Skip to main content

Metabolic Regulation: Insulin Secretion and Action

  • Chapter
  • First Online:
5-HT2B Receptors

Part of the book series: The Receptors ((REC,volume 35))

  • 385 Accesses

Abstract

The physiological functions of peripheral serotonin (5-hydroxytryptamine, 5-HT) has been highlighted recently, in its role in regulating energy metabolism in various metabolic organs. 5-HT exerts its biological action through its binding to 5-HT receptor (HTR) in target tissues. Of the 14 HTRs identified to date, HTR2B plays a pivotal role in regulating glucose and lipid metabolism in pancreatic β-cells, adipocytes, and hepatocytes. HTR2B has been shown to regulate insulin secretion and cell proliferation in pancreatic β-cells, to promote lipolysis in adipocytes, and to regulate gluconeogenesis and glucose uptake in hepatocytes. This chapter describes the physiological roles of HTR2B and the molecular mechanism underlying its regulation of energy metabolism in various peripheral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAT:

Brown adipose tissue

FFAs:

Free fatty acids

HTR:

5-HT receptor

5-HTP:

5-Hydroxytryptophan

JAK2:

Janus kinase 2

KO:

Knockout

AMS:

α-Methyl serotonin maleate

(MEK)1/2:

Mitogen-activated protein kinase kinase

PI3K:

Phosphoinositide 3-kinase

PRLR:

Prolactin receptor

5-HT:

5-hydroxytryptamine

STAT5:

Signal transducer and activator of transcription 5

TPH1:

Tryptophan hydroxylase-1

UCP1:

Uncoupling protein 1

WAT:

White adipose tissue

References

  1. Porte D Jr (1991) Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes 40(2):166–180

    Article  Google Scholar 

  2. Gylfe E (1978) Association between 5-hydroxytryptamine release and insulin secretion. J Endocrinol 78(2):239–248

    Article  CAS  Google Scholar 

  3. Ekholm R, Ericson LE, Lundquist I (1971) Monoamines in the pancreatic islets of the mouse. Subcellular localization of 5-hydroxytryptamine by electron microscopic autoradiography. Diabetologia 7(5):339–348

    Article  CAS  Google Scholar 

  4. Goyvaerts L, Schraenen A, Schuit F (2016) Serotonin competence of mouse beta cells during pregnancy. Diabetologia 59(7):1356–1363

    Article  CAS  Google Scholar 

  5. Chen H, Kleinberger JW, Takane KK, Salim F, Fiaschi-Taesch N, Pappas K et al (2015) Augmented Stat5 signaling bypasses multiple impediments to lactogen-mediated proliferation in human beta-cells. Diabetes 64(11):3784–3797

    Article  CAS  Google Scholar 

  6. Blodgett DM, Nowosielska A, Afik S, Pechhold S, Cura AJ, Kennedy NJ et al (2015) Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64(9):3172–3181

    Article  CAS  Google Scholar 

  7. Bennet H, Balhuizen A, Medina A, Dekker Nitert M, Ottosson Laakso E, Essen S et al (2015) Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides 71:113–120

    Article  CAS  Google Scholar 

  8. Almaca J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V et al (2016) Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep 17(12):3281–3291

    Article  CAS  Google Scholar 

  9. Ohta Y, Kosaka Y, Kishimoto N, Wang J, Smith SB, Honig G et al (2011) Convergence of the insulin and serotonin programs in the pancreatic beta-cell. Diabetes 60(12):3208–3216

    Article  CAS  Google Scholar 

  10. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H et al (2010) Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 16(7):804–808

    Article  CAS  Google Scholar 

  11. Lechin F, Coll-Garcia E, Van Der Dijs B, Pena F, Bentolila A, Rivas C (1975) The effect of serotonin (5-HT) on insulin secretion. Acta Physiol Lat Am 25(4):339–346

    CAS  PubMed  Google Scholar 

  12. Peschke E, Peschke D, Hammer T, Csernus V (1997) Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J Pineal Res 23(3):156–163

    Article  CAS  Google Scholar 

  13. Lindstrom P, Sehlin J (1983) Mechanisms underlying the effects of 5-hydroxytryptamine and 5-hydroxytryptophan in pancreatic islets. A proposed role for L-aromatic amino acid decarboxylase. Endocrinology 112(4):1524–1529

    Article  CAS  Google Scholar 

  14. Lernmark A (1971) The significance of 5-hydroxytryptamine for insulin secretion in the mouse. Horm Metab Res 3(5):305–309

    Article  CAS  Google Scholar 

  15. Pontiroli AE, Micossi P, Foa PP (1978) Effects of serotonin, of its biosynthetic precursors and of the anti-serotonin agent metergoline on the release of glucagon and insulin from rat pancreas. Horm Metab Res 10(3):200–203

    Article  CAS  Google Scholar 

  16. Pulido OM, Bencosme SA, de Bold ML, de Bold AJ (1978) Intracellular pancreatic B cell serotonin and the dynamics of insulin release. Diabetologia 15(3):197–204

    Article  CAS  Google Scholar 

  17. Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M et al (2009) Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol 7(10):e1000229

    Article  Google Scholar 

  18. Ohara-Imaizumi M, Kim H, Yoshida M, Fujiwara T, Aoyagi K, Toyofuku Y et al (2013) Serotonin regulates glucose-stimulated insulin secretion from pancreatic beta cells during pregnancy. Proc Natl Acad Sci U S A 110(48):19420–19425

    Article  CAS  Google Scholar 

  19. Kim K, Oh CM, Ohara-Imaizumi M, Park S, Namkung J, Yadav VK et al (2015) Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state. Endocrinology 156(2):444–452

    Article  Google Scholar 

  20. Estevao MS, Carvalho LC, Ribeiro D, Couto D, Freitas M, Gomes A et al (2010) Antioxidant activity of unexplored indole derivatives: synthesis and screening. Eur J Med Chem 45(11):4869–4878

    Article  CAS  Google Scholar 

  21. Moon JH, Kim H, Kim H, Park J, Choi W, Choi W et al (2020) Lactation improves pancreatic β cell mass and function through serotonin production. Sci Transl Med 12:eaay0455

    Google Scholar 

  22. Kim YG, Moon JH, Kim K, Kim H, Kim J, Jeong JS et al (2017) Beta-cell serotonin production is associated with female sex, old age, and diabetes-free condition. Biochem Biophys Res Commun 493(3):1197–1203

    Article  CAS  Google Scholar 

  23. Zhang Y, Deng R, Yang X, Xu W, Liu Y, Li F et al (2017) Glucose potentiates beta-cell function by inducing Tph1 expression in rat islets. FASEB J 31(12):5342–5355

    Article  CAS  Google Scholar 

  24. Bennet H, Mollet IG, Balhuizen A, Medina A, Nagorny C, Bagge A et al (2016) Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans. Diabetologia 59(4):744–754

    Article  CAS  Google Scholar 

  25. Schraenen A, Lemaire K, de Faudeur G, Hendrickx N, Granvik M, Van Lommel L et al (2010) Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy. Diabetologia 53(12):2589–2599

    Article  CAS  Google Scholar 

  26. Iida H, Ogihara T, Min MK, Hara A, Kim YG, Fujimaki K et al (2015) Expression mechanism of tryptophan hydroxylase 1 in mouse islets during pregnancy. J Mol Endocrinol 55(1):41–53

    Article  CAS  Google Scholar 

  27. Moon JH, Kim YG, Kim K, Osonoi S, Wang S, Saunders DC et al (2019) Serotonin regulates adult β cell mass by stimulating perinatal β cell proliferation. Diabetes 69(2):205–214

    Article  Google Scholar 

  28. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853

    Article  CAS  Google Scholar 

  29. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376

    Article  CAS  Google Scholar 

  30. Zechner R, Madeo F, Kratky D (2017) Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 18(11):671–684

    Article  CAS  Google Scholar 

  31. Sidossis L, Kajimura S (2015) Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest 125(2):478–486

    Article  Google Scholar 

  32. Stock K, Westermann EO (1963) Concentration of norepinephrine, serotonin, and histamine, and of amine-metabolizing enzymes in mammalian adipose tissue. J Lipid Res 4:297–304

    Article  CAS  Google Scholar 

  33. Stunes AK, Reseland JE, Hauso O, Kidd M, Tommeras K, Waldum HL et al (2011) Adipocytes express a functional system for serotonin synthesis, reuptake and receptor activation. Diabetes Obes Metab 13(6):551–558

    Article  CAS  Google Scholar 

  34. Crane JD, Palanivel R, Mottillo EP, Bujak AL, Wang H, Ford RJ et al (2015) Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med 21(2):166–172

    Article  CAS  Google Scholar 

  35. Oh CM, Namkung J, Go Y, Shong KE, Kim K, Kim H et al (2015) Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun 6:6794

    Article  CAS  Google Scholar 

  36. Rozenblit-Susan S, Chapnik N, Froy O (2018) Serotonin prevents differentiation into brown adipocytes and induces transdifferentiation into white adipocytes. Int J Obes 42(4):704–710

    Article  CAS  Google Scholar 

  37. Choi W, Namkung J, Hwang I, Kim H, Lim A, Park HJ et al (2018) Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nat Commun 9(1):4824

    Article  Google Scholar 

  38. Sumara G, Sumara O, Kim JK, Karsenty G (2012) Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metab 16(5):588–600

    Article  CAS  Google Scholar 

  39. Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W et al (2006) Platelet-derived serotonin mediates liver regeneration. Science 312(5770):104–107

    Article  CAS  Google Scholar 

  40. Osawa Y, Kanamori H, Seki E, Hoshi M, Ohtaki H, Yasuda Y et al (2011) L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J Biol Chem 286(40):34800–34808

    Article  CAS  Google Scholar 

  41. Niture S, Gyamfi MA, Kedir H, Arthur E, Ressom H, Deep G et al (2018) Serotonin induced hepatic steatosis is associated with modulation of autophagy and notch signaling pathway. Cell Commun Signal 16(1):78

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hail Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, W., Moon, J.H., Kim, H. (2021). Metabolic Regulation: Insulin Secretion and Action. In: Maroteaux, L., Monassier, L. (eds) 5-HT2B Receptors. The Receptors, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-55920-5_15

Download citation

Publish with us

Policies and ethics