L, Stamberg W, Staniek K, Gille L (2009) Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodiumambrosioides on mitochondria. Toxicol Appl Pharmacol 240:337–347

    Article  CAS  PubMed  Google Scholar 

  83. Günes-Bayir A, Kocyigit A, Güler EM, Bilgin MG, Ergün İS, Dadak A (2018) Effects of carvacrol on human fibroblast (WS-1) and gastric adenocarcinoma (AGS) cells in vitro and on Wistar rats in vivo. Mol Cell Biochem 448:237–249

    Article  PubMed  CAS  Google Scholar 

  84. Yeh JH, Chou CT, Chen IS, Lu T, Lin KL, Yu CC, Liang WZ, Chang HT, Kuo CC, Ho CM, Chang WT (2017) Effect of thymol on Ca 2+ homeostasis and viability in PC3 human prostate cancer cells. Chin J Physiol 60:32–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Asif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Asif, H.M., Hashmi, H.A.S. (2021). Bioactive Compounds of Ajwain (Trachyspermum ammi [L.] Sprague). In: Murthy, H.N., Paek, K.Y. (eds) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-57415-4_16

Download citation

Publish with us

Policies and ethics