Skip to main content

Small Scale Creation in Active Scalars

  • Chapter
  • First Online:
Progress in Mathematical Fluid Dynamics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2272))

  • 899 Accesses

Abstract

The focus of the course is on small scale formation in solutions of the incompressible Euler equation of fluid dynamics and associated models. We first review the regularity results and examples of small scale growth in two dimensions. Then we discuss a specific singular scenario for the three-dimensional Euler equation discovered by Hou and Luo, and analyze some associated models. Finally, we will also talk about the surface quasi-geostrophic (SQG) equation, and construct an example of singularity formation in the modified SQG patch solutions as well as examples of unbounded growth of derivatives for the smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Bahouri, J.-Y. Chemin, Équations de transport relatives á des champs de vecteurs non-Lipschitziens et mécanique des uides. (French) [Transport equations for non-Lipschitz vector fields and fluid mechanics]. Arch. Rational Mech. Anal. 127(2), 159–181 (1994)

    Google Scholar 

  2. J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions of the 3D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MATH  Google Scholar 

  3. A. Bertozzi, P. Constantin, Global regularity for vortex patches. Commun. Math. Phys. 152, 19–28 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.P. Brenner, S. Hormoz, A. Pumir, Potential singularity mechanism for the Euler equations. Phys. Rev. Fluids 1, 084503 (2016)

    Article  Google Scholar 

  5. D. Chae, P. Constantin, D. Cordoba, F. Gancedo, J. Wu, Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65(8), 1037–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.-Y. Chemin, Persistance de structures geometriques dans les fluides incompressibles bidimensionnels. Ann. Ecol. Norm. Super. 26, 1–26 (1993)

    Article  MATH  Google Scholar 

  7. J. Chen, T. Hou, Finite time blowup of 2D Boussinesq and 3D Euler equations with C 1, α velocity and boundary (2019). Preprint arXiv:1910.00173

    Google Scholar 

  8. J. Chen, T. Hou, D. Huang, On the finite time blowup of the De Gregorio model for the 3D Euler equation (2019). Preprint arXiv:1905.06387

    Google Scholar 

  9. K. Choi, A. Kiselev, Y. Yao, Finite time blow up for a 1D model of 2D Boussinesq system. Commun. Math. Phys. 334(3), 1667–1679 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Choi, T. Hou, A. Kiselev, G. Luo, V. Sverak, Y. Yao, On the finite-time blowup of a 1D model for the 3D axi-symmetric Euler equations. Commun. Pure Appl. Math. 70, 2218–2243 (2017)

    Article  MATH  Google Scholar 

  11. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955)

    MATH  Google Scholar 

  12. P. Constantin, A. Majda, E. Tabak, Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Cordoba, Nonexistence of simple hyperbolic blow up for the quasi-geostrophic equation. Ann. Math. 148, 1135–1152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Cordoba, C. Fefferman, Growth of solutions for QG and 2D Euler equations. J. Am. Math. Soc. 15, 665–670 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Cordoba, M.A. Fontelos, A.M. Mancho, J.L. Rodrigo, Evidence of singularities for a family of contour dynamics equations. Proc. Natl. Acad. Sci. U.S.A. 102, 5949–5952 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Denisov, Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete Contin. Dyn. Syst. A 23(3), 755–764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Denisov, Double-exponential growth of the vorticity gradient for the two-dimensional Euler equation. Proc. Am. Math. Soc. 143(3), 1199–1210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Do, A. Kiselev, X. Xu, Stability of blow up for a 1D model of axi-symmetric 3D Euler equation. J. Nonlinear Sci. 28, 2127–2152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Einstein, The causes of the formation of meanders in the courses of rivers and of the so-called Baer’s law, Die Naturwissenschaften 14 (1926); English translation in Ideas and Opinions (1954). http://people.ucalgary.ca/~kmuldrew/river.html

  20. T. Elgindi, I.-J. Jeong, Finite-time singularity formation for strong solutions to the Boussinesq system. Preprint arXiv:1708.02724

    Google Scholar 

  21. T. Elgindi, I.-J. Jeong, Finite-time Singularity formation for strong solutions to the axi-symmetric 3D Euler equations. Preprint arXiv:1802.09936

    Google Scholar 

  22. T. Elgindi, Finite-time singularity formation for C 1, α solutions to the incompressible Euler equations on \({\mathbb R}^3\). Preprint arXiv:1904.04795

    Google Scholar 

  23. A. Enciso, M.A. García-Ferrero, D. Peralta-Salas, The Biot–Savart operator of a bounded domain. J. Math. Pures Appl. 119, 85–113 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Euler, in Principes généraux du mouvement des fluides. Mémoires de L’Académie Royale des Sciences et des Belles-Lettres de Berlin, vol. 11 (1755, 1757), pp. 217–273

    Google Scholar 

  25. U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  26. F. Gancedo, Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217, 2569–2598 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Gancedo, N. Patel, On the local existence and blow-up for generalized SQG patches. Preprint arXiv:1811.00530

    Google Scholar 

  28. S. He, A. Kiselev, Small scale creation for solutions of the SQG equation. Preprint arXiv:1903.07485

    Google Scholar 

  29. I. Held, R. Pierrehumbert, S. Garner, K. Swanson, Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Hoang, B. Orcan, M. Radosz, H. Yang, Blowup with vorticity control for a 2D model of Boussinesq equations. J. Differ. Equ. 264, 7328–7356 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Hölder, Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit. Math. Z. 37, 727–738 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  32. T.Y. Hou, P. Liu, Self-similar singularity of a 1D model for the 3D axisymmetric Euler equations. Res. Math. Sci. 2, 5 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Kiselev, Small scales and singularity formation in fluid dynamics, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Invited Lectures, vol. III (World Sci. Publ., Hackensack, 2018), pp. 2363–2390

    Google Scholar 

  34. A. Kiselev, C. Li, Global regularity and fast small scale formation for Euler patch equation in a smooth domain. Partial Differ. Equ. 44(4), 279–308 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Kiselev, F. Nazarov, in A Simple Energy Pump for the Periodic 2D Surface Quasi-Geostrophic Equation. Abel Symphony, vol. 7 (Springer, Heidelberg, 2012), pp. 175–179

    Google Scholar 

  36. A. Kiselev, V. Sverak, Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. 180, 1205–1220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Kiselev, L. Ryzhik, Y. Yao, A. Zlatos, Finite time singularity for the modified SQG patch equation. Ann. Math. 184(3), 909–948 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Kiselev, J.-M. Roquejoffre, L. Ryzhik, Appetizers in Nonlinear PDE. http://math.stanford.edu/~ryzhik/STANFORD/STANF272-15/notes-272-15.pdf

  39. A. Kiselev, Y. Yao, A. Zlatos, Local regularity for the modified SQG patch equation. Commun. Pure Appl. Math. 70, 1253–1315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Kiselev, C. Tan, Finite time blow up in the hyperbolic Boussinesq system. Adv. Math. 325, 34–55 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Kiselev, H. Yang, Analysis of a singular Boussinesq model. Res. Math. Sci. 6(1), 13 (2019)

    Google Scholar 

  42. G. Luo, T. Hou, Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation. Multiscale Model. Simul. 12(4), 1722–1776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Majda, A. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  44. A. Majda, Introduction to PDEs and Waves for the Atmoshpere and Ocean. Courant Lecture Notes in Mathematics (AMS, Providence, 2003)

    Google Scholar 

  45. C. Marchioro, M. Pulvirenti, in Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences, vol. 96 (Springer, New York, 1994)

    Google Scholar 

  46. Y. Motoori, S. Goto, Generation mechanism of a hierarchy of vortices in a turbulent boundary layer. J. Fluid Mech. 865, 1085–1109 (2019)

    Article  MathSciNet  Google Scholar 

  47. C. Muscalu, W. Schlag, Classical and Multilinear Harmonic Analysis (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  48. N.S. Nadirashvili, Wandering solutions of the two-dimensional Euler equation (Russian). Funktsional. Anal. i Prilozhen. 25, 70–71 (1991); translation in Funct. Anal. Appl. 25, 220–221 (1991, 1992)

    Google Scholar 

  49. J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  50. L. Prandtl, Essentials of Fluid Dynamics (Blackie and Son, London, 1952)

    MATH  Google Scholar 

  51. J.L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation. Commun. Pure Appl. Math., 58, 821–866 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. E.-W. Saw, et al., Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow. Nat. Commun. 7, 12466 (2016)

    Article  Google Scholar 

  53. R.K. Scott, D.G. Dritschel, Numerical simulation of a self-similar cascade of filament instabilities in the surface quasigeostrophic system. Phys. Rev. Lett. 112, 144505 (2014)

    Article  Google Scholar 

  54. R.K. Scott, D.G. Dritschel, Scale-invariant singularity of the surface quasigeostrophic patch. J. Fluid Mech. 863, R2 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Tao, Finite time blowup for an averaged three-dimensional Navier–Stokes equation. J. Am. Math. Soc. 29, 601–674 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. T. Tao, Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation. Ann. PDE 2(2), 9 (2016)

    Google Scholar 

  57. C. Villani, The Age of the Earth: When the Earth Was Too Young for Darwin (ICM, 2018). https://www.youtube.com/watch?v=ObSv67R-uyg

  58. E. Weinan, K. Khanin, A. Mazel, Y. Sinai, Invariant measures for Burgers equation with stochastic forcing. Ann. Math. 151(3), 877–960 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. W. Wolibner, Un theorème sur l’existence du mouvement plan d’un uide parfait, homogène, incompressible, pendant un temps infiniment long (French). Mat. Z. 37, 698–726 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  60. X. Xu, Fast growth of the vorticity gradient in symmetric smooth domains for 2D incompressible ideal flow. J. Math. Anal. Appl. 439(2), 594–607 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. V.I. Yudovich, in The Loss of Smoothness of the Solutions of the Euler Equation with Time (Russian). Dinamika Sploshn. Sredy, vol. 16 (Nestacionarnye Probelmy Gidordinamiki, 1974), pp. 71–78

    Google Scholar 

  62. V.I. Yudovich, On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid. Chaos, 10, 705–719 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  63. V.I. Yudovich, Eleven great problems of mathematical hydrodynamics. Mosc. Math. J. 3, 711–737 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Zlatos, Exponential growth of the vorticity gradient for the Euler equation on the torus. Adv. Math. 268, 396–403 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges partial support of the NSF-DMS grant 1848790 and 2006372, and thanks the organizers of the 2019 CIME summer school on fluid mechanics for the kind invitation to give lectures and excellent organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Kiselev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiselev, A.A. (2020). Small Scale Creation in Active Scalars. In: Berselli, L.C., Růžička, M. (eds) Progress in Mathematical Fluid Dynamics. Lecture Notes in Mathematics(), vol 2272. Springer, Cham. https://doi.org/10.1007/978-3-030-54899-5_4

Download citation

Publish with us

Policies and ethics