Skip to main content
Log in

Recent progress in mass spectrometry proteomics for biomedical research

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Proteins are the key players in many cellular processes. Their composition, trafficking, and interactions underlie the dynamic processes of life. Furthermore, diseases are frequently accompanied by malfunction of proteins at multiple levels. Understanding how biological processes are regulated at the protein level is critically important to understanding the molecular basis for diseases and often shed light on disease prevention, diagnosis, and treatment. With rapid advances in mass spectrometry (MS) instruments and experimental methodologies, MS-based proteomics has become a reliable and essential tool for elucidating biological processes at the protein level. Over the past decade, we have witnessed great expansion of knowledge of human diseases with the application of MS-based proteomic technologies, which has led to many exciting discoveries. Herein we review the recent progress in MS-based proteomics in biomedical research, including that in establishing disease-related proteomes and interactomes. We also discuss how this progress will benefit biomedical research and clinical diagnosis and treatment of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdi, F., Quinn, J.F., Jankovic, J., McIntosh, M., Leverenz, J.B., Peskind, E., Nixon, R., Nutt, J., Chung, K., Zabetian, C., Samii, A., Lin, M., Hattan, S., Pan, C., Wang, Y., Jin, J., Zhu, D., Li, G.J., Liu, Y., Waichunas, D., Montine, T.J., and Zhang, J. (2006). Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9, 293–348.

    Article  CAS  PubMed  Google Scholar 

  • Adachi, J., Kumar, C., Zhang, Y., Olsen, J.V., and Mann, M. (2006). The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7, R80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adam, G.C., Sorensen, E.J., and Cravatt, B.F. (2002). Chemical strategies for functional proteomics. Mol Cell Proteomics 1, 781–790.

    Article  CAS  PubMed  Google Scholar 

  • Aebersold, R., Bader, G.D., Edwards, A.M., van Eyk, J.E., Kussmann, M., Qin, J., and Omenn, G.S. (2013). The biology/disease-driven human proteome project (B/D-HPP): enabling protein research for the life sciences community. J Proteome Res 12, 23–27.

    Article  CAS  PubMed  Google Scholar 

  • Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  CAS  PubMed  Google Scholar 

  • Aebersold, R., and Mann, M. (2016). Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Afjehi-Sadat, L., and Garcia, B.A. (2013). Comprehending dynamic protein methylation with mass spectrometry. Curr Opin Chem Biol 17, 12–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aichler, M., and Walch, A. (2015). MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest 95, 422–431.

    Article  CAS  PubMed  Google Scholar 

  • Alfaro, J.A., Sinha, A., Kislinger, T., and Boutros, P.C. (2014). Onco-proteogenomics: cancer proteomics joins forces with genomics. Nat Meth 11, 1107–1113.

    Article  CAS  Google Scholar 

  • Altelaar, A.F.M., Frese, C.K., Preisinger, C., Hennrich, M.L., Schram, A.W., Timmers, H.T.M., Heck, A.J.R., and Mohammed, S. (2013a). Benchmarking stable isotope labeling based quantitative proteomics. J Proteomics 88, 14–26.

    Article  CAS  PubMed  Google Scholar 

  • Altelaar, A.F.M., Munoz, J., and Heck, A.J.R. (2013b). Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14, 35–48.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, J.S., Lyon, C.E., Fox, A.H., Leung, A.K.L., Lam, Y.W., Steen, H., Mann, M., and Lamond, A.I. (2002). Directed proteomic analysis of the human nucleolus. Curr Biol 12, 1–11.

    Article  PubMed  Google Scholar 

  • Anderson, N.L., and Anderson, N.G. (2002). The human plasma proteome. Mol Cell Proteomics 1, 845–867.

    Article  CAS  PubMed  Google Scholar 

  • Andreev, V.P., Petyuk, V.A., Brewer, H.M., Karpievitch, Y.V., Xie, F., Clarke, J., Camp, D., Smith, R.D., Lieberman, A.P., Albin, R.L., Nawaz, Z., El Hokayem, J., and Myers, A.J. (2012). Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res 11, 3053–3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck, M., Schmidt, A., Malmstroem, J., Claassen, M., Ori, A., Szymborska, A., Herzog, F., Rinner, O., Ellenberg, J., and Aebersold, R. (2011). The quantitative proteome of a human cell line. Mol Syst Biol 7, 549–549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Behrends, C., Sowa, M.E., Gygi, S.P., and Harper, J.W. (2010). Network organization of the human autophagy system. Nature 466, 68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beli, P., Lukashchuk, N., Wagner, S.A., Weinert, B.T., Olsen, J.V., Baskcomb, L., Mann, M., Jackson, S.P., and Choudhary, C. (2012). Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46, 212–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, G., Hey, T., and Szalay, A. (2009). Computer science. Beyond the data deluge. Science 323, 1297–1298.

    CAS  PubMed  Google Scholar 

  • Bennetzen, M.V., Larsen, D.H., Bunkenborg, J., Bartek, J., Lukas, J., and Andersen, J.S. (2010). Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensimon, A., Schmidt, A., Ziv, Y., Elkon, R., Wang, S.Y., Chen, D.J., Aebersold, R., and Shiloh, Y. (2010). ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 3, rs3–rs3.

  • Berggård, T., Linse, S., and James, P. (2007). Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833–2842.

    Article  PubMed  CAS  Google Scholar 

  • Biesecker, L.G., and Green, R.C. (2014). Diagnostic clinical genome and exome sequencing. N Engl J Med 370, 2418–2425.

    Article  PubMed  CAS  Google Scholar 

  • Blagoev, B., Kratchmarova, I., Ong, S.E., Nielsen, M., Foster, L.J., and Mann, M. (2003). A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21, 315–318.

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.M., Schirle, M., Schlegl, J., Schwab, M., Stein, M.A., Bauer, A., Casari, G., Drewes, G., Gavin, A.C., Jackson, D.B., Joberty, G., Neubauer, G., Rick, J., Kuster, B., and Superti-Furga, G. (2004). A physical and functional map of the human TNF-a/NF-κB signal transduction pathway. Nat Cell Biol 6, 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Branca, R.M.M., Orre, L.M., Johansson, H.J., Granholm, V., Huss, M., Pérez-Bercoff, Å., Forshed, J., Käll, L., and Lehtiö, J. (2014). HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat Meth 11, 59–62.

    Article  CAS  Google Scholar 

  • Braun, P., Cusick, M.E., and Vidal, M. (2006). QUICKstep and GS-TAP: new moves for protein-interaction analysis. Nat Meth 3, 975–976.

    Article  CAS  Google Scholar 

  • Brunet, S., Thibault, P., Gagnon, E., Kearney, P., Bergeron, J.J., and Desjardins, M. (2003). Organelle proteomics: looking at less to see more. Trends Cell Biol 13, 629–638.

    Article  CAS  PubMed  Google Scholar 

  • Caprioli, R.M., Farmer, T.B., and Gile, J. (1997). Molecular imaging of biological samples: localization of peptides and proteins using MALDITOF MS. Anal Chem 69, 4751–4760.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, J.D., Goodlett, D.R., and Masselon, C.D. (2014). Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spec Rev 33, 452–470.

    Article  CAS  Google Scholar 

  • Chen, M., Ying, W., Song, Y., Liu, X., Yang, B., Wu, S., Jiang, Y., Cai, Y., He, F., and Qian, X. (2007). Analysis of human liver proteome using replicate shotgun strategy. Proteomics 7, 2479–2488.

    Article  CAS  PubMed  Google Scholar 

  • Cherniack, A.D., Shen, H., Walter, V., Stewart, C., Murray, B.A., Bowlby, R., Hu, X., Ling, S., Soslow, R.A., Broaddus, R.R., Zuna, R.E., Robertson, G., Laird, P.W., Kucherlapati, R., Mills, G.B., Weinstein, J.N., Zhang, J., Akbani, R., Levine, D.A., Akbani, R., Ally, A., Auman, J.T., Balasundaram, M., Balu, S., Baylin, S.B., Beroukhim, R., Bodenheimer, T., Bogomolniy, F., Boice, L., Bootwalla, M.S., Bowen, J., Bowlby, R., Broaddus, R., Brooks, D., Carlsen, R., Cherniack, A.D., Cho, J., Chuah, E., Chudamani, S., Cibulskis, K., Cline, M., Dao, F., David, M., Demchok, J.A., Dhalla, N., Dowdy, S., Felau, I., Ferguson, M.L., Frazer, S., Frick, J., Gabriel, S., Gastier-Foster, J.M., Gehlenborg, N., Gerken, M., Getz, G., Gupta, M., Haussler, D., Hayes, D.N., Heiman, D.I., Hess, J., Hoadley, K.A., Hoffmann, R., Holt, R.A., Hoyle, A.P., Hu, X., Huang, M., Hutter, C.M., Jefferys, S.R., Jones, S.J.M., Jones, C.D., Kanchi, R.S., Kandoth, C., Kasaian, K., Kerr, S., Kim, J., Lai, P.H., Laird, P.W., Lander, E., Lawrence, M.S., Lee, D., Leraas, K.M., Leshchiner, I., Levine, D.A., Lichtenberg, T.M., Lin, P., Ling, S., Liu, J., Liu, W., Liu, Y., Lolla, L., Lu, Y., Ma, Y., Maglinte, D.T., Marra, M.A., Mayo, M., Meng, S., Meyerson, M., Mieczkowski, P.A., Mills, G.B., Moore, R.A., Mose, L.E., Mungall, A.J., Mungall, K., Murray, B.A., Naresh, R., Noble, M.S., Olvera, N., Parker, J.S., Perou, C.M., Perou, A.H., Pihl, T., Radenbaugh, A.J., Ramirez, N.C., Rathmell, W.K., Roach, J., Robertson, A.G., Sadeghi, S., Saksena, G., Salvesen, H.B., Schein, J.E., Schumacher, S.E., Shen, H., Sheth, M., Shi, Y., Shih, J., Simons, J.V., Sipahimalani, P., Skelly, T., Sofia, H.J., Soloway, M.G., Soslow, R.A., Sougnez, C., Stewart, C., Sun, C., Tam, A., Tan, D., Tarnuzzer, R., Thiessen, N., Thorne, L.B., Tse, K., Tseng, J., Van Den Berg, D.J., Veluvolu, U., Verhaak, R.G.W., Voet, D., von Bismarck, A., Walter, V., Wan, Y., Wang, Z., Wang, C., Weinstein, J.N., Weisenberger, D.J., Wilkerson, M.D., Winterhoff, B., Wise, L., Wong, T., Wu, Y., Yang, L., Zenklusen, J.C., Zhang, J.J., Zhang, H., Zhang, W., Zhu, J., Zmuda, E., and Zuna, R.E. (2017). Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell 31, 411–423.

    Article  CAS  PubMed  Google Scholar 

  • Chinese-Human-Liver-Proteome-Profiling-Consortium, (2010). First insight into the human liver proteome from PROTEOMESKY-LIVERHu 1.0, a publicly available database. J Proteome Res 9, 79–94.

    Article  CAS  Google Scholar 

  • Choe, L., D’Ascenzo, M., Relkin, N.R., Pappin, D., Ross, P., Williamson, B., Guertin, S., Pribil, P., and Lee, K.H. (2007). 8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7, 3651–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, H., Larsen, B., Lin, Z.Y., Breitkreutz, A., Mellacheruvu, D., Fermin, D., Qin, Z.S., Tyers, M., Gingras, A.C., and Nesvizhskii, A.I. (2011). SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Meth 8, 70–73.

    Article  CAS  Google Scholar 

  • Collins, B.C., Gillet, L.C., Rosenberger, G., Röst, H.L., Vichalkovski, A., Gstaiger, M., and Aebersold, R. (2013). Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14–3-3 system. Nat Meth 10, 1246–1253.

    Article  CAS  Google Scholar 

  • Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornett, D.S., Reyzer, M.L., Chaurand, P., and Caprioli, R.M. (2007). MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Meth 4, 828–833.

    Article  CAS  Google Scholar 

  • Couzens, A.L., Knight, J.D.R., Kean, M.J., Teo, G., Weiss, A., Dunham, W.H., Lin, Z.Y., Bagshaw, R.D., Sicheri, F., Pawson, T., Wrana, J.L., Choi, H., and Gingras, A.C. (2013). Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 6, rs15–rs15.

  • de la Cuesta, F., Mourino-Alvarez, L., Baldan-Martin, M., Moreno-Luna, R., and Barderas, M.G. (2015). Contribution of proteomics to the management of vascular disorders. Transl Proteomics 7, 3–14.

    Article  CAS  Google Scholar 

  • Cui, Z., Yoshida, Y., Xu, B., Zhang, Y., Nameta, M., Magdeldin, S., Makiguchi, T., Ikoma, T., Fujinaka, H., Yaoita, E., and Yamamoto, T. (2013). Profiling and annotation of human kidney glomerulus proteome. Proteome Sci 11, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvai, M., Loehr, J., Jacquet, K., Huard, C.C., Roques, C., Herst, P., Côté, J., and Doyon, Y. (2015). A scalable genome-editing-based approach for mapping multiprotein complexes in human cells. Cell Rep 13, 621–633.

    Article  CAS  PubMed  Google Scholar 

  • Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn, K., Hochstrasser, D.F., Burkhard, P.R., and Sanchez, J.C. (2008). Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80, 2921–2931.

    Article  CAS  PubMed  Google Scholar 

  • Deeb, S.J., D’Souza, R.C.J., Cox, J., Schmidt-Supprian, M., and Mann, M. (2012). Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics 11, 77–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson, D.J., Ward, J.D., Reiner, D.J., and Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Meth 10, 1028–1034.

    Article  CAS  Google Scholar 

  • Ding, C., Jiang, J., Wei, J., Liu, W., Zhang, W., Liu, M., Fu, T., Lu, T., Song, L., Ying, W., Chang, C., Zhang, Y., Ma, J., Wei, L., Malovannaya, A., Jia, L., Zhen, B., Wang, Y., He, F., Qian, X., and Qin, J. (2013). A fast workflow for identification and quantification of proteomes. Mol Cell Proteomics 12, 2370–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan, L.E., Higginbotham, L., Dammer, E.B., Gearing, M., Rees, H.D., Xia, Q., Duong, D.M., Seyfried, N.T., Lah, J.J., and Levey, A.I. (2012). Analysis of a membrane-enriched proteome from postmortem human brain tissue in Alzheimer’s disease. Prot Clin Appl 6, 201–211.

    Article  CAS  Google Scholar 

  • Elia, A.E.H., Boardman, A.P., Wang, D.C., Huttlin, E.L., Everley, R.A., Dephoure, N., Zhou, C., Koren, I., Gygi, S.P., and Elledge, S.J. (2015). Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell 59, 867–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everley, R.A., Kunz, R.C., McAllister, F.E., and Gygi, S.P. (2013). Increasing throughput in targeted proteomics assays: 54-plex quantitation in a single mass spectrometry run. Anal Chem 85, 5340–5346.

    Article  CAS  PubMed  Google Scholar 

  • Ewing, R.M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., McBroom-Cerajewski, L., Robinson, M.D., O’Connor, L., Li, M., Taylor, R., Dharsee, M., Ho, Y., Heilbut, A., Moore, L., Zhang, S., Ornatsky, O., Bukhman, Y.V., Ethier, M., Sheng, Y., Vasilescu, J., Abu-Farha, M., Lambert, J.P., Duewel, H.S., Stewart, I.I., Kuehl, B., Hogue, K., Colwill, K., Gladwish, K., Muskat, B., Kinach, R., Adams, S.L., Moran, M.F., Morin, G.B., Topaloglou, T., and Figeys, D. (2007). Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3, 89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farrah, T., Deutsch, E.W., Omenn, G.S., Campbell, D.S., Sun, Z., Bletz, J.A., Mallick, P., Katz, J.E., Malmström, J., Ossola, R., Watts, J.D., Lin, B., Zhang, H., Moritz, R.L., and Aebersold, R. (2011). A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol Cell Proteomics 10, M110.006353.

  • Feng, L., Huang, J., and Chen, J. (2009). MERIT40 facilitates BRCA1 localization and DNA damage repair. Genes Dev 23, 719–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, A., Alaggio, R., Meazza, C., Chiaravalli, S., Vajna de Pava, M., Casanova, M., Cavaliere, E., and Bisogno, G. (2013). Fibroblastic tumors of intermediate malignancy in childhood. Expert Rev Anticancer Ther 13, 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi, T.K.B., Zhong, J., Mathivanan, S., Karthick, L., Chandrika, K.N., Mohan, S.S., Sharma, S., Pinkert, S., Nagaraju, S., Periaswamy, B., Mishra, G., Nandakumar, K., Shen, B., Deshpande, N., Nayak, R., Sarker, M., Boeke, J.D., Parmigiani, G., Schultz, J., Bader, J.S., and Pandey, A. (2006). Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38, 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Gaucher, S.P., Taylor, S.W., Fahy, E., Zhang, B., Warnock, D.E., Ghosh, S.S., and Gibson, B.W. (2004). Expanded coverage of the human heart mitochondrial proteome using multidimensional liquid chromatography coupled with tandem mass spectrometry. J Proteome Res 3, 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Gavin, A.C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Geiger, T., Cox, J., Ostasiewicz, P., Wisniewski, J.R., and Mann, M. (2010). Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Meth 7, 383–385.

    Article  CAS  Google Scholar 

  • Geiger, T., Wehner, A., Schaab, C., Cox, J., and Mann, M. (2012). Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11, M111.014050.

  • Geiger, T., Wisniewski, J.R., Cox, J., Zanivan, S., Kruger, M., Ishihama, Y., and Mann, M. (2011). Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6, 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Geyer, P.E., Wewer Albrechtsen, N.J., Tyanova, S., Grassl, N., Iepsen, E.W., Lundgren, J., Madsbad, S., Holst, J.J., Torekov, S.S., and Mann, M. (2016). Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol 12, 901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gholami, A.M., Hahne, H., Wu, Z., Auer, F.J., Meng, C., Wilhelm, M., and Kuster, B. (2013). Global proteome analysis of the NCI-60 cell line panel. Cell Rep 4, 609–620.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, T.J., Seiler, M., and Veitia, R.A. (2013). The transience of transient overexpression. Nat Meth 10, 715–721.

    Article  CAS  Google Scholar 

  • Gillet, L.C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner, R., and Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11, O111.016717.

  • Gingras, A.C., Gstaiger, M., Raught, B., and Aebersold, R. (2007). Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8, 645–654.

    Article  CAS  PubMed  Google Scholar 

  • Glatter, T., Schittenhelm, R.B., Rinner, O., Roguska, K., Wepf, A., Jünger, M.A., Köhler, K., Jevtov, I., Choi, H., Schmidt, A., Nesvizhskii, A.I., Stocker, H., Hafen, E., Aebersold, R., and Gstaiger, M. (2011). Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome. Mol Syst Biol 7, 547–547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Güntert, A., Campbell, J., Saleem, M., O’Brien, D.P., Thompson, A.J., Byers, H.L., Ward, M.A., and Lovestone, S. (2010). Plasma gelsolin is decreased and correlates with rate of decline in Alzheimer’s disease. J Alzheimers Dis 21, 585–596.

    Article  PubMed  CAS  Google Scholar 

  • Harsha, H.C., and Pandey, A. (2010). Phosphoproteomics in cancer. Mol Oncol 4, 482–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harsha, H.C., Pinto, S.M., and Pandey, A. (2013). Proteomic strategies to characterize signaling pathways. Methods Mol Biol 1007, 359–377.

    Article  CAS  PubMed  Google Scholar 

  • Hauri, S., Wepf, A., van Drogen, A., Varjosalo, M., Tapon, N., Aebersold, R., and Gstaiger, M. (2013). Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1. Mol Syst Biol 9, 713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Havugimana, P.C., Hart, G.T., Nepusz, T., Yang, H., Turinsky, A.L., Li, Z., Wang, P.I., Boutz, D.R., Fong, V., Phanse, S., Babu, M., Craig, S.A., Hu, P., Wan, C., Vlasblom, J., Dar, V.N., Bezginov, A., Clark, G.W., Wu, G.C., Wodak, S.J., Tillier, E.R.M., Paccanaro, A., Marcotte, E.M., and Emili, A. (2012). A census of human soluble protein complexes. Cell 150, 1068–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, F. (2005). Human liver proteome project. Mol Cell Proteomics 4, 1841–1848.

    Article  CAS  PubMed  Google Scholar 

  • Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F., Hyman, A.A., and Mann, M. (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723.

    Article  CAS  PubMed  Google Scholar 

  • Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sørensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W.V., Figeys, D., and Tyers, M. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, C.H., Hsu, C.W., Hsueh, C., Wang, C.L., Wu, Y.C., Wu, C.C., Liu, C.C., Yu, J.S., Chang, Y.S., and Yu, C.J. (2016). Identification and characterization of potential biomarkers by quantitative tissue proteomics of primary lung adenocarcinoma. Mol Cell Proteomics 15, 2396–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, K.L., Li, S., Mertins, P., Cao, S., Gunawardena, H.P., Ruggles, K.V., Mani, D.R., Clauser, K.R., Tanioka, M., Usary, J., Kavuri, S.M., Xie, L., Yoon, C., Qiao, J.W., Wrobel, J., Wyczalkowski, M.A., Erdmann-Gilmore, P., Snider, J.E., Hoog, J., Singh, P., Niu, B., Guo, Z., Sun, S.Q., Sanati, S., Kawaler, E., Wang, X., Scott, A., Ye, K., McLellan, M.D., Wendl, M.C., Malovannaya, A., Held, J.M., Gillette, M.A., Fenyö, D., Kinsinger, C.R., Mesri, M., Rodriguez, H., Davies, S.R., Perou, C.M., Ma, C., Reid Townsend, R., Chen, X., Carr, S.A., Ellis, M.J., and Ding, L. (2017). Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun 8, 14864.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubner, N.C., Ren, S., and Mann, M. (2008). Peptide separation with immobilized pI strips is an attractive alternative to in-gel protein digestion for proteome analysis. Proteomics 8, 4862–4872.

    Article  CAS  PubMed  Google Scholar 

  • Hudson, T.J., Anderson, W., Aretz, A., Barker, A.D., Bell, C., Bernabé, R.R., Bhan, M.K., Calvo, F., Eerola, I., Gerhard, D.S., Guttmacher, A., Guyer, M., Hemsley, F.M., Jennings, J.L., Kerr, D., Klatt, P., Kolar, P., Kusuda, J., Lane, D.P., Laplace, F., Lu, Y., Nettekoven, G., Ozenberger, B., Peterson, J., Rao, T.S., Remacle, J., Schafer, A.J., Shibata, T., Stratton, M.R., Vockley, J.G., Watanabe, K., Yang, H., Yuen, M.M.F., Knoppers (Leader), B.M., Bobrow, M., Cambon-Thomsen, A., Dressler, L.G., Dyke, S.O.M., Joly, Y., Kato, K., Kennedy, K.L., Nicolás, P., Parker, M.J., Rial-Sebbag, E., Romeo-Casabona, C.M., Shaw, K.M., Wallace, S., Wiesner, G.L., Zeps, N., Lichter (Leader), P., Biankin, A.V., Chabannon, C., Chin, L., Clément, B., de Alava, E., Degos, F., Ferguson, M.L., Geary, P., Hayes, D.N., Hudson, T.J., Johns, A.L., Kasprzyk, A., Nakagawa, H., Penny, R., Piris, M.A., Sarin, R., Scarpa, A., Shibata, T., van de Vijver, M., Futreal (Leader), P.A., Aburatani, H., Bayés, M., Bowtell, D.D.L., Campbell, P.J., Estivill, X., Gerhard, D.S., Grimmond, S.M., Gut, I., Hirst, M., López-Otín, C., Majumder, P., Marra, M., McPherson, J.D., Nakagawa, H., Ning, Z., Puente, X.S., Ruan, Y., Shibata, T., Stratton, M.R., Stunnenberg, H.G., Swerdlow, H., Velculescu, V.E., Wilson, R.K., Xue, H.H., Yang, L., Spellman (Leader), P.T., Bader, G.D., Boutros, P.C., Campbell, P.J., Flicek, P., Getz, G., Guigó, R., Guo, G., Haussler, D., Heath, S., Hubbard, T.J., Jiang, T., Jones, S.M., Li, Q., López-Bigas, N., Luo, R., Muthuswamy, L., Francis Ouellette, B.F., Pearson, J.V., Puente, X.S., Quesada, V., Raphael, B.J., Sander, C., Shibata, T., Speed, T.P., Stein, L.D., Stuart, J.M., Teague, J.W., Totoki, Y., Tsunoda, T., Valencia, A., Wheeler, D.A., Wu, H., Zhao, S., Zhou, G., Stein (Leader), L.D., Guigó, R., Hubbard, T.J., Joly, Y., Jones, S.M., Kasprzyk, A., Lathrop, M., López-Bigas, N., Francis Ouellette, B.F., Spellman, P.T., Teague, J.W., Thomas, G., Valencia, A., Yoshida, T., Kennedy (Leader), K.L., Axton, M., Dyke, S.O.M., Futreal, P.A., Gerhard, D.S., Gunter, C., Guyer, M., Hudson, T.J., McPherson, J.D., Miller, L.J., Ozenberger, B., Shaw, K.M., Kasprzyk (Leader), A., Stein (Leader), L.D., Zhang, J., Haider, S.A., Wang, J., Yung, C.K., Cross, A., Liang, Y., Gnaneshan, S., Guberman, J., Hsu, J., Bobrow (Leader), M., Chalmers, D.R.C., Hasel, K.W., Joly, Y., Kaan, T.S.H., Kennedy, K.L., Knoppers, B.M., Lowrance, W.W., Masui, T., Nicolás, P., Rial-Sebbag, E., Lyman Rodriguez, L., Vergely, C., Yoshida, T., Grimmond (Leader), S.M., Biankin, A.V., Bowtell, D.D.L., Cloonan, N., de Fazio, A., Eshleman, J.R., Etemadmoghadam, D., Gardiner, B.A., Kench, J.G., Scarpa, A., Sutherland, R.L., Tempero, M.A., Waddell, N.J., Wilson, P.J., McPherson (Leader), J.D., Gallinger, S., Tsao, M.S., Shaw, P.A., Petersen, G.M., Mukhopadhyay, D., Chin, L., DePinho, R.A., Thayer, S., Muthuswamy, L., Shazand, K., Beck, T., Sam, M., Timms, L., Ballin, V., Lu (Leader), Y., Ji, J., Zhang, X., Chen, F., Hu, X., Zhou, G., Yang, Q., Tian, G., Zhang, L., Xing, X., Li, X., Zhu, Z., Yu, Y., Yu, J., Yang, H., Lathrop (Leader), M., Tost, J., Brennan, P., Holcatova, I., Zaridze, D., Brazma, A., Egevad, L., Prokhortchouk, E., Elizabeth Banks, R., Uhlén, M., Cambon-Thomsen, A., Viksna, J., Ponten, F., Skryabin, K., Stratton (Leader), M.R., Futreal, P.A., Birney, E., Borg, A., Børresen-Dale, A.L., Caldas, C., Foekens, J.A., Martin, S., Reis-Filho, J.S., Richardson, A.L., Sotiriou, C., Stunnenberg, H.G., Thomas, G., van de Vijver, M., van’t Veer, L., Calvo (Leader), F., Birnbaum, D., Blanche, H., Boucher, P., Boyault, S., Chabannon, C., Gut, I., Masson-Jacquemier, J.D., Lathrop, M., Pauporté, I., Pivot, X., Vincent-Salomon, A., Tabone, E., Theillet, C., Thomas, G., Tost, J., Treilleux, I., Calvo (Leader), F., Bioulac-Sage, P., Clément, B., Decaens, T., Degos, F., Franco, D., Gut, I., Gut, M., Heath, S., Lathrop, M., Samuel, D., Thomas, G., Zucman-Rossi, J., Lichter (Leader), P., Eils (Leader), R., Brors, B., Korbel, J.O., Korshunov, A., Landgraf, P., Lehrach, H., Pfister, S., Radlwimmer, B., Reifenberger, G., Taylor, M.D., von Kalle, C., Majumder (Leader), P.P., Sarin, R., Rao, T.S., Bhan, M.K., Scarpa (Leader), A., Pederzoli, P., Lawlor, R.T., Delledonne, M., Bardelli, A., Biankin, A.V., Grimmond, S.M., Gress, T., Klimstra, D., Zamboni, G., Shibata (Leader), T., Nakamura, Y., Nakagawa, H., Kusuda, J., Tsunoda, T., Miyano, S., Aburatani, H., Kato, K., Fujimoto, A., Yoshida, T., Campo (Leader), E., López-Otín, C., Estivill, X., Guigó, R., de Sanjosé, S., Piris, M.A., Montserrat, E., González-Díaz, M., Puente, X.S., Jares, P., Valencia, A., Himmelbaue, H., Quesada, V., Bea, S., Stratton (Leader), M.R., Futreal, P.A., Campbell, P.J., Vincent-Salomon, A., Richardson, A.L., Reis-Filho, J.S., van de Vijver, M., Thomas, G., Masson-Jacquemier, J.D., Aparicio, S., Borg, A., Børresen-Dale, A.L., Caldas, C., Foekens, J.A., Stunnenberg, H.G., van’t Veer, L., Easton, D.F., Spellman, P.T., Martin, S., Barker, A.D., Chin, L., Collins, F.S., Compton, C.C., Ferguson, M.L., Gerhard, D.S., Getz, G., Gunter, C., Guttmacher, A., Guyer, M., Hayes, D.N., Lander, E.S., Ozenberger, B., Penny, R., Peterson, J., Sander, C., Shaw, K.M., Speed, T.P., Spellman, P.T., Vockley, J.G., Wheeler, D.A., Wilson, R.K., Hudson (Chairperson), T.J., Chin, L., Knoppers, B.M., Lander, E.S., Lichter, P., Stein, L.D., Stratton, M.R., Anderson, W., Barker, A.D., Bell, C., Bobrow, M., Burke, W., Collins, F.S., Compton, C.C., DePinho, R.A., Easton, D.F., Futreal, P.A., Gerhard, D.S., Green, A.R., Guyer, M., Hamilton, S.R., Hubbard, T.J., Kallioniemi, O.P., Kennedy, K.L., Ley, T.J., Liu, E.T., Lu, Y., Majumder, P., Marra, M., Ozenberger, B., Peterson, J., Schafer, A.J., Spellman, P.T., Stunnenberg, H.G., Wainwright, B.J., Wilson, R.K., and Yang, H. (2010). International network of cancer genome projects. Nature 464, 993–998.

    Article  CAS  PubMed  Google Scholar 

  • Huen, M.S.Y., Sy, S.M.H., and Chen, J. (2010). BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11, 138–148.

    Article  CAS  PubMed  Google Scholar 

  • Huttlin, E.L., Ting, L., Bruckner, R.J., Gebreab, F., Gygi, M.P., Szpyt, J., Tam, S., Zarraga, G., Colby, G., Baltier, K., Dong, R., Guarani, V., Vaites, L.P., Ordureau, A., Rad, R., Erickson, B.K., Wühr, M., Chick, J., Zhai, B., Kolippakkam, D., Mintseris, J., Obar, R.A., Harris, T., Artavanis-Tsakonas, S., Sowa, M.E., De Camilli, P., Paulo, J.A., Harper, J.W., and Gygi, S.P. (2015). The BioPlex Network: a systematic exploration of the human interactome. Cell 162, 425–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeronimo, C., Forget, D., Bouchard, A., Li, Q., Chua, G., Poitras, C., Thérien, C., Bergeron, D., Bourassa, S., Greenblatt, J., Chabot, B., Poirier, G.G., Hughes, T.R., Blanchette, M., Price, D.H., and Coulombe, B. (2007). Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27, 262–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, P., Greco, T.M., Guise, A.J., Luo, Y., Yu, F., Nesvizhskii, A.I., and Cristea, I.M. (2013). The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol 9, 672–672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Journet, A., Chapel, A., Kieffer, S., Roux, F., and Garin, J. (2002). Proteomic analysis of human lysosomes: application to monocytic and breast cancer cells. Proteomics 2, 1026–1040.

    Article  CAS  PubMed  Google Scholar 

  • Jung, S.Y., Choi, J.M., Rousseaux, M.W.C., Malovannaya, A., Kim, J.J., Kutzera, J., Wang, Y., Huang, Y., Zhu, W., Maity, S., Zoghbi, H.Y., and Qin, J. (2017). An anatomically resolved mouse brain proteome reveals parkinson disease-relevant pathways. Mol Cell Proteomics 16, 581–593.

    Article  CAS  PubMed  Google Scholar 

  • Kentsis, A., Monigatti, F., Dorff, K., Campagne, F., Bachur, R., and Steen, H. (2009). Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Prot Clin Appl 3, 1052–1061.

    Article  CAS  Google Scholar 

  • Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., Dimmer, E., Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake, J., Leroy, C., Liban, A., Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J., Robbe, K., Roechert, B., Thorneycroft, D., Zhang, Y., Apweiler, R., and Hermjakob, H. (2007). IntAct—open source resource for molecular interaction data. Nucleic Acids Res 35, D561–D565.

    Article  CAS  PubMed  Google Scholar 

  • Kessler, B.M. (2013). Ubiquitin—omics reveals novel networks and associations with human disease. Curr Opin Chem Biol 17, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, T., Hassanein, M., Amann, J.M., Liu, Q., Slebos, R.J.C., Rahman, S.M.J., Kaufman, J.M., Zhang, X., Hoeksema, M.D., Harris, B.K., Li, M., Shyr, Y., Gonzalez, A.L., Zimmerman, L.J., Liebler, D.C., Massion, P.P., and Carbone, D.P. (2012). In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers. Mol Cell Proteomics 11, 916–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H., Chen, J., and Yu, X. (2007). Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202–1205.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, S.S., Chaerkady, R., Madugundu, A.K., Kelkar, D.S., Isserlin, R., Jain, S., Thomas, J.K., Muthusamy, B., Leal-Rojas, P., Kumar, P., Sahasrabuddhe, N.A., Balakrishnan, L., Advani, J., George, B., Renuse, S., Selvan, L.D.N., Patil, A.H., Nanjappa, V., Radhakrishnan, A., Prasad, S., Subbannayya, T., Raju, R., Kumar, M., Sreenivasamurthy, S.K., Marimuthu, A., Sathe, G.J., Chavan, S., Datta, K.K., Subbannayya, Y., Sahu, A., Yelamanchi, S.D., Jayaram, S., Rajagopalan, P., Sharma, J., Murthy, K.R., Syed, N., Goel, R., Khan, A.A., Ahmad, S., Dey, G., Mudgal, K., Chatterjee, A., Huang, T.C., Zhong, J., Wu, X., Shaw, P.G., Freed, D., Zahari, M.S., Mukherjee, K.K., Shankar, S., Mahadevan, A., Lam, H., Mitchell, C.J., Shankar, S.K., Satishchandra, P., Schroeder, J.T., Sirdeshmukh, R., Maitra, A., Leach, S.D., Drake, C.G., Halushka, M.K., Prasad, T.S.K., Hruban, R.H., Kerr, C.L., Bader, G.D., Iacobuzio-Donahue, C.A., Gowda, H., and Pandey, A. (2014). A draft map of the human proteome. Nature 509, 575–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick, D.S., Denison, C., and Gygi, S.P. (2005). Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7, 750–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köcher, T., Pichler, P., Swart, R., and Mechtler, K. (2012). Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat Protoc 7, 882–890.

    Article  PubMed  CAS  Google Scholar 

  • Köcher, T., Swart, R., and Mechtler, K. (2011). Ultra-high-pressure RPLC hyphenated to an LTQ-orbitrap velos reveals a linear relation between peak capacity and number of identified peptides. Anal Chem 83, 2699–2704.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, E., Wu, J., Karl, J., Liao, H., Zolg, W., and Guild, B. (2004). Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 4, 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, Y., Vinayagam, A., Sun, X., Dephoure, N., Gygi, S.P., Hong, P., and Perrimon, N. (2013). The Hippo signaling pathway interactome. Science 342, 737–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert, J.P., Ivosev, G., Couzens, A.L., Larsen, B., Taipale, M., Lin, Z.Y., Zhong, Q., Lindquist, S., Vidal, M., Aebersold, R., Pawson, T., Bonner, R., Tate, S., and Gingras, A.C. (2013). Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Meth 10, 1239–1245.

    Article  CAS  Google Scholar 

  • Lemaire, R., Desmons, A., Tabet, J.C., Day, R., Salzet, M., and Fournier, I. (2007). Direct analysis and MALDI imaging of formalin-fixed, paraffinembedded tissue sections. J Proteome Res 6, 1295–1305.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q.R., Fan, K.X., Li, R.X., Dai, J., Wu, C.C., Zhao, S.L., Wu, J.R., Shieh, C.H., and Zeng, R. (2010). A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine. Rapid Commun Mass Spectrom 24, 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Gao, M., Choi, J.M., Kim, B.J., Zhou, M.T., Chen, Z., Jain, A.N., Jung, S.Y., Yuan, J., Wang, W., Wang, Y., and Chen, J. (2017). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9-coupled affinity purification/mass spectrometry analysis revealed a novel role of neurofibromin in mTOR signaling. Mol Cell Proteomics 16, 594–607.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Tran, K.M., Aziz, K.E., Sorokin, A.V., Chen, J., and Wang, W. (2016). Defining the protein-protein interaction network of the human protein tyrosine phosphatase family. Mol Cell Proteomics 15, 3030–3044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Wang, W., and Chen, J. (2015a). From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry. Proteomics 15, 188–202.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Wang, W., Wang, J., Malovannaya, A., Xi, Y., Li, W., Guerra, R., Hawke, D.H., Qin, J., and Chen, J. (2015b). Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol Syst Biol 11, 775–775.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Wang, W., Xi, Y., Gao, M., Tran, M.K., Aziz, K.E., Qin, J., Li, W., and Chen, J. (2016). FOXR2 Interacts with MYC to promote its transcriptional activities and tumorigenesis. Cell Rep 16, 1–11.

    Article  CAS  Google Scholar 

  • Lim, J., Hao, T., Shaw, C., Patel, A.J., Szabó, G., Rual, J.F., Fisk, C.J., Li, N., Smolyar, A., Hill, D.E., Barabási, A.L., Vidal, M., and Zoghbi, H.Y. (2006). A protein-protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration. Cell 125, 801–814.

    Article  CAS  PubMed  Google Scholar 

  • Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M., and Yates, J.R. (1999). Direct analysis of protein complexes using mass spectrometry.. Nat Biotechnol 17, 676–682.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Wu, J., and Yu, X. (2007). CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol 14, 716–720.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg, E., Fagerberg, L., Klevebring, D., Matic, I., Geiger, T., Cox, J., Algenäs, C., Lundeberg, J., Mann, M., and Uhlen, M. (2010). Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6, 450.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macek, B., Mann, M., and Olsen, J.V. (2009). Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49, 199–221.

    Article  CAS  PubMed  Google Scholar 

  • Magdeldin, S., Hirao, Y., Elguoshy, A., Xu, B., Zhang, Y., Fujinaka, H., Yamamoto, K., Yates Iii, J.R., and Yamamoto, T. (2016). A proteomic glimpse into human ureter proteome. Proteomics 16, 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Mak, A.B., Ni, Z., Hewel, J.A., Chen, G.I., Zhong, G., Karamboulas, K., Blakely, K., Smiley, S., Marcon, E., Roudeva, D., Li, J., Olsen, J.B., Wan, C., Punna, T., Isserlin, R., Chetyrkin, S., Gingras, A.C., Emili, A., Greenblatt, J., and Moffat, J. (2010). A lentiviral functional proteomics approach identifies chromatin remodeling complexes important for the induction of pluripotency. Mol Cell Proteomics 9, 811–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., and Horning, S. (2006a). Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78, 2113–2120.

    Article  CAS  PubMed  Google Scholar 

  • Makarov, A., Denisov, E., Lange, O., and Horning, S. (2006b). Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom 17, 977–982.

    Article  CAS  PubMed  Google Scholar 

  • Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malovannaya, A., Lanz, R.B., Jung, S.Y., Bulynko, Y., Le, N.T., Chan, D.W., Ding, C., Shi, Y., Yucer, N., Krenciute, G., Kim, B.J., Li, C., Chen, R., Li, W., Wang, Y., O’Malley, B.W., and Qin, J. (2011). Analysis of the human endogenous coregulator complexome. Cell 145, 787–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manke, I.A., Lowery, D.M., Nguyen, A., and Yaffe, M.B. (2003). BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636–639.

    Article  CAS  PubMed  Google Scholar 

  • Mann, M., and Kelleher, N.L. (2008). Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci USA 105, 18132–18138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann, M., Kulak, N.A., Nagaraj, N., and Cox, J. (2013). The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49, 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Marimuthu, A., O’Meally, R.N., Chaerkady, R., Subbannayya, Y., Nanjappa, V., Kumar, P., Kelkar, D.S., Pinto, S.M., Sharma, R., Renuse, S., Goel, R., Christopher, R., Delanghe, B., Cole, R.N., Harsha, H.C., and Pandey, A. (2011). A comprehensive map of the human urinary proteome. J Proteome Res 10, 2734–2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins-de-Souza, D., Carvalho, P.C., Schmitt, A., Junqueira, M., Nogueira, F.C.S., Turck, C.W., and Domont, G.B. (2014). Deciphering the human brain proteome: characterization of the anterior temporal lobe and corpus callosum as part of the chromosome 15-centric human proteome project. J Proteome Res 13, 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Martins-de-Souza, D., Gattaz, W.F., Schmitt, A., Rewerts, C., Maccarrone, G., Dias-Neto, E., and Turck, C.W. (2008). Proteome analysis of human dorsolateral prefrontal cortex using shotgun mass spectrometry. J Sep Sci 31, 3122–3126.

    Article  CAS  PubMed  Google Scholar 

  • Martins-de-Souza, D., Maccarrone, G., Reckow, S., Falkai, P., Schmitt, A., and Turck, C.W. (2009). Shotgun mass spectrometry analysis of the human thalamus proteome. J Sep Sci 32, 1231–1236.

    Article  CAS  PubMed  Google Scholar 

  • Martzen, M.R., McCraith, S.M., Spinelli, S.L., Torres, F.M., Fields, S., Grayhack, E.J., and Phizicky, E.M. (1999). A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S.P., and Elledge, S.J. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  • Mears, R., Craven, R.A., Hanrahan, S., Totty, N., Upton, C., Young, S.L., Patel, P., Selby, P.J., and Banks, R.E. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4, 4019–4031.

    Article  CAS  PubMed  Google Scholar 

  • Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., Low, T.Y., Halim, V.A., Bagshaw, R.D., Hubner, N.C., Al-Hakim, A., Bouchard, A., Faubert, D., Fermin, D., Dunham, W.H., Goudreault, M., Lin, Z.Y., Badillo, B.G., Pawson, T., Durocher, D., Coulombe, B., Aebersold, R., Superti-Furga, G., Colinge, J., Heck, A.J.R., Choi, H., Gstaiger, M., Mohammed, S., Cristea, I.M., Bennett, K.L., Washburn, M.P., Raught, B., Ewing, R.M., Gingras, A.C., and Nesvizhskii, A.I. (2013). The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Meth 10, 730–736.

    Article  CAS  Google Scholar 

  • Menche, J., Sharma, A., Kitsak, M., Ghiassian, S.D., Vidal, M., Loscalzo, J., and Barabasi, A.L. (2015). Disease networks. Uncovering diseasedisease relationships through the incomplete interactome. Science 347, 1257601.

    PubMed  Google Scholar 

  • Mertins, P., Mani, D.R., Ruggles, K.V., Gillette, M.A., Clauser, K.R., Wang, P., Wang, X., Qiao, J.W., Cao, S., Petralia, F., Kawaler, E., Mundt, F., Krug, K., Tu, Z., Lei, J.T., Gatza, M.L., Wilkerson, M., Perou, C.M., Yellapantula, V., Huang, K., Lin, C., McLellan, M.D., Yan, P., Davies, S.R., Townsend, R.R., Skates, S.J., Wang, J., Zhang, B., Kinsinger, C.R., Mesri, M., Rodriguez, H., Ding, L., Paulovich, A.G., Fenyö, D., Ellis, M.J., Carr, S.A., and Carr, S.A. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messick, T.E., and Greenberg, R.A. (2009). The ubiquitin landscape at DNA double-strand breaks. J Cell Biol 187, 319–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mischerikow, N., and Heck, A.J.R. (2011). Targeted large-scale analysis of protein acetylation. Proteomics 11, 571–589.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto, M., Yoshida, Y., Taguchi, I., Nagasaka, Y., Tasaki, M., Zhang, Y., Xu, B., Nameta, M., Sezaki, H., Cuellar, L.M., Osawa, T., Morishita, H., Sekiyama, S., Yaoita, E., Kimura, K., and Yamamoto, T. (2007). In-depth proteomic profiling of the normal human kidney glomerulus using twodimensional protein prefractionation in combination with liquid chromatography- tandem mass spectrometry. J Proteome Res 6, 3680–3690.

    Article  CAS  PubMed  Google Scholar 

  • Munoz, J., Low, T.Y., Kok, Y.J., Chin, A., Frese, C.K., Ding, V., Choo, A., and Heck, A.J.R. (2011). The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells. Mol Syst Biol 7, 550–550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy, J.P., Everley, R.A., Coloff, J.L., and Gygi, S.P. (2014). Combining amine metabolomics and quantitative proteomics of cancer cells using derivatization with isobaric tags. Anal Chem 86, 3585–3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musunuri, S., Wetterhall, M., Ingelsson, M., Lannfelt, L., Artemenko, K., Bergquist, J., Kultima, K., and Shevchenko, G. (2014). Quantification of the brain proteome in Alzheimer’s disease using multiplexed mass spectrometry. J Proteome Res 13, 2056–2068.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj, N., and Mann, M. (2011). Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res 10, 637–645.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj, N., Wisniewski, J.R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Pääbo, S., and Mann, M. (2011). Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7, 548–548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanjappa, V., Thomas, J.K., Marimuthu, A., Muthusamy, B., Radhakrishnan, A., Sharma, R., Ahmad Khan, A., Balakrishnan, L., Sahasrabuddhe, N.A., Kumar, S., Jhaveri, B.N., Sheth, K.V., Kumar Khatana, R., Shaw, P.G., Srikanth, S.M., Mathur, P.P., Shankar, S., Nagaraja, D., Christopher, R., Mathivanan, S., Raju, R., Sirdeshmukh, R., Chatterjee, A., Simpson, R.J., Harsha, H.C., Pandey, A., and Prasad, T.S.K. (2014). Plasma Proteome Database as a resource for proteomics research: 2014 update. Nucl Acids Res 42, D959–D965.

    Article  CAS  PubMed  Google Scholar 

  • Nita-Lazar, A., Saito-Benz, H., and White, F.M. (2008). Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 8, 4433–4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ntai, I., LeDuc, R.D., Fellers, R.T., Erdmann-Gilmore, P., Davies, S.R., Rumsey, J., Early, B.P., Thomas, P.M., Li, S., Compton, P.D., Ellis, M.J.C., Ruggles, K.V., Fenyö, D., Boja, E.S., Rodriguez, H., Townsend, R.R., and Kelleher, N.L. (2016). Integrated bottom-up and top-down proteomics of patient-derived breast tumor xenografts. Mol Cell Proteomics 15, 45–56.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell, C.J., and Nabel, E.G. (2011). Genomics of cardiovascular disease. N Engl J Med 365, 2098–2109.

    Article  PubMed  Google Scholar 

  • O’Farrell, P.H. (1975). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–4021.

    PubMed  PubMed Central  Google Scholar 

  • Omenn, G.S., States, D.J., Adamski, M., Blackwell, T.W., Menon, R., Hermjakob, H., Apweiler, R., Haab, B.B., Simpson, R.J., Eddes, J.S., Kapp, E.A., Moritz, R.L., Chan, D.W., Rai, A.J., Admon, A., Aebersold, R., Eng, J., Hancock, W.S., Hefta, S.A., Meyer, H., Paik, Y.K., Yoo, J.S., Ping, P., Pounds, J., Adkins, J., Qian, X., Wang, R., Wasinger, V., Wu, C.Y., Zhao, X., Zeng, R., Archakov, A., Tsugita, A., Beer, I., Pandey, A., Pisano, M., Andrews, P., Tammen, H., Speicher, D.W., and Hanash, S.M. (2005). Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5, 3226–3245.

    Article  CAS  PubMed  Google Scholar 

  • Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–386.

    Article  CAS  PubMed  Google Scholar 

  • Pan, S., Chen, R., Aebersold, R., and Brentnall, T.A. (2011). Mass spectrometry based glycoproteomics—from a proteomics perspective. Mol Cell Proteomics 10, R110 003251.

  • Park, Y.M., Kim, J.Y., Kwon, K.H., Lee, S.K., Kim, Y.H., Kim, S.Y., Park, G.W., Lee, J.H., Lee, B., and Yoo, J.S. (2006). Profiling human brain proteome by multi-dimensional separations coupled with MS. Proteomics 6, 4978–4986.

    Article  CAS  PubMed  Google Scholar 

  • Paulovich, A.G., Billheimer, D., Ham, A.J.L., Vega-Montoto, L., Rudnick, P.A., Tabb, D.L., Wang, P., Blackman, R.K., Bunk, D.M., Cardasis, H.L., Clauser, K.R., Kinsinger, C.R., Schilling, B., Tegeler, T.J., Variyath, A.M., Wang, M., Whiteaker, J.R., Zimmerman, L.J., Fenyo, D., Carr, S.A., Fisher, S.J., Gibson, B.W., Mesri, M., Neubert, T.A., Regnier, F.E., Rodriguez, H., Spiegelman, C., Stein, S.E., Tempst, P., and Liebler, D.C. (2010). Interlaboratory study characterizing a yeast performance standard for benchmarking LC-MS platform performance. Mol Cell Proteomics 9, 242–254.

    Article  CAS  PubMed  Google Scholar 

  • Paweletz, C.P., Charboneau, L., Bichsel, V.E., Simone, N.L., Chen, T., Gillespie, J.W., Emmert-Buck, M.R., Roth, M.J., Petricoin III, E.F., and Liotta, L.A. (2001). Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, A.C., Russell, J.D., Bailey, D.J., Westphall, M.S., and Coon, J.J. (2012). Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11, 1475–1488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., and Liotta, L.A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, T.S., Kandasamy, K., and Pandey, A. (2009). Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol 577, 67–79.

    Article  CAS  PubMed  Google Scholar 

  • Ranish, J.A., Yi, E.C., Leslie, D.M., Purvine, S.O., Goodlett, D.R., Eng, J., and Aebersold, R. (2003). The study of macromolecular complexes by quantitative proteomics. Nat Genet 33, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Rappsilber, J., Ryder, U., Lamond, A.I., and Mann, M. (2002). Large-scale proteomic analysis of the human spliceosome. Genome Res 12, 1231–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Brusniak, M.Y., Hengartner, M.O., and Aebersold, R. (2011). mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Meth 8, 430–435.

    Article  CAS  Google Scholar 

  • Ronci, M., Bonanno, E., Colantoni, A., Pieroni, L., Di Ilio, C., Spagnoli, L.G., Federici, G., and Urbani, A. (2008). Protein unlocking procedures of formalin-fixed paraffin-embedded tissues: application to MALDI-TOF Imaging M Sinvestigations. Proteomics 8, 3702–3714.

    Article  CAS  PubMed  Google Scholar 

  • Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D.J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169.

    Article  CAS  PubMed  Google Scholar 

  • Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., and Vidal, M. (2005). Towards a proteome-scale map of the human protein- protein interaction network. Nature 437, 1173–1178.

    Article  CAS  PubMed  Google Scholar 

  • Sallam, R.M. (2015). Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers 2015, 1–12.

    Article  CAS  Google Scholar 

  • Sardiu, M.E., Cai, Y., Jin, J., Swanson, S.K., Conaway, R.C., Conaway, J.W., Florens, L., and Washburn, M.P. (2008). Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci USA 105, 1454–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk, S., Schoenhals, G.J., de Souza, G., and Mann, M. (2008). A high confidence, manually validated human blood plasma protein reference set. BMC Med Genomics 1, 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmutz, J., Wheeler, J., Grimwood, J., Dickson, M., Yang, J., Caoile, C., Bajorek, E., Black, S., Chan, Y.M., Denys, M., Escobar, J., Flowers, D., Fotopulos, D., Garcia, C., Gomez, M., Gonzales, E., Haydu, L., Lopez, F., Ramirez, L., Retterer, J., Rodriguez, A., Rogers, S., Salazar, A., Tsai, M., and Myers, R.M. (2004). Quality assessment of the human genome sequence. Nature 429, 365–368.

    Article  CAS  PubMed  Google Scholar 

  • Schwamborn, K., and Caprioli, R.M. (2010). Molecular imaging by mass spectrometry—looking beyond classical histology. Nat Rev Cancer 10, 639–646.

    Article  CAS  PubMed  Google Scholar 

  • Selbach, M., and Mann, M. (2006). Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Meth 3, 981–983.

    Article  CAS  Google Scholar 

  • Seshadri, S., Fitzpatrick, A.L., Ikram, M.A., De Stefano, A.L., Gudnason, V., Boada, M., Bis, J.C., Smith, A.V., Carassquillo, M.M., Lambert, J.C., Harold, D., Schrijvers, E.M.C., Ramirez-Lorca, R., Debette, S., Longstreth, W.T., Janssens, A.C.J.W., Pankratz, V.S., Dartigues, J.F., Hollingworth, P., Aspelund, T., Hernandez, I., Beiser, A., Kuller, L.H., Koudstaal, P.J., Dickson, D.W., Tzourio, C., Abraham, R., Antunez, C., Du, Y., Rotter, J.I., Aulchenko, Y.S., Harris, T.B., Petersen, R.C., Berr, C., Owen, M.J., Lopez-Arrieta, J., Varadarajan, B.N., Becker, J.T., Rivadeneira, F., Nalls, M.A., Graff-Radford, N.R., Campion, D., Auerbach, S., Rice, K., Hofman, A., Jonsson, P.V., Schmidt, H., Lathrop, M., Mosley, T.H., Au, R., Psaty, B.M., Uitterlinden, A.G., Farrer, L.A., Lumley, T., Ruiz, A., Williams, J., Amouyel, P., Younkin, S.G., Wolf, P.A., Launer, L.J., Lopez, O.L., van Duijn, C.M., Breteler, M.M.B., Breteler, M.M.B., Breteler, M.M.B., and Breteler, M.M.B. (2010). Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303, 1832–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, G., Patterson-Fortin, J., Messick, T.E., Feng, D., Shanbhag, N., Wang, Y., and Greenberg, R.A. (2009). MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes Dev 23, 740–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, K., Schmitt, S., Bergner, C.G., Tyanova, S., Kannaiyan, N., Manrique-Hoyos, N., Kongi, K., Cantuti, L., Hanisch, U.K., Philips, M.A., Rossner, M.J., Mann, M., and Simons, M. (2015). Cell typeand brain region-resolved mouse brain proteome. Nat Neurosci 18, 1819–1831.

    Article  CAS  PubMed  Google Scholar 

  • Sheynkman, G.M., Shortreed, M.R., Cesnik, A.J., and Smith, L.M. (2016). Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem 9, 521–545.

    Article  Google Scholar 

  • Shi, Y., Xu, P., and Qin, J. (2011). Ubiquitinated proteome: ready for global? Mol Cell Proteomics 10, R110 006882.

  • Sobhian, B., Shao, G., Lilli, D.R., Culhane, A.C., Moreau, L.A., Xia, B., Livingston, D.M., and Greenberg, R.A. (2007). RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowa, M.E., Bennett, E.J., Gygi, S.P., and Harper, J.W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006). BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34, D535–D539.

    Article  CAS  PubMed  Google Scholar 

  • Stasyk, T., and Huber, L.A. (2004). Zooming in: fractionation strategies in proteomics. Proteomics 4, 3704–3716.

    Article  CAS  PubMed  Google Scholar 

  • States, D.J., Omenn, G.S., Blackwell, T.W., Fermin, D., Eng, J., Speicher, D.W., and Hanash, S.M. (2006). Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol 24, 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksöz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., and Wanker, E.E. (2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968.

    Article  CAS  PubMed  Google Scholar 

  • Stoeckli, M., Chaurand, P., Hallahan, D.E., and Caprioli, R.M. (2001). Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7, 493–496.

    Article  CAS  PubMed  Google Scholar 

  • Stokes, M.P., Rush, J., Macneill, J., Ren, J.M., Sprott, K., Nardone, J., Yang, V., Beausoleil, S.A., Gygi, S.P., Livingstone, M., Zhang, H., Polakiewicz, R.D., and Comb, M.J. (2007). Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA 104, 19855–19860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sy, S.M.H., Huen, M.S.Y., and Chen, J. (2009). PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA 106, 7155–7160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabb, D.L., Vega-Montoto, L., Rudnick, P.A., Variyath, A.M., Ham, A.J.L., Bunk, D.M., Kilpatrick, L.E., Billheimer, D.D., Blackman, R.K., Cardasis, H.L., Carr, S.A., Clauser, K.R., Jaffe, J.D., Kowalski, K.A., Neubert, T.A., Regnier, F.E., Schilling, B., Tegeler, T.J., Wang, M., Wang, P., Whiteaker, J.R., Zimmerman, L.J., Fisher, S.J., Gibson, B.W., Kinsinger, C.R., Mesri, M., Rodriguez, H., Stein, S.E., Tempst, P., Paulovich, A.G., Liebler, D.C., and Spiegelman, C. (2010). Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. J Proteome Res 9, 761–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tackett, A.J., DeGrasse, J.A., Sekedat, M.D., Oeffinger, M., Rout, M.P., and Chait, B.T. (2005). I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J Proteome Res 4, 1752–1756.

    Article  CAS  PubMed  Google Scholar 

  • Taipale, M., Tucker, G., Peng, J., Krykbaeva, I., Lin, Z.Y., Larsen, B., Choi, H., Berger, B., Gingras, A.C., and Lindquist, S. (2014). A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158, 434–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, H.T., Lee, Y.H., and Chung, M.C.M. (2012). Cancer proteomics. Mass Spectrom Rev 31, 583–605.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., and Matsuo, T. (1988). Protein and polymer analyses up tom/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2, 151–153.

    Article  CAS  Google Scholar 

  • Taylor, S.W., Fahy, E., Zhang, B., Glenn, G.M., Warnock, D.E., Wiley, S., Murphy, A.N., Gaucher, S.P., Capaldi, R.A., Gibson, B.W., and Ghosh, S.S. (2003). Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21, 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Teo, G., Kim, S., Tsou, C.C., Collins, B., Gingras, A.C., Nesvizhskii, A.I., and Choi, H. (2015). mapDIA: preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. J Proteomics 129, 108–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur, S.S., Geiger, T., Chatterjee, B., Bandilla, P., Fröhlich, F., Cox, J., and Mann, M. (2011). Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol Cell Proteomics 10, M110.003699.

  • Thaysen-Andersen, M., Packer, N.H., and Schulz, B.L. (2016). Maturing glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol Cell Proteomics 15, 1773–1790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLendon, R., Friedman, A., Bigner, D., Van Meir, E.G., Brat, D.J., M. Mastrogianakis, G., Olson, J.J., Mikkelsen, T., Lehman, N., Aldape, K., Alfred Yung, W.K., Bogler, O., VandenBerg, S., Berger, M., Prados, M., Muzny, D., Morgan, M., Scherer, S., Sabo, A., Nazareth, L., Lewis, L., Hall, O., Zhu, Y., Ren, Y., Alvi, O., Yao, J., Hawes, A., Jhangiani, S., Fowler, G., San Lucas, A., Kovar, C., Cree, A., Dinh, H., Santibanez, J., Joshi, V., Gonzalez-Garay, M.L., Miller, C.A., Milosavljevic, A., Donehower, L., Wheeler, D.A., Gibbs, R.A., Cibulskis, K., Sougnez, C., Fennell, T., Mahan, S., Wilkinson, J., Ziaugra, L., Onofrio, R., Bloom, T., Nicol, R., Ardlie, K., Baldwin, J., Gabriel, S., Lander, E.S., Ding, L., Fulton, R.S., McLellan, M.D., Wallis, J., Larson, D.E., Shi, X., Abbott, R., Fulton, L., Chen, K., Koboldt, D.C., Wendl, M.C., Meyer, R., Tang, Y., Lin, L., Osborne, J.R., Dunford-Shore, B.H., Miner, T.L., Delehaunty, K., Markovic, C., Swift, G., Courtney, W., Pohl, C., Abbott, S., Hawkins, A., Leong, S., Haipek, C., Schmidt, H., Wiechert, M., Vickery, T., Scott, S., Dooling, D.J., Chinwalla, A., Weinstock, G.M., Mardis, E.R., Wilson, R.K., Getz, G., Winckler, W., Verhaak, R.G.W., Lawrence, M.S., O’Kelly, M., Robinson, J., Alexe, G., Beroukhim, R., Carter, S., Chiang, D., Gould, J., Gupta, S., Korn, J., Mermel, C., Mesirov, J., Monti, S., Nguyen, H., Parkin, M., Reich, M., Stransky, N., Weir, B.A., Garraway, L., Golub, T., Meyerson, M., Chin, L., Protopopov, A., Zhang, J., Perna, I., Aronson, S., Sathiamoorthy, N., Ren, G., Yao, J., Wiedemeyer, W.R., Kim, H., Won Kong, S., Xiao, Y., Kohane, I.S., Seidman, J., Park, P.J., Kucherlapati, R., Laird, P.W., Cope, L., Herman, J.G., Weisenberger, D.J., Pan, F., Van Den Berg, D., Van Neste, L., Mi Yi, J., Schuebel, K.E., Baylin, S.B., Absher, D.M., Li, J.Z., Southwick, A., Brady, S., Aggarwal, A., Chung, T., Sherlock, G., Brooks, J.D., Myers, R.M., Spellman, P.T., Purdom, E., Jakkula, L.R., Lapuk, A.V., Marr, H., Dorton, S., Gi Choi, Y., Han, J., Ray, A., Wang, V., Durinck, S., Robinson, M., Wang, N.J., Vranizan, K., Peng, V., Van Name, E., Fontenay, G.V., Ngai, J., Conboy, J.G., Parvin, B., Feiler, H.S., Speed, T.P., Gray, J.W., Brennan, C., Socci, N.D., Olshen, A., Taylor, B.S., Lash, A., Schultz, N., Reva, B., Antipin, Y., Stukalov, A., Gross, B., Cerami, E., Qing Wang, W., Qin, L.X., Seshan, V.E., Villafania, L., Cavatore, M., Borsu, L., Viale, A., Gerald, W., Sander, C., Ladanyi, M., Perou, C.M., Neil Hayes, D., Topal, M.D., Hoadley, K.A., Qi, Y., Balu, S., Shi, Y., Wu, J., Penny, R., Bittner, M., Shelton, T., Lenkiewicz, E., Morris, S., Beasley, D., Sanders, S., Kahn, A., Sfeir, R., Chen, J., Nassau, D., Feng, L., Hickey, E., Zhang, J., Weinstein, J.N., Barker, A., Gerhard, D.S., Vockley, J., Compton, C., Vaught, J., Fielding, P., Ferguson, M.L., Schaefer, C., Madhavan, S., Buetow, K.H., Collins, F., Good, P., Guyer, M., Ozenberger, B., Peterson, J., and Thomson, E. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068.

    Article  CAS  Google Scholar 

  • Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D.W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., Godwin, A.K., Gross, J., Hartmann, L., Huang, M., Huntsman, D.G., Iacocca, M., Imielinski, M., Kalloger, S., Karlan, B.Y., Levine, D.A., Mills, G.B., Morrison, C., Mutch, D., Olvera, N., Orsulic, S., Park, K., Petrelli, N., Rabeno, B., Rader, J.S., Sikic, B.I., Smith-McCune, K., Sood, A.K., Bowtell, D., Penny, R., Testa, J.R., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Gunaratne, P., Hawes, A.C., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., Santibanez, J., Reid, J.G., Trevino, L.R., Wu, Y.Q., Wang, M., Muzny, D.M., Wheeler, D.A., Gibbs, R.A., Getz, G., Lawrence, M.S., Cibulskis, K., Sivachenko, A.Y., Sougnez, C., Voet, D., Wilkinson, J., Bloom, T., Ardlie, K., Fennell, T., Baldwin, J., Gabriel, S., Lander, E.S., Ding, L., Fulton, R.S., Koboldt, D.C., McLellan, M.D., Wylie, T., Walker, J., O’Laughlin, M., Dooling, D.J., Fulton, L., Abbott, R., Dees, N.D., Zhang, Q., Kandoth, C., Wendl, M., Schierding, W., Shen, D., Harris, C.C., Schmidt, H., Kalicki, J., Delehaunty, K.D., Fronick, C.C., Demeter, R., Cook, L., Wallis, J.W., Lin, L., Magrini, V.J., Hodges, J.S., Eldred, J.M., Smith, S.M., Pohl, C.S., Vandin, F., Raphael, B.J., Weinstock, G.M., Mardis, E.R., Wilson, R.K., Meyerson, M., Winckler, W., Getz, G., Verhaak, R.G.W., Carter, S.L., Mermel, C.H., Saksena, G., Nguyen, H., Onofrio, R.C., Lawrence, M.S., Hubbard, D., Gupta, S., Crenshaw, A., Ramos, A.H., Ardlie, K., Chin, L., Protopopov, A., Zhang, J., Kim, T.M., Perna, I., Xiao, Y., Zhang, H., Ren, G., Sathiamoorthy, N., Park, R.W., Lee, E., Park, P.J., Kucherlapati, R., Absher, D.M., Waite, L., Sherlock, G., Brooks, J.D., Li, J.Z., Xu, J., Myers, R.M., Laird, P.W., Cope, L., Herman, J.G., Shen, H., Weisenberger, D.J., Noushmehr, H., Pan, F., Triche Jr, T., Berman, B.P., Van Den Berg, D.J., Buckley, J., Baylin, S.B., Spellman, P.T., Purdom, E., Neuvial, P., Bengtsson, H., Jakkula, L.R., Durinck, S., Han, J., Dorton, S., Marr, H., Choi, Y.G., Wang, V., Wang, N.J., Ngai, J., Conboy, J.G., Parvin, B., Feiler, H.S., Speed, T.P., Gray, J.W., Levine, D.A., Socci, N.D., Liang, Y., Taylor, B.S., Schultz, N., Borsu, L., Lash, A.E., Brennan, C., Viale, A., Sander, C., Ladanyi, M., Hoadley, K.A., Meng, S., Du, Y., Shi, Y., Li, L., Turman, Y.J., Zang, D., Helms, E.B., Balu, S., Zhou, X., Wu, J., Topal, M.D., Hayes, D.N., Perou, C.M., Getz, G., Voet, D., Saksena, G., Zhang, J., Zhang, H., Wu, C.J., Shukla, S., Cibulskis, K., Lawrence, M.S., Sivachenko, A., Jing, R., Park, R.W., Liu, Y., Park, P.J., Noble, M., Chin, L., Carter, H., Kim, D., Karchin, R., Spellman, P.T., Purdom, E., Neuvial, P., Bengtsson, H., Durinck, S., Han, J., Korkola, J.E., Heiser, L.M., Cho, R.J., Hu, Z., Parvin, B., Speed, T.P., Gray, J.W., Schultz, N., Cerami, E., Taylor, B.S., Olshen, A., Reva, B., Antipin, Y., Shen, R., Mankoo, P., Sheridan, R., Ciriello, G., Chang, W.K., Bernanke, J.A., Borsu, L., Levine, D.A., Ladanyi, M., Sander, C., Haussler, D., Benz, C.C., Stuart, J.M., Benz, S.C., Sanborn, J.Z., Vaske, C.J., Zhu, J., Szeto, C., Scott, G.K., Yau, C., Hoadley, K.A., Du, Y., Balu, S., Hayes, D.N., Perou, C.M., Wilkerson, M.D., Zhang, N., Akbani, R., Baggerly, K.A., Yung, W.K., Mills, G.B., Weinstein, J.N., Penny, R., Shelton, T., Grimm, D., Hatfield, M., Morris, S., Yena, P., Rhodes, P., Sherman, M., Paulauskis, J., Millis, S., Kahn, A., Greene, J.M., Sfeir, R., Jensen, M.A., Chen, J., Whitmore, J., Alonso, S., Jordan, J., Chu, A., Zhang, J., Barker, A., Compton, C., Eley, G., Ferguson, M., Fielding, P., Gerhard, D.S., Myles, R., Schaefer, C., Mills Shaw, K.R., Vaught, J., Vockley, J.B., Good, P.J., Guyer, M.S., Ozenberger, B., Peterson, J., and Thomson, E. (2011). Integrategenomic analyses of ovarian carcinoma. Nature 474, 609–615.

    Article  CAS  Google Scholar 

  • Koboldt, D.C., Fulton, R.S., McLellan, M.D., Schmidt, H., Kalicki-Veizer, J., McMichael, J.F., Fulton, L.L., Dooling, D.J., Ding, L., Mardis, E.R., Wilson, R.K., Ally, A., Balasundaram, M., Butterfield, Y.S.N., Carlsen, R., Carter, C., Chu, A., Chuah, E., Chun, H.J.E., Coope, R.J.N., Dhalla, N., Guin, R., Hirst, C., Hirst, M., Holt, R.A., Lee, D., Li, H.I., Mayo, M., Moore, R.A., Mungall, A.J., Pleasance, E., Gordon Robertson, A., Schein, J.E., Shafiei, A., Sipahimalani, P., Slobodan, J.R., Stoll, D., Tam, A., Thiessen, N., Varhol, R.J., Wye, N., Zeng, T., Zhao, Y., Birol, I., Jones, S.J.M., Marra, M.A., Cherniack, A.D., Saksena, G., Onofrio, R.C., Pho, N.H., Carter, S.L., Schumacher, S.E., Tabak, B., Hernandez, B., Gentry, J., Nguyen, H., Crenshaw, A., Ardlie, K., Beroukhim, R., Winckler, W., Getz, G., Gabriel, S.B., Meyerson, M., Chin, L., Park, P.J., Kucherlapati, R., Hoadley, K.A., Todd Auman, J., Fan, C., Turman, Y.J., Shi, Y., Li, L., Topal, M.D., He, X., Chao, H.H., Prat, A., Silva, G.O., Iglesia, M.D., Zhao, W., Usary, J., Berg, J.S., Adams, M., Booker, J., Wu, J., Gulabani, A., Bodenheimer, T., Hoyle, A.P., Simons, J.V., Soloway, M.G., Mose, L.E., Jefferys, S.R., Balu, S., Parker, J.S., Neil Hayes, D., Perou, C.M., Malik, S., Mahurkar, S., Shen, H., Weisenberger, D.J., Triche Jr, T., Lai, P.H., Bootwalla, M.S., Maglinte, D.T., Berman, B.P., Van Den Berg, D.J., Baylin, S.B., Laird, P.W., Creighton, C.J., Donehower, L.A., Getz, G., Noble, M., Voet, D., Saksena, G., Gehlenborg, N., DiCara, D., Zhang, J., Zhang, H., Wu, C.J., Yingchun Liu, S., Lawrence, M.S., Zou, L., Sivachenko, A., Lin, P., Stojanov, P., Jing, R., Cho, J., Sinha, R., Park, R.W., Nazaire, M.D., Robinson, J., Thorvaldsdottir, H., Mesirov, J., Park, P.J., Chin, L., Reynolds, S., Kreisberg, R.B., Bernard, B., Bressler, R., Erkkila, T., Lin, J., Thorsson, V., Zhang, W., Shmulevich, I., Ciriello, G., Weinhold, N., Schultz, N., Gao, J., Cerami, E., Gross, B., Jacobsen, A., Sinha, R., Arman Aksoy, B., Antipin, Y., Reva, B., Shen, R., Taylor, B.S., Ladanyi, M., Sander, C., Anur, P., Spellman, P.T., Lu, Y., Liu, W., Verhaak, R.R.G., Mills, G.B., Akbani, R., Zhang, N., Broom, B.M., Casasent, T.D., Wakefield, C., Unruh, A.K., Baggerly, K., Coombes, K., Weinstein, J.N., Haussler, D., Benz, C.C., Stuart, J.M., Benz, S.C., Zhu, J., Szeto, C.C., Scott, G.K., Yau, C., Paull, E.O., Carlin, D., Wong, C., Sokolov, A., Thusberg, J., Mooney, S., Ng, S., Goldstein, T.C., Ellrott, K., Grifford, M., Wilks, C., Ma, S., Craft, B., Yan, C., Hu, Y., Meerzaman, D., Gastier-Foster, J.M., Bowen, J., Ramirez, N.C., Black, A.D., XPATH ERROR: unknown variable "tname"., R.E., White, P., Zmuda, E.J., Frick, J., Lichtenberg, T.M., Brookens, R., George, M.M., Gerken, M.A., Harper, H.A., Leraas, K.M., Wise, L.J., Tabler, T.R., McAllister, C., Barr, T., Hart-Kothari, M., Tarvin, K., Saller, C., Sandusky, G., Mitchell, C., Iacocca, M.V., Brown, J., Rabeno, B., Czerwinski, C., Petrelli, N., Dolzhansky, O., Abramov, M., Voronina, O., Potapova, O., Marks, J.R., Suchorska, W.M., Murawa, D., Kycler, W., Ibbs, M., Korski, K., Spychala, A., Murawa, P., Brzezinski, J.J., Perz, H., Lazniak, R., Teresiak, M., Tatka, H., Leporowska, E., Bogusz-Czerniewicz, M., Malicki, J., Mackiewicz, A., Wiznerowicz, M., Van Le, X., Kohl, B., Viet Tien, N., Thorp, R., Van Bang, N., Sussman, H., Duc Phu, B., Hajek, R., Phi Hung, N., Viet The Phuong, T., Quyet Thang, H., Zaki Khan, K., Penny, R., Mallery, D., Curley, E., Shelton, C., Yena, P., Ingle, J.N., Couch, F.J., Lingle, W.L., King, T.A., Maria Gonzalez-Angulo, A., Mills, G.B., Dyer, M.D., Liu, S., Meng, X., Patangan, M., Waldman, F., Stöppler, H., Kimryn Rathmell, W., Thorne, L., Huang, M., Boice, L., Hill, A., Morrison, C., Gaudioso, C., Bshara, W., Daily, K., Egea, S.C., Pegram, M.D., Gomez-Fernandez, C., Dhir, R., Bhargava, R., Brufsky, A., Shriver, C.D., Hooke, J.A., Leigh Campbell, J., Mural, R.J., Hu, H., Somiari, S., Larson, C., Deyarmin, B., Kvecher, L., Kovatich, A.J., Ellis, M.J., King, T.A., Hu, H., Couch, F.J., Mural, R.J., Stricker, T., White, K., Olopade, O., Ingle, J.N., Luo, C., Chen, Y., Marks, J.R., Waldman, F., Wiznerowicz, M., Bose, R., Chang, L.W., Beck, A.H., Maria Gonzalez-Angulo, A., Pihl, T., Jensen, M., Sfeir, R., Kahn, A., Chu, A., Kothiyal, P., Wang, Z., Snyder, E., Pontius, J., Ayala, B., Backus, M., Walton, J., Baboud, J., Berton, D., Nicholls, M., Srinivasan, D., Raman, R., Girshik, S., Kigonya, P., Alonso, S., Sanbhadti, R., Barletta, S., Pot, D., Sheth, M., Demchok, J.A., Mills Shaw, K.R., Yang, L., Eley, G., Ferguson, M.L., Tarnuzzer, R.W., Zhang, J., Dillon, L.A.L., Buetow, K., Fielding, P., Ozenberger, B.A., Guyer, M.S., Sofia, H.J., and Palchik, J.D. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70.

    Article  CAS  Google Scholar 

  • The-Human-Proteome-Organization. (2010). A gene-centric human proteome project: HUPO—the Human Proteome organization. Mol Cell Proteomics 9, 427–429.

    Article  Google Scholar 

  • Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., and Hamon, C. (2003). Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75, 1895–1904.

    Article  CAS  PubMed  Google Scholar 

  • Trinkle-Mulcahy, L., Boulon, S., Lam, Y.W., Urcia, R., Boisvert, F.M., Vandermoere, F., Morrice, N.A., Swift, S., Rothbauer, U., Leonhardt, H., and Lamond, A. (2008). Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol 183, 223–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsou, C.C., Avtonomov, D., Larsen, B., Tucholska, M., Choi, H., Gingras, A.C., and Nesvizhskii, A.I. (2015). DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 12, 258–264, 257 p following 264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlen, M., Fagerberg, L., Hallstrom, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjostedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C.A., Odeberg, J., Djureinovic, D., Takanen, J.O., Hober, S., Alm, T., Edqvist, P.H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J.M., Hamsten, M., von Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, J., and Ponten, F. (2015). Proteomics. Tissue-based map of the human proteome. Science 347, 1260419.

    Google Scholar 

  • Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S., Wernerus, H., Björling, L., and Ponten, F. (2010). Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28, 1248–1250.

    Article  CAS  PubMed  Google Scholar 

  • Varjosalo, M., Sacco, R., Stukalov, A., van Drogen, A., Planyavsky, M., Hauri, S., Aebersold, R., Bennett, K.L., Colinge, J., Gstaiger, M., and Superti-Furga, G. (2013). Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Meth 10, 307–314.

    Article  CAS  Google Scholar 

  • Vidal, M., Cusick, M.E., and Barabási, A.L. (2011). Interactome networks and human disease. Cell 144, 986–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinayagam, A., Kulkarni, M.M., Sopko, R., Sun, X., Hu, Y., Nand, A., Villalta, C., Moghimi, A., Yang, X., Mohr, S.E., Hong, P., Asara, J.M., and Perrimon, N. (2016). An integrative analysis of the InR/PI3K/Akt network identifies the dynamic response to insulin signaling. Cell Rep 16, 3062–3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizcaíno, J.A., Deutsch, E.W., Wang, R., Csordas, A., Reisinger, F., Ríos, D., Dianes, J.A., Sun, Z., Farrah, T., Bandeira, N., Binz, P.A., Xenarios, I., Eisenacher, M., Mayer, G., Gatto, L., Campos, A., Chalkley, R.J., Kraus, H.J., Albar, J.P., Martinez-Bartolomé, S., Apweiler, R., Omenn, G.S., Martens, L., Jones, A.R., and Hermjakob, H. (2014). ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32, 223–226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31, 258–261.

    Article  CAS  Google Scholar 

  • von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., and Bork, P. (2002). Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403.

    Article  CAS  Google Scholar 

  • Wang, B., Hurov, K., Hofmann, K., and Elledge, S.J. (2009). NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev 23, 729–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Matsuoka, S., Ballif, B.A., Zhang, D., Smogorzewska, A., Gygi, S.P., and Elledge, S.J. (2007). Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Tucholska, M., Knight, J.D.R., Lambert, J.P., Tate, S., Larsen, B., Gingras, A.C., and Bandeira, N. (2015a). MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nat Meth 12, 1106–1108.

    Article  CAS  Google Scholar 

  • Wang, L., and Wheeler, D.A. (2014). Genomic sequencing for cancer diagnosis and therapy. Annu Rev Med 65, 33–48.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Li, X., Huang, J., Feng, L., Dolinta, K.G., and Chen, J. (2014). Defining the protein-protein interaction network of the human Hippo pathway. Mol Cell Proteomics 13, 119–131.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Li, X., Lee, M., Jun, S., Aziz, K.E., Feng, L., Tran, M.K., Li, N., McCrea, P.D., Park, J.I., and Chen, J. (2015b). FOXKs promote Wnt/ß-catenin signaling by translocating DVL into the nucleus. Dev Cell 32, 707–718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whiteaker, J.R., Halusa, G.N., Hoofnagle, A.N., Sharma, V., MacLean, B., Yan, P., Wrobel, J.A., Kennedy, J., Mani, D.R., Zimmerman, L.J., Meyer, M.R., Mesri, M., Rodriguez, H., Abbatiello, S.E., Boja, E., Carr, S.A., Chan, D.W., Chen, X., Chen, J., Davies, S.R., Ellis, M.J.C., Fenyö, D., Hiltke, T., Ketchum, K.A., Kinsinger, C., Kuhn, E., Liebler, D.C., Lin, D., Liu, T., Loss, M., MacCoss, M.J., Qian, W.J., Rivers, R., Rodland, K.D., Ruggles, K.V., Scott, M.G., Smith, R.D., Thomas, S., Townsend, R.R., Whiteley, G., Wu, C., Zhang, H., Zhang, Z., and Paulovich, A.G. (2014). CPTAC Assay Portal: a repository of targeted proteomic assays. Nat Meth 11, 703–704.

    Article  CAS  Google Scholar 

  • Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A.M., Lieberenz, M., Savitski, M.M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., Mathieson, T., Lemeer, S., Schnatbaum, K., Reimer, U., Wenschuh, H., Mollenhauer, M., Slotta-Huspenina, J., Boese, J.H., Bantscheff, M., Gerstmair, A., Faerber, F., and Kuster, B. (2014). Mass-spectrometry- based draft of the human proteome. Nature 509, 582–587.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat Meth 6, 359–362.

    Article  CAS  Google Scholar 

  • Wolfson, R.L., Chantranupong, L., Wyant, G.A., Gu, X., Orozco, J.M., Shen, K., Condon, K.J., Petri, S., Kedir, J., Scaria, S.M., Abu-Remaileh, M., Frankel, W.N., and Sabatini, D.M. (2017). KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543, 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolters, D.A., Washburn, M.P., and Yates, J.R. (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73, 5683–5690.

    Article  CAS  PubMed  Google Scholar 

  • Wubbolts, R., Leckie, R.S., Veenhuizen, P.T., Schwarzmann, G., Mobius, W., Hoernschemeyer, J., Slot, J.W., Geuze, H.J., and Stoorvogel, W. (2003). Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278, 10963–10972.

    Article  CAS  PubMed  Google Scholar 

  • Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., and Eisenberg, D. (2000). DIP: the database of interacting proteins. Nucleic Acids Res 28, 289–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, B., Sheng, Q., Nakanishi, K., Ohashi, A., Wu, J., Christ, N., Liu, X., Jasin, M., Couch, F.J., and Livingston, D.M. (2006). Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22, 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Z., Prieto, D.R., Conrads, T.P., Veenstra, T.D., and Issaq, H.J. (2005). Proteomic patterns: their potential for disease diagnosis. Mol Cell Endocrinol 230, 95–106.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Li, X., Gong, Z., Wang, W., Li, Y., Nair, B.C., Piao, H., Yang, K., Wu, G., and Chen, J. (2014). Proteomic analysis of the human cyclindependent kinase family reveals a novel CDK5 complex involved in cell growth and migration. Mol Cell Proteomics 13, 2986–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, W., and Paschen, W. (2015). SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics 15, 1181–1191.

    Article  CAS  PubMed  Google Scholar 

  • Yates, J.R., 3rd, Gilchrist, A., Howell, K.E., and Bergeron, J.J.M. (2005). Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6, 702–714.

    Article  CAS  PubMed  Google Scholar 

  • Ying, W., Jiang, Y., Guo, L., Hao, Y., Zhang, Y., Wu, S., Zhong, F., Wang, J., Shi, R., Li, D., Wan, P., Li, X., Wei, H., Li, J., Wang, Z., Xue, X., Cai, Y., Zhu, Y., Qian, X., and He, F. (2006). A dataset of human fetal liver proteome identified by subcellular fractionation and multiple protein separation and identification technology. Mol Cell Proteomics 5, 1703–1707.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Chini, C.C.S., He, M., Mer, G., and Chen, J. (2003). The BRCT domain is a phospho-protein binding domain. Science 302, 639–642.

    Article  CAS  PubMed  Google Scholar 

  • Zerefos, P.G., Aivaliotis, M., Baumann, M., and Vlahou, A. (2012). Analysis of the urine proteome via a combination of multi-dimensional approaches. Proteomics 12, 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Wang, J., Wang, X., Zhu, J., Liu, Q., Shi, Z., Chambers, M.C., Zimmerman, L.J., Shaddox, K.F., Kim, S., Davies, S.R., Wang, S., Wang, P., Kinsinger, C.R., Rivers, R.C., Rodriguez, H., Townsend, R.R., Ellis, M.J.C., Carr, S.A., Tabb, D.L., Coffey, R.J., Slebos, R.J.C., Liebler, D.C., Carr, S.A., Gillette, M.A., Klauser, K.R., Kuhn, E., Mani, D.R., Mertins, P., Ketchum, K.A., Paulovich, A.G., Whiteaker, J.R., Edwards, N.J., McGarvey, P.B., Madhavan, S., Wang, P., Chan, D., Pandey, A., Shih, I.M., Zhang, H., Zhang, Z., Zhu, H., Whiteley, G.A., Skates, S.J., White, F.M., Levine, D.A., Boja, E.S., Kinsinger, C.R., Hiltke, T., Mesri, M., Rivers, R.C., Rodriguez, H., Shaw, K.M., Stein, S.E., Fenyo, D., Liu, T., McDermott, J.E., Payne, S.H., Rodland, K.D., Smith, R.D., Rudnick, P., Snyder, M., Zhao, Y., Chen, X., Ransohoff, D.F., Hoofnagle, A.N., Liebler, D.C., Sanders, M.E., Shi, Z., Slebos, R.J.C., Tabb, D.L., Zhang, B., Zimmerman, L.J., Wang, Y., Davies, S.R., Ding, L., Ellis, M.J.C., and Reid Townsend, R. (2014). Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Ma, J., Wu, J., Ye, L., Cai, H., Xia, B., and Yu, X. (2009). PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19, 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Liu, T., Zhang, Z., Payne, S.H., Zhang, B., McDermott, J.E., Zhou, J.Y., Petyuk, V.A., Chen, L., Ray, D., Sun, S., Yang, F., Wang, J., Shah, P., Cha, S.W., Aiyetan, P., Woo, S., Tian, Y., Gritsenko, M.A., Clauss, T.R., Choi, C., Monroe, M.E., Thomas, S., Nie, S., Wu, C., Moore, R.J., Yu, K.H., Tabb, D.L., Fenyo, D., Bafna, V., Wang, Y., Rodriguez, H., Boja, E.S., Hiltke, T., Rivers, R.C., Sokoll, L., Zhu, H., Shih Ie, M., Cope, L., Pandey, A., Snyder, M.P., Levine, D.A., Smith, R.D., Chan, D.W., and Rodland, K.D. (2016). Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166, 755–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein, M., and Snyder, M. (2001). Global analysis of protein activities using proteome chips. Science 293, 2101–2105.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yi Wang, Dr. Sung Yun Jung and Dr. Jong Min Choi (Baylor College of Medicine) for their advice and critical readings, and Dr. Donald Norwood (MD Anderson Cancer Center) and Department of Scientific Publications at MD Anderson Cancer Center for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, W. & Chen, J. Recent progress in mass spectrometry proteomics for biomedical research. Sci. China Life Sci. 60, 1093–1113 (2017). https://doi.org/10.1007/s11427-017-9175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9175-2

Keywords

Navigation