Skip to main content

Advertisement

Log in

Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Metabolic phenotyping corresponds to the large-scale quantitative and qualitative analysis of the metabolome i.e., the low-molecular weight <1 KDa fraction in biological samples, and provides a key opportunity to advance neurosciences. Proton nuclear magnetic resonance and mass spectrometry are the main analytical platforms used for metabolic profiling, enabling detection and quantitation of a wide range of compounds of particular neuro-pharmacological and physiological relevance, including neurotransmitters, secondary messengers, structural lipids, as well as their precursors, intermediates and degradation products. Metabolic profiling is therefore particularly indicated for the study of central nervous system by probing metabolic and neurochemical profiles of the healthy or diseased brain, in preclinical models or in human samples. In this review, we introduce the analytical and statistical requirements for metabolic profiling. Then, we focus on key studies in the field of metabolic profiling applied to the characterization of animal models and human samples of central nervous system disorders. We highlight the potential of metabolic profiling for pharmacological and physiological evaluation, diagnosis and drug therapy monitoring of patients affected by brain disorders. Finally, we discuss the current challenges in the field, including the development of systems biology and pharmacology strategies improving our understanding of metabolic signatures and mechanisms of central nervous system diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

1H NMR:

Proton nuclear magnetic resonance

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ASD:

Autism spectrum disorder

BCAA:

Branched chain amino acids

BD:

Bipolar disorder

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DA:

Discriminant analysis

DMA:

Dimethylamine

FXS:

Fragile X Syndrome

GABA:

γ-aminobutyric acid

GC/LC:

Gas/liquid chromatography

HR:

High resolution

MAS:

Magic angle spinning

MDD:

Major depressive disorder

MS:

Mass spectrometry

NAA:

N-acetyl-aspartate

O:

Orthogonal

PCA:

Principal component analysis

PD:

Parkinson’s disease

PIP:

Phosphatidyl-inositol-phosphate

PIP2:

Phosphatidyl-inositol-diphosphate

PLS:

Partial least squares

SCA3:

Spinocerebellar ataxia 3

SCFA:

Short chain fatty acids

SCZ:

Schizophrenia

TCA:

Tricarboxylic acid

TMA:

Trimethylamine

TMAO:

Trimethylamine-N-oxide

UPLC:

Ultra performance liquid chromatography

References

  • Aerts JT, Louis KR, Crandall SR, Govindaiah G, Cox CL, Sweedler JV (2014) Patch clamp electrophysiology and capillary electrophoresis-mass spectrometry metabolomics for single cell characterization. Anal Chem 86:3203–3208. doi:10.1021/ac500168d

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bahado-Singh RO et al (2013) Metabolomic analysis for first-trimester Down syndrome prediction. Am J Obstet Gynecol 208(5)371:e1-8. doi:10.1016/j.ajog.2012.12.035

  • Ballon JS, Pajvani U, Freyberg Z, Leibel RL, Lieberman JA (2014) Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends Endocrinol Metab TEM. doi:10.1016/j.tem.2014.07.004

    PubMed  Google Scholar 

  • Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417. doi:10.1111/j.1365-2672.2012.05344

    CAS  PubMed  Google Scholar 

  • Bechara EG et al (2009) A novel function for fragile X mental retardation protein in translational activation. PLoS Biol 7:e16

    PubMed  Google Scholar 

  • Beckonert O et al (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032

    CAS  PubMed  Google Scholar 

  • Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703. doi:10.1038/nprot.2007.376

    CAS  PubMed  Google Scholar 

  • Bird SS, Sheldon DP, Gathungu RM, Vouros P, Kautz R, Matson WR, Kristal BS (2012) Structural characterization of plasma metabolites detected via LC-electrochemical coulometric array using LC-UV fractionation, MS, and NMR. Anal Chem 84:9889–9898. doi:10.1021/ac302278u

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blaise BJ, Giacomotto J, Elena B, Dumas ME, Toulhoat P, Segalat L, Emsley L (2007) Metabotyping of Caenorhabditis elegans reveals latent phenotypes. Proc Natl Acad Sci U S A 104:19808–19812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blankman JL, Long JZ, Trauger SA, Siuzdak G, Cravatt BF (2013) ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. Proc Natl Acad Sci U S A 110:1500–1505. doi:10.1073/pnas.1217121110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blasco H et al (2013) Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res 12:3746–3754. doi:10.1021/pr400376e

    CAS  PubMed  Google Scholar 

  • Blasco H et al (2014) Untargeted 1H-NMR metabolomics in CSF: toward a diagnostic biomarker for motor neuron disease. Neurology 82:1167–1174. doi:10.1212/WNL.0000000000000274

    CAS  PubMed  Google Scholar 

  • Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Flint Beal M (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131:389–396. doi:10.1093/brain/awm304

    PubMed  Google Scholar 

  • Brooks AI, Chattopadhyay S, Mitchison HM, Nussbaum RL, Pearce DA (2003) Functional categorization of gene expression changes in the cerebellum of a Cln3-knockout mouse model for Batten disease. Mol Genet Metab 78:17–30

    CAS  PubMed  Google Scholar 

  • Cai HL et al (2012) Metabolomic analysis of biochemical changes in the plasma and urine of first-episode neuroleptic-naive schizophrenia patients after treatment with risperidone. J Proteome Res 11:4338–4350. doi:10.1021/pr300459d

    CAS  PubMed  Google Scholar 

  • Chan MK, Tsang TM, Harris LW, Guest PC, Holmes E, Bahn S (2011) Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol Psychiatry 16:1189–1202. doi:10.1038/mp.2010.100

    CAS  PubMed  Google Scholar 

  • Chen G et al (2014) Amino acid metabolic dysfunction revealed in the prefrontal cortex of a rat model of depression. Behav Brain Res. doi:10.1016/j.bbr.2014.05.027

    PubMed Central  Google Scholar 

  • Cheng LL, Ma MJ, Becerra L, Ptak T, Tracey I, Lackner A, Gonzalez RG (1997) Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 94:6408–6413

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke G et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673. doi:10.1038/mp.2012.77

    CAS  PubMed  Google Scholar 

  • Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 106:14728–14733. doi:10.1073/pnas.0904489106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clayton TA et al (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440:1073–1077

    CAS  PubMed  Google Scholar 

  • Cloarec O et al (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem 77:517–526. doi:10.1021/ac048803i

    CAS  PubMed  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742. doi:10.1038/nrmicro2876

    CAS  PubMed  Google Scholar 

  • Coppola A et al (2013) Branched-chain amino acids alter neurobehavioral function in rats. Am J Physiol Endocrinol Metab 304:E405–E413. doi:10.1152/ajpendo.00373.2012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crockford DJ et al (2006) Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 78:363–371. doi:10.1021/ac051444m

    CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. doi:10.1038/nrn3346

    CAS  PubMed  Google Scholar 

  • Czech C et al (2012) Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS ONE 7:e31501. doi:10.1371/journal.pone.0031501

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davidovic L, Navratil V, Bonaccorso CM, Catania MV, Bardoni B, Dumas ME (2011) A metabolomic and systems biology perspective on the brain of the Fragile X syndrome mouse model. Genome Res 21:2190–2202. doi:10.1101/gr.116764.110

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Diego-Otero Y, Romero-Zerbo Y, el Bekay R, Decara J, Sanchez L, Rodriguez-de Fonseca F, del Arco-Herrera I (2009) Alpha-tocopherol protects against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency. Neuropsychopharmacology 34:1011–1026

    PubMed  Google Scholar 

  • Dumas ME (2012) Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes. Mol BioSyst 8:2494–2502. doi:10.1039/c2mb25167a

    CAS  PubMed  Google Scholar 

  • Dumas ME et al (2007) Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39:666–672

    CAS  PubMed  Google Scholar 

  • Dunn WB et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083. doi:10.1038/nprot.2011.335

    CAS  PubMed  Google Scholar 

  • Emiliani FE, Sedlak TW, Sawa A (2014) Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr Opin Psychiatr 27:185–190. doi:10.1097/YCO.0000000000000054

    Google Scholar 

  • Emond P et al (2013) GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 405:5291–5300. doi:10.1007/s00216-013-6934-x

    CAS  PubMed  Google Scholar 

  • Farrer LA (1985) Diabetes mellitus in Huntington disease. Clin Genet 27:62–67

    CAS  PubMed  Google Scholar 

  • Fonville JM et al (2010) The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemometr 24:636–649

    CAS  Google Scholar 

  • Fornito A, Bullmore ET (2014) Reconciling abnormalities of brain network structure and function in schizophrenia. Curr Opin Neurobiol 30C:44–50. doi:10.1016/j.conb.2014.08.006

    Google Scholar 

  • Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Google Scholar 

  • Frost B, Gotz J, Feany MB (2014) Connecting the dots between tau dysfunction and neurodegeneration. Trends Cell Biol. doi:10.1016/j.tcb.2014.07.005

    PubMed  Google Scholar 

  • Garrod S et al (1999) High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41:1108–1118

    CAS  PubMed  Google Scholar 

  • Gavaghan CL, Holmes E, Lenz E, Wilson ID, Nicholson JK (2000) An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett 484:169–174

    CAS  PubMed  Google Scholar 

  • Graham SF, Chevallier OP, Roberts D, Holscher C, Elliott CT, Green BD (2013) Investigation of the human brain metabolome to identify potential markers for early diagnosis and therapeutic targets of Alzheimer’s disease. Anal Chem 85:1803–1811. doi:10.1021/ac303163f

    CAS  PubMed  Google Scholar 

  • Griffin JL, Cemal CK, Pook MA (2004) Defining a metabolic phenotype in the brain of a transgenic mouse model of spinocerebellar ataxia 3. Physiol Genomics 16:334–340

    CAS  PubMed  Google Scholar 

  • Griffin JL, Muller D, Woograsingh R, Jowatt V, Hindmarsh A, Nicholson JK, Martin JE (2002) Vitamin E deficiency and metabolic deficits in neuronal ceroid lipofuscinosis described by bioinformatics. Physiol Genomics 11:195–203. doi:10.1152/physiolgenomics.00100.2002

    CAS  PubMed  Google Scholar 

  • Han X et al (2011) Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE 6:e21643. doi:10.1371/journal.pone.0021643

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes E et al (2006) Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3:e327

    PubMed Central  PubMed  Google Scholar 

  • Hsiao EY et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463. doi:10.1016/j.cell.2013.11.024

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang JT et al (2007) CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS One 2:e756. doi:10.1371/journal.pone.0000756

    PubMed Central  PubMed  Google Scholar 

  • Ibanez C, Simo C, Martin-Alvarez PJ, Kivipelto M, Winblad B, Cedazo-Minguez A, Cifuentes A (2012) Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal Chem 84:8532–8540. doi:10.1021/ac301243k

    CAS  PubMed  Google Scholar 

  • Ji Y et al (2012) Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: genome-wide associations and functional genomics. Pharmacogenomics J. doi:10.1038/tpj.2012.32

    Google Scholar 

  • Ji Y et al (2011) Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther 89:97–104. doi:10.1038/clpt.2010.250

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johansen KK et al (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One 4:e7551. doi:10.1371/journal.pone.0007551

    PubMed Central  PubMed  Google Scholar 

  • Kaddurah-Daouk R et al (2013a) Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo. Transl Psychiatry 3:e223. doi:10.1038/tp.2012.142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk R et al (2011a) Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept. Transl Psychiatr 1. doi:10.1038/tp.2011.22

  • Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM, Krishnan KR (2007) Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry 12:934–945. doi:10.1038/sj.mp.4002000

    CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk R et al (2011b) Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement 7:309–317. doi:10.1016/j.jalz.2010.06.001

    PubMed Central  PubMed  Google Scholar 

  • Kaddurah-Daouk R et al (2012) Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep 2:667. doi:10.1038/srep00667

    PubMed Central  PubMed  Google Scholar 

  • Kaddurah-Daouk R et al (2013b) Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry 3:e244. doi:10.1038/tp.2013.18

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi:10.1093/nar/gkr988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanekiyo T, Xu H, Bu G (2014) ApoE and Abeta in Alzheimer’s disease: accidental encounters or partners? Neuron 81:740–754. doi:10.1016/j.neuron.2014.01.045

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712. doi:10.1038/nrd3505

    CAS  PubMed  Google Scholar 

  • Knuesel I et al (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10:643–660. doi:10.1038/nrneurol.2014.187

    CAS  PubMed  Google Scholar 

  • Kristal BS, Shurubor YI, Kaddurah-Daouk R, Matson WR (2007) High-performance liquid chromatography separations coupled with coulometric electrode array detectors: a unique approach to metabolomics. Methods Mol Biol 358:159–174. doi:10.1007/978-1-59745-244-1_10

    CAS  PubMed  Google Scholar 

  • Kumar A, Bala L, Kalita J, Misra UK, Singh RL, Khetrapal CL, Babu GN (2010) Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis. Clin Chim Acta 411:563–567. doi:10.1016/j.cca.2010.01.016

    CAS  PubMed  Google Scholar 

  • Lalande J et al (2014) 1H NMR metabolomic signatures in five brain regions of the AbetaPPswe Tg2576 mouse model of Alzheimer’s disease at four ages. J Alzheimers Dis JAD 39:121–143. doi:10.3233/JAD-130023

    CAS  PubMed  Google Scholar 

  • Lan MJ et al (2009) Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psychiatry 14:269–279

    CAS  PubMed  Google Scholar 

  • Latta CH, Brothers HM, Wilcock DM (2014) Neuroinflammation in Alzheimer's disease; a source of heterogeneity and target for personalized therapy. Neuroscience. doi:10.1016/j.neuroscience.2014.09.061

    PubMed  Google Scholar 

  • Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15:37–44

    PubMed  Google Scholar 

  • Lin S et al (2013) Hippocampal metabolomics using ultrahigh-resolution mass spectrometry reveals neuroinflammation from Alzheimer’s disease in CRND8 mice. Anal Bioanal Chem 405:5105–5117. doi:10.1007/s00216-013-6825-1

    CAS  PubMed  Google Scholar 

  • Mapstone et al (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20(4):415–8. doi:10.1038/nm.3466

  • McLoughlin GA et al (2009) Analyzing the effects of psychotropic drugs on metabolite profiles in rat brain using 1H NMR spectroscopy. J Proteome Res 8:1943–1952

    CAS  PubMed  Google Scholar 

  • Meyer U (2014) Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 75:307–315. doi:10.1016/j.biopsych.2013.07.011

    CAS  PubMed  Google Scholar 

  • Mientjes EJ et al (2006) The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol Dis 21:549–555. doi:10.1016/j.nbd.2005.08.019

    CAS  PubMed  Google Scholar 

  • Mochel F et al (2007) Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression. PLoS ONE 2:e647. doi:10.1371/journal.pone.0000647

    PubMed Central  PubMed  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB, Powell SB, Naviaux RK (2014) Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry. 4:e400. doi:10.1038/tp.2014.33

  • Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev 1:153–161

    CAS  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica; the fate of foreign compounds in biological systems 29:1181–1189

    CAS  PubMed  Google Scholar 

  • Novarino G et al (2012) Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 338:394–397. doi:10.1126/science.1224631

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    CAS  PubMed  Google Scholar 

  • Oresic M et al (2011) Metabolome in progression to Alzheimer’s disease. Transl Psychiatry 1:e57. doi:10.1038/tp.2011.55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Orlacchio A, Bernardi G, Martino S (2010) Stem cells: an overview of the current status of therapies for central and peripheral nervous system diseases. Curr Med Chem 17:595–608

    CAS  PubMed  Google Scholar 

  • Paige LA, Mitchell MW, Krishnan KR, Kaddurah-Daouk R, Steffens DC (2007) A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry 22:418–423. doi:10.1002/gps.1690

    PubMed  Google Scholar 

  • Pawson AJ et al (2014) The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42:D1098–D1106. doi:10.1093/nar/gkt1143

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pears MR, Cooper JD, Mitchison HM, Mortishire-Smith RJ, Pearce DA, Griffin JL (2005) High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of Batten disease. J Biol Chem 280:42508–42514

    CAS  PubMed  Google Scholar 

  • Penagarikano O, Mulle JG, Warren ST (2007) The pathophysiology of fragile x syndrome. Annu Rev Genomics Hum Genet 8:109–129

    CAS  PubMed  Google Scholar 

  • Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist’s guide to lipidomics. Nat Rev Neurosci 8:743–754. doi:10.1038/nrn2233

    CAS  PubMed  Google Scholar 

  • Pontoizeau C et al (2011) Broad-ranging natural metabotype variation drives physiological plasticity in healthy control inbred rat strains. J Proteome Res 10:1675–1689. doi:10.1021/pr101000z

    CAS  PubMed  Google Scholar 

  • Prabakaran S et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9(684–697):643. doi:10.1038/sj.mp.4001511

    Google Scholar 

  • Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30:276–291. doi:10.1002/elps.200800512

    CAS  PubMed  Google Scholar 

  • Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16:246–254. doi:10.1016/j.mib.2013.07.002

    CAS  PubMed  Google Scholar 

  • Salek RM et al (2010) A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int 56:937–947. doi:10.1016/j.neuint.2010.04.001

    CAS  PubMed  Google Scholar 

  • Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, McKenna P, Bahn S (2008) High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res 7(10):4266–4277. doi:10.1021/pr800188y

  • Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21. doi:10.1007/s00401-012-1000-x

    CAS  PubMed  Google Scholar 

  • Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, Wiuf C (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105:6959–6964. doi:10.1073/pnas.0708078105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suhre K et al (2011a) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60. doi:10.1038/nature10354

    CAS  PubMed  Google Scholar 

  • Suhre K et al (2011b) A genome-wide association study of metabolic traits in human urine. Nat Genet 43:565–569. doi:10.1038/ng.837

    CAS  PubMed  Google Scholar 

  • Sussulini A, Prando A, Maretto DA, Poppi RJ, Tasic L, Banzato CE, Arruda MA (2009) Metabolic profiling of human blood serum from treated patients with bipolar disorder employing 1H NMR spectroscopy and chemometrics. Anal Chem 81:9755–9763. doi:10.1021/ac901502j

    CAS  PubMed  Google Scholar 

  • Tiziani S, Kang Y, Choi JS, Roberts W, Paternostro G (2011) Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library. Nat Commun 2:545. doi:10.1038/ncomms1562

    PubMed  Google Scholar 

  • Tsang TM, Griffin JL, Haselden J, Fish C, Holmes E (2005) Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning 1H nuclear magnetic resonance spectroscopy. Magn Reson Med 53:1018–1024. doi:10.1002/mrm.20447

    CAS  PubMed  Google Scholar 

  • Tsang TM, Haselden JN, Holmes E (2009) Metabonomic characterization of the 3-nitropropionic acid rat model of Huntington’s disease. Neurochem Res 34:1261–1271. doi:10.1007/s11064-008-9904-5

    CAS  PubMed  Google Scholar 

  • Tsang TM, Woodman B, McLoughlin GA, Griffin JL, Tabrizi SJ, Bates GP, Holmes E (2006) Metabolic characterization of the R6/2 transgenic mouse model of Huntington’s disease by high-resolution MAS 1H NMR spectroscopy. J Proteome Res 5:483–492. doi:10.1021/pr050244o

    CAS  PubMed  Google Scholar 

  • Underwood BR et al (2006) Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain J Neurol 129:877–886. doi:10.1093/brain/awl027

    Google Scholar 

  • Viola A, Saywell V, Villard L, Cozzone PJ, Lutz NW (2007) Metabolic fingerprints of altered brain growth, osmoregulation and neurotransmission in a Rett syndrome model. PLoS ONE 2:e157

    PubMed Central  PubMed  Google Scholar 

  • Weng SM, Bailey ME, Cobb SR (2011) Rett syndrome: from bed to bench. Pediatr Neonatol 52:309–316. doi:10.1016/j.pedneo.2011.08.002

    PubMed  Google Scholar 

  • Wesseling H, Chan MK, Tsang TM, Ernst A, Peters F, Guest PC, Holmes E, Bahn S (2013) A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology. Neuropsychopharmacol 38(12). doi:10.1038/npp.2013.160

  • Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci Off J Soc Neurosci 31:7477–7485. doi:10.1523/JNEUROSCI. 0415-11.2011

    CAS  Google Scholar 

  • Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38(Suppl):W71–W77

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yao JK et al (2010a) Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naive patients with schizophrenia. PLoS ONE 5:e9508. doi:10.1371/journal.pone.0009508

    PubMed Central  PubMed  Google Scholar 

  • Yao JK et al (2010b) Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry 15:938–953. doi:10.1038/mp.2009.33

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK (2010) Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 9:2996–3004. doi:10.1021/pr901188e

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Frank Aguila for figure editing. LD is funded by FRAXA Research Foundation, Agence Nationale de la Recherche (ANR JCJC SVE6 MetaboXFra), Conseil Général 06, Fondation Jérôme Lejeune and the CNRS PICS program. MED and LD are funded by The Royal Society - CNRS/ International Exchange Program (IE120728) and the Coordinated Action NEURON-ERANET under European Community Framework Program grant agreement (291840) which funded the μNeuroINF project. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Davidovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumas, ME., Davidovic, L. Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions. J Neuroimmune Pharmacol 10, 402–424 (2015). https://doi.org/10.1007/s11481-014-9578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-014-9578-5

Keywords

Navigation