Skip to main content

Advertisement

Log in

The Cytotoxic Effects of Thymol as the Major Component of Trachyspermum ammi on Breast Cancer (MCF-7) Cells

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Natural phenolic compounds have inhibition effects on various malignancies. Thymol is one of these compounds present in several plant sources such as ajowan (Trachyspermum ammi) fruits. In this study, thymol was evaluated for its potential cytotoxic activity as well as its effect on apoptotic gene expression in breast cancer cell line. We used the GC-MS technique to identify the essential oil constituents of ajowan. MCF-7 cells were treated by various concentrations of thymol and half maximum inhibitory concentration (IC50) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, morphological alterations and changes of P21, P53 and Mcl-1 gene expression in MCF-7 cells were investigated by microscopic examination and real-time RT-PCR assay. Data from MTT assay indicated that the IC50 values of thymol on MCF-7 cells for 48 h and 72 h were 54 and 62 μg/mL, respectively. Furthermore, this compound significantly affected gene expressions of P53 and P21, but not Mcl-1. Thymol can induce the apoptosis process in MCF-7, and hence it can be considered an anticancer agent in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. C. E. DeSantis, J. Ma, A. Goding Sauer, et al., CA. Cancer J. Clin., 67, 439 (2017).

    Article  PubMed  Google Scholar 

  2. N. T. Telang, G. Li, M. Katdare, et al., Oncol. Lett., 13, 2477 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. S. Aldaghi, H. R. Seresht, and H. Cheshomi, J. Sabzevar Univ. Med. Sci., 23, 353 (2016).

    Google Scholar 

  4. W. Tan, J. Lu, M. Huang, et al., Chin. Med., 6, 27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. Hostanska, G. Jürgenliemk, G. Abel, et al., Cancer Detect. Prev., 31, 129 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. J.-Q. Yu, Y. Yin, J.-C. Lei, et al., Cancer Epidemiol., 36, e40 (2012).

    Article  PubMed  Google Scholar 

  7. S. I. Balbaa, S. H. Hilal, and M. Y. Haggag, Planta Med., 23, 312 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. B. Ranjan, S. Manmohan, S. R. Singh, and R. B. Singh, Pharma Res., 5, 247 (2011).

    Google Scholar 

  9. A. Mohagheghzadeh, P. Faridi, and Y. Ghasemi, Food Chem., 100, 1217 (2007).

    Article  CAS  Google Scholar 

  10. A. A. Qureshi and K. K. Eswar, Plant Arch., 10, 955 (2010).

    Google Scholar 

  11. S. N. Garg and S. Kumar, Fitoterapia, 69, 511 (1998).

    CAS  Google Scholar 

  12. T. Ishikawa, Y. Sega, and J. Kitajima, Chem. Pharm. Bull., 49, 840 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. M. M. Zarshenas, S. M. Samani, P. Petramfar, and M. Moein, Pharmacogn. Res., 6, 62 (2014).

    Article  CAS  Google Scholar 

  14. A. Özkan and A. Erdoðan, Turkish J. Biol., 35, 735 (2011).

    Google Scholar 

  15. A. Stammati, P. Bonsi, F. Zucco, et al., Food Chem. Toxicol., 37, 813 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. D. Slamenova, E. Horvathova, M. Sramkova, and L. Marsalkova, Neoplasma, 54, 108 (2007).

    CAS  PubMed  Google Scholar 

  17. A. Jaafari, H. A. Mouse, E. M. Rakib, et al., Rev. Bras. Farmacogn., 17, 477 (2007).

    Article  CAS  Google Scholar 

  18. S. R. Gedara, Mansoura J. Pharm. Sci., 24, 133 (2008).

    CAS  Google Scholar 

  19. C. Hirobe, Z.-S. Qiao, K. Takeya, and H. Itokawa, Nat. Med., 52, 74 (1998).

    CAS  Google Scholar 

  20. D. Hanahan and R. A. Weinberg, CrossRef PubMed Google Scholar (n.d.).

  21. S. K. Singh, S. Banerjee, E. P. Acosta, et al., Oncotarget, 8, 17216 (2017).

  22. G. Pistritto, D. Trisciuoglio, C. Ceci, et al., Aging (Albany NY), 8, 603 (2016).

    Article  CAS  Google Scholar 

  23. A. Brehm, E. A. Miska, D. J. McCance, et al., Nature, 391, 597 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. H. Hermeking, C. Lengauer, K. Polyak, et al., Mol. Cell, 1, 3 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Wang, T. Romigh, X. He, et al., Hum. Mol. Genet., 19, 4319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Xiao, P. Nimmer, G. S. Sheppard, et al., Mol. Cancer Ther., 14(8), 183 (2015).

    Article  CAS  Google Scholar 

  27. H. Cheshomi, L. S. Aldaghi, and H. R. Seresht, J. Biomed, 1, e6623 (2016).

    Article  Google Scholar 

  28. T.-M. Li, G.-W. Chen, C.-C. Su, et al., Anticancer Res., 25, 971 (2005).

    PubMed  Google Scholar 

  29. A. Ozkan and A. Erdogan, Nat. Prod. Commun., 7, 1557 (2012).

    CAS  PubMed  Google Scholar 

  30. D. D. Deb, G. Parimala, S. S. Devi, and T. Chakraborty, Chem. Biol. Interact., 193, 97 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. R. M. Abed, Al-Mustansiriyah J. Sci., 22, 41 (2011).

    Google Scholar 

  32. Y. Li, J. Wen, C. Du, et al., Biochem. Biophys. Res. Commun., 491, 530 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. E. Aydýn, H. Turkez, S. Tasdemir, and F. Hacýmuftuoglu, Cent. Nerv. Syst. Agents Med. Chem. (Formerly: Curr. Med. Chem. Nerv. Syst. Agents), 17, 116 (2017).

  34. M. Llana-Ruiz-Cabello, D. Gutiérrez-Praena, S. Pichardo, et al., Food Chem. Toxicol., 64, 281 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Z. Han, W. Wei, S. Dunaway, et al., J. Biol. Chem., 277, 17154 (2002).

  36. B.-D. Chang, M. E. Swift, M. Shen, et al., Proc. Natl. Acad. Sci., 99, 389 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. H. Gali-Muhtasib, R. Hmadi, M. Kareh, et al., Apoptosis, 20, 1531 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. O. Gholami, M. Jeddi-Tehrani, M. Iranshahi, et al., Iran. J. Pharm. Res., 13, 1387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Z. Kafi, H. Cheshomi, and O. Gholami, Dose-Response, 16, 1559325818796014 (2018).

  40. T. Abbas and A. Dutta, Nat. Rev. Cancer, 9, 400 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O. Coqueret, Trends Cell Biol., 13, 65 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. L. Esposito, P. Indovina, F. Magnotti, et al., Curr. Pharm. Des., 19, 5327 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of Sabzevar University of Medical Sciences to provide this wonderful opportunity and good facilities to carry out this study.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Cheshomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seresht, H.R., Albadry, B.J., Al-mosawi, A.K.M. et al. The Cytotoxic Effects of Thymol as the Major Component of Trachyspermum ammi on Breast Cancer (MCF-7) Cells. Pharm Chem J 53, 101–107 (2019). https://doi.org/10.1007/s11094-019-01961-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-019-01961-w

Keywords

Navigation