Skip to main content

Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Abstract

Psychiatric and neurodegenerative disorders such as schizophrenia (SCZ), Parkinson’s disease (PD), and Alzheimer’s disease (AD) continue to grow around the world with a high impact on health, social, and economic outcomes for the patient and society. Despite efforts, the etiology and pathophysiology of these disorders remain unclear. Omics technologies have contributed to the understanding of the molecular mechanisms that underlie these complex disorders and have suggested novel potential targets for treatment and diagnostics. Here, we have highlighted the unique and common pathways shared between SCZ, PD, and AD and highlight the main proteomic findings over the last 5 years using in vitro models, postmortem brain samples, and cerebrospinal fluid (CSF) or blood of patients. These studies have identified possible therapeutic targets and disease biomarkers. Further studies including target validation, the use of large sample sizes, and the integration of omics findings with bioinformatics tools are required to provide a better comprehension of pharmacological targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kori M, Aydın B, Unal S, Arga KY, Kazan D (2016) Metabolic biomarkers and neurodegeneration: a pathway enrichment analysis of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. OMICS 20:645–661

    Article  CAS  PubMed  Google Scholar 

  2. van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    Article  PubMed  CAS  Google Scholar 

  3. Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D (2017) The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci 11:493. https://doi.org/10.3389/fnins.2017.00493

    Article  PubMed  PubMed Central  Google Scholar 

  4. Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, de Candia P et al (2016) Role of metabolism in neurodegenerative disorders. Metabolism 65:1376–1390

    Article  CAS  PubMed  Google Scholar 

  5. Szatmari B, Balicza P, Nemeth G, Molnar MJ (2019) The Panomics approach in neurodegenerative disorders. Curr Med Chem 26:1712–1720

    Article  CAS  PubMed  Google Scholar 

  6. Krause JE, Chenard BL (2008) Opportunities and challenges in the discovery of new central nervous system drugs. Ann N Y Acad Sci 1144:243–250

    Article  CAS  PubMed  Google Scholar 

  7. Van der Schyf CJ (2016) Psychotropic drug development strategies that target neuropsychiatric etiologies in Alzheimer’s and Parkinson’s diseases. Drug Dev Res 77:458–468

    Article  PubMed  CAS  Google Scholar 

  8. Hutson PH, Clark JA, Cross AJ (2017) CNS target identification and validation: avoiding the valley of death or naive optimism? Annu Rev Pharmacol Toxicol 57:171–187

    Article  CAS  PubMed  Google Scholar 

  9. de Lange ECM, van den Brink W, Yamamoto Y, de Witte WEA, Wong YC (2017) Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 12:1207–1218

    Article  PubMed  CAS  Google Scholar 

  10. Dumas M-E, Davidovic L (2015) Metabolic profiling and phenotyping of central nervous system diseases: metabolites bring insights into brain dysfunctions. J Neuroimmune Pharmacol 10:402–424

    Article  PubMed  Google Scholar 

  11. Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang K, Huang C, Nice E (2014) Recent advances in proteomics: towards the human proteome. Biomed Chromatogr 28:848–857

    Article  CAS  PubMed  Google Scholar 

  13. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  14. Kelleher NL (2004) Top-down proteomics. Anal Chem 76:197A–203A

    Article  PubMed  Google Scholar 

  15. Yu D, Wang Z, Cupp-Sutton KA, Liu X, Wu S (2019) Deep intact proteoform characterization in human cell lysate using high-pH and low-pH reversed-phase liquid chromatography. J Am Soc Mass Spectrom 30:2502–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cupp-Sutton KA, Wu S (2020) High-throughput quantitative top-down proteomics. Mol Omics 16:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Wang W, Chen J (2017) Recent progress in mass spectrometry proteomics for biomedical research. Sci China Life Sci 60:1093–1113

    Article  CAS  PubMed  Google Scholar 

  18. Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hood L, Perlmutter RM (2004) The impact of systems approaches on biological problems in drug discovery. Nat Biotechnol 22:1215–1217

    Article  CAS  PubMed  Google Scholar 

  20. Köcher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4:807–815

    Article  PubMed  CAS  Google Scholar 

  21. Tanoli Z, Alam Z, Vähä-Koskela M, Ravikumar B, Malyutina A, Jaiswal A et al (2018) Drug target commons 2.0: a community platform for systematic analysis of drug-target interaction profiles. Database 2018:1–13. https://doi.org/10.1093/database/bay083

    Article  CAS  PubMed  Google Scholar 

  22. Matthews H, Hanison J, Nirmalan N (2016) “Omics”-Informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes 4(3):28. https://doi.org/10.3390/proteomes4030028

    Article  PubMed Central  Google Scholar 

  23. Lindsay MA (2003) Target discovery. Nat Rev Drug Discov 2:831–838

    Article  CAS  PubMed  Google Scholar 

  24. Cisek K, Krochmal M, Klein J, Mischak H (2016) The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant 31:2003–2011

    Article  PubMed  Google Scholar 

  25. Jin L, Zuo XY, Su WY, Zhao XL, Yuan MQ, Han LZ et al (2014) Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinform 12:210–220

    Article  Google Scholar 

  26. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kitchen RR, Rozowsky JS, Gerstein MB, Nairn AC (2014) Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci 17:1491–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iritani S (2013) What happens in the brain of schizophrenia patients? An investigation from the viewpoint of neuropathology. Nagoya J Med Sci 75:11–28

    PubMed  PubMed Central  Google Scholar 

  29. Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN et al (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43:978–986

    Article  PubMed  Google Scholar 

  30. Cassoli JS, Guest PC, Malchow B, Schmitt A, Falkai P, Martins-de-Souza D (2015) Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ Schizophr 1:15034. https://doi.org/10.1038/npjschz.2015.34

    Article  PubMed  PubMed Central  Google Scholar 

  31. English JA, Pennington K, Dunn MJ, Cotter DR (2011) The neuroproteomics of schizophrenia. Biol Psychiatry 69:163–172

    Article  CAS  PubMed  Google Scholar 

  32. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E et al (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:151–163

    Article  PubMed  Google Scholar 

  33. Martins-de-Souza D (2010) Proteome and transcriptome analysis suggests oligodendrocyte dysfunction in schizophrenia. J Psychiatr Res 44:149–156

    Article  PubMed  Google Scholar 

  34. Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Nascimento JM, Martins-de-Souza D (2015) Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. Eur Arch Psychiatry Clin Neurosci 265:601–612

    Article  PubMed  Google Scholar 

  35. Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Martins-de-Souza D (2016) Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients. Schizophr Res 177:70–77

    Article  PubMed  Google Scholar 

  36. Reis-de-Oliveira G, Zuccoli GS, Fioramonte M, Schimitt A, Falkai P, Almeida V et al (2020) Digging deeper in the proteome of different regions from schizophrenia brains. J Proteome 223:103814. https://doi.org/10.1016/j.jprot.2020.103814. Online ahead of print

    Article  CAS  Google Scholar 

  37. Pinacho R, Villalmanzo N, Meana JJ, Ferrer I, Berengueras A, Haro JM et al (2016) Altered CSNK1E, FABP4 and NEFH protein levels in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 177:88–97

    Article  PubMed  Google Scholar 

  38. Barakauskas VE, Moradian A, Barr AM, Beasley CL, Rosoklija G, Mann JJ et al (2016) Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia. Schizophr Res 177:44–51

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res 167:64–72

    Article  PubMed  Google Scholar 

  40. Velásquez E, Nogueira FCS, Velásquez I, Schmitt A, Falkai P, Domont GB et al (2017) Synaptosomal proteome of the orbitofrontal cortex from schizophrenia patients using quantitative label-free and iTRAQ-based shotgun proteomics. J Proteome Res 16:4481–4494

    Article  PubMed  CAS  Google Scholar 

  41. Föcking M, Lopez LM, English JA, Dicker P, Wolff A, Brindley E et al (2015) Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psychiatry 20:424–432

    Article  PubMed  CAS  Google Scholar 

  42. Saia-Cereda VM, Santana AG, Schmitt A, Falkai P, Martins-de-Souza D (2017) The nuclear proteome of white and gray matter from schizophrenia postmortem brains. Mol Neuropsychiatry 3:37–52

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV et al (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13:609–616

    Article  CAS  PubMed  Google Scholar 

  44. Rollins B, Martin MV, Morgan L, Vawter MP (2010) Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 153B:919–936

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma RP, Grayson DR, Gavin DP (2008) Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res 98:111–117

    Article  PubMed  Google Scholar 

  46. Yoshimi A, Yamada S, Kunimoto S, Aleksic B, Hirakawa A, Ohashi M et al (2019) Proteomic analysis of lymphoblastoid cell lines from schizophrenic patients. Transl Psychiatry 9(1):126. https://doi.org/10.1038/s41398-019-0461-2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cooper JD, Ozcan S, Gardner RM, Rustogi N, Wicks S, van Rees GF et al (2017) Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Transl Psychiatry 7(12):1290. https://doi.org/10.1038/s41398-017-0027-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Knöchel C, Kniep J, Cooper JD, Stäblein M, Wenzler S, Sarlon J et al (2017) Altered apolipoprotein C expression in association with cognition impairments and hippocampus volume in schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 267:199–212

    Article  PubMed  Google Scholar 

  49. Tiihonen J, Koskuvi M, Storvik M, Hyötyläinen I, Gao Y, Puttonen KA et al (2019) Sex-specific transcriptional and proteomic signatures in schizophrenia. Nat Commun 10(1):3933. https://doi.org/10.1038/s41467-019-11797-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124:901–905

    Article  PubMed  Google Scholar 

  51. de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  52. Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399. https://doi.org/10.1101/cshperspect.a009399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen C, Turnbull DM, Reeve AK (2019) Mitochondrial dysfunction in Parkinson’s disease-cause or consequence? Biology 8(2):38. https://doi.org/10.3390/biology8020038

    Article  CAS  PubMed Central  Google Scholar 

  54. Laperle AH, Sances S, Yucer N, Dardov VJ, Garcia VJ, Ho R et al (2020) iPSC modeling of young-onset Parkinson’s disease reveals a molecular signature of disease and novel therapeutic candidates. Nat Med 26:289–299

    Article  CAS  PubMed  Google Scholar 

  55. Zhang P, Park H-J, Zhang J, Junn E, Andrews RJ, Velagapudi SP et al (2020) Translation of the intrinsically disordered protein α-synuclein is inhibited by a small molecule targeting its structured mRNA. Proc Natl Acad Sci U S A 117:1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI et al (2018) Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson's disease. Sci Data 5:180036. https://doi.org/10.1038/sdata.2018.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taguchi YV, Gorenberg EL, Nagy M, Thrasher D, Fenton WA, Volpicelli-Daley L et al (2019) Hsp110 mitigates α-synuclein pathology in vivo. Proc Natl Acad Sci U S A 116:24310–24316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML, Rodrigues M, Baev AY et al (2018) α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 9:2293. https://doi.org/10.1038/s41467-018-04422-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Donega V, Burm SM, van Strien ME, van Bodegraven EJ, Paliukhovich I, Geut H et al (2019) Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson’s disease. Acta Neuropathol Commun 7:84. https://doi.org/10.1186/s40478-019-0736-0

    Article  PubMed  Google Scholar 

  60. Posavi M, Diaz-Ortiz M, Liu B, Swanson CR, Skrinak RT, Hernandez-Con P et al (2019) Characterization of Parkinson’s disease using blood-based biomarkers: A multicohort proteomic analysis. PLoS Med 16:e1002931. https://doi.org/10.1371/journal.pmed.1002931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boerger M, Funke S, Leha A, Roser A-E, Wuestemann A-K, Maass F et al (2019) Proteomic analysis of tear fluid reveals disease-specific patterns in patients with Parkinson’s disease—a pilot study. Parkinsonism Relat Disord 63:3–9

    Article  PubMed  Google Scholar 

  62. Ciregia F, Urbani A, Palmisano G (2017) Extracellular vesicles in brain tumors and neurodegenerative diseases. Front Mol Neurosci 10:276. https://doi.org/10.3389/fnmol.2017.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang R, Rong C, Ke R, Meng S, Yan X, Ke H et al (2019) Differential proteomic analysis of serum exosomes reveals alterations in progression of Parkinson disease. Medicine 98:e17478. https://doi.org/10.1097/MD.0000000000017478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Welander H, Bontha SV, Näsström T, Karlsson M, Nikolajeff F, Danzer K et al (2011) Gelsolin co-occurs with Lewy bodies in vivo and accelerates α-synuclein aggregation in vitro. Biochem Biophys Res Commun 412(1):32–38

    Article  CAS  PubMed  Google Scholar 

  65. Zhu S, Wuolikainen A, Wu J, Öhman A, Wingsle G, Moritz T et al (2019) Targeted multiple reaction monitoring analysis of CSF identifies UCHL1 and GPNMB as candidate biomarkers for ALS. J Mol Neurosci 69:643–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hales CM, Dammer EB, Deng Q, Duong DM, Gearing M, Troncoso JC et al (2016) Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer’s disease progression. Proteomics 16:3042–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johnson ECB, Dammer EB, Duong DM, Yin L, Thambisetty M, Troncoso JC et al (2018) Deep proteomic network analysis of Alzheimer’s disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Mol Neurodegener 13:52. https://doi.org/10.1186/s13024-018-0282-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baldacci F, Toschi N, Lista S, Zetterberg H, Blennow K, Kilimann I et al (2017) Two-level diagnostic classification using cerebrospinal fluid YKL-40 in Alzheimer’s disease. Alzheimers Dement 13:993–1003

    Article  PubMed  Google Scholar 

  69. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684

    Article  CAS  PubMed  Google Scholar 

  70. Baldacci F, Lista S, Cavedo E, Bonuccelli U, Hampel H (2017) Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer’s disease and other neurodegenerative diseases. Expert Rev Proteomics 14:285–299

    Article  CAS  PubMed  Google Scholar 

  71. Zetterberg H, Skillbäck T, Mattsson N, Trojanowski JQ, Portelius E, Shaw LM et al (2016) Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA Neurol 73:60–67

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lista S, Toschi N, Baldacci F, Zetterberg H, Blennow K, Kilimann I et al (2017) Diagnostic accuracy of CSF neurofilament light chain protein in the biomarker-guided classification system for Alzheimer’s disease. Neurochem Int 108:355–360

    Article  CAS  PubMed  Google Scholar 

  73. Lista S, Hampel H (2017) Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev Neurother 17:47–57

    Article  CAS  PubMed  Google Scholar 

  74. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  CAS  PubMed  Google Scholar 

  75. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  CAS  PubMed  Google Scholar 

  76. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977

    Article  CAS  PubMed  Google Scholar 

  77. Poirier J, Bertrand P, Poirier J, Kogan S, Gauthier S, Poirier J et al (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342:697–699

    Article  CAS  PubMed  Google Scholar 

  78. de la Monte SM, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88:548–559

    Article  PubMed  CAS  Google Scholar 

  79. de la Monte SM (2019) The full spectrum of Alzheimer’s disease is rooted in metabolic derangements that drive type 3 diabetes. Adv Exp Med Biol 1128:45–83

    Article  PubMed  CAS  Google Scholar 

  80. Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663

    Article  CAS  PubMed  Google Scholar 

  81. Ferreira D, Wahlund L-O, Westman E (2018) The heterogeneity within Alzheimer’s disease. Aging 10:3058–3060

    Article  PubMed  PubMed Central  Google Scholar 

  82. Portelius E, Mattsson N, Andreasson U, Blennow K, Zetterberg H (2011) Novel aβ isoforms in Alzheimer’s disease—their role in diagnosis and treatment. Curr Pharm Des 17:2594–2602

    Article  CAS  PubMed  Google Scholar 

  83. Pannee J, Portelius E, Oppermann M, Atkins A, Hornshaw M, Zegers I et al (2013) A selected reaction monitoring (SRM)-based method for absolute quantification of Aβ38, Aβ40, and Aβ42 in cerebrospinal fluid of Alzheimer’s disease patients and healthy controls. J Alzheimers Dis 33:1021–1032

    Article  CAS  PubMed  Google Scholar 

  84. Han SH, Kim JS, Lee Y, Choi H, Kim JW, Na DL et al (2014) Both targeted mass spectrometry and flow sorting analysis methods detected the decreased serum apolipoprotein E level in Alzheimer’s disease patients. Mol Cell Proteomics 13:407–419

    Article  CAS  PubMed  Google Scholar 

  85. Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C, Janelidze S et al (2019) Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol Commun 7:169. https://doi.org/10.1186/s40478-019-0795-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM, Yin L et al (2017) A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst 4:60–72.e4

    Article  CAS  PubMed  Google Scholar 

  87. Trushina E, Dutta T, Persson X-MT, Mielke MM, Petersen RC (2013) Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS One 8:e63644. https://doi.org/10.1371/journal.pone.0063644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L et al (2020) Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 26:769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rund BR (2009) Is schizophrenia a neurodegenerative disorder? Nord J Psychiatry 63:196–201

    Article  PubMed  Google Scholar 

  90. Rao J, Chiappelli J, Kochunov P, Regenold WT, Rapoport SI, Hong LE (2015) Is schizophrenia a neurodegenerative disease? Evidence from age-related decline of brain-derived neurotrophic factor in the brains of schizophrenia patients and matched nonpsychiatric controls. Neurodegener Dis 15:3844

    Article  Google Scholar 

  91. Lieberman JA (1999) Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 46:729–739

    Article  CAS  PubMed  Google Scholar 

  92. Novellino F, Saccà V, Donato A, Zaffino P, Spadea MF, Vismara M et al (2020) Innate immunity: a common denominator between neurodegenerative and neuropsychiatric diseases. Int J Mol Sci 21. https://doi.org/10.3390/ijms21031115

  93. Arora A, Somasundaram K (2019) Targeted proteomics comes to the benchside and the bedside: is it ready for us? BioEssays 41:e1800042. https://doi.org/10.1002/bies.201800042

    Article  PubMed  Google Scholar 

  94. Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C Jr (2018) Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: a viewpoint from the biosimilar industry. J Pharm Biomed Anal 161:214–238

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Bradley Smith, MSc, for critical comments and English review support during the process.

Conflict of Interest The authors declare no conflict of interest.

Funding AA is supported by the Coordination for the Improvement of Higher Education Personnel (CAPES/BRAZIL, grant number 465412/2014-9 – INBioN). VA, FC, VCC, and DMS are supported by the São Paulo Research Foundation (FAPESP, grant numbers 2017/18242-1, 2019/22398-2, 2019/05155-9, 2018/03673-0, and 2017/25588-1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antunes, A.S.L.M., de Almeida, V., Crunfli, F., Carregari, V.C., Martins-de-Souza, D. (2021). Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders. In: Guest, P.C. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1286. Springer, Cham. https://doi.org/10.1007/978-3-030-55035-6_17

Download citation

Publish with us

Policies and ethics