Skip to main content
Log in

The Centrally Symmetric V-States for Active Scalar Equations. Two-Dimensional Euler with Cut-Off

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the family of active scalar equations on the plane and study the dynamics of two centrally symmetric patches. We focus on the two-dimensional Euler equation written in the vorticity form and consider its truncated version. For this model, a non-linear and non-local evolution equation is studied and a family of stationary solutions \({\{y(x,\lambda)\}, x\in [-1,1], \lambda\in (0,\lambda_0)}\) is found. For these functions, we have \({y(x,\lambda)\in C^\infty(-1,1)}\) and \({\|y(x,\lambda)-|x|\|_{C[-1,1]}\to 0, \,\,\lambda\to 0}\) . The relation to the V-states observed numerically in Wu et al. (J Comput Phys 53:1–42, 1984), Cerretelli and Williamson (J Fluid Mech 493:219–229, 2003) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertozzi, A., Majda, A. Vorticity and incompressible flow. In: Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002)

  2. Bertozzi A., Constantin P.: Global regularity for vortex patches. Commun. Math. Phys. 152, 19–28 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Cerretelli C., Williamson C.: A new family of uniform vortices related to vortex configurations before merging. J. Fluid Mech. 493, 219–229 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Chae D., Constantin P., Cordoba D., Gancedo F., Wu J.: Generalized surface quasi-geostrophic equations with singular velocities. Comm. Pure Appl. Math. 65(8), 1037–1066 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chemin J.-Y.: Persistence of geometric structures in two-dimensional incompressible fluids. Ann. Sci. Ecole Norm. Sup. (4) 26(4), 517–542 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Choffrut A., Sverak V.: Local structure of the set of steady-state solutions to the 2D incompressible Euler equations. Geom. Funct. Anal. 22(1), 136–201 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cordoba D., Fontelos M., Mancho A., Rodrigo J.: Evidence of singularities for a family of contour dynamics equations. PNAS 102(17), 5949–5952 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Denisov, S.: The sharp corner formation in 2d Euler dynamics of patches: infinite double exponential rate of merging. Arch. Ration. Mech. Anal. 215(2), 675–705 (2015)

  9. Kielhöfer, H.: Bifurcation theory. An introduction with applications to partial differential equations, 2nd edn. In: Applied Mathematical Sciences, vol. 156. Springer, New York (2012)

  10. Kiselev, A., Sverak, V.: Small scale creation for solutions of the incompressible two dimensional Euler equation. Ann. Math. 180(3), 1205–1220 (2014)

  11. Lin Z., Zeng C.: Inviscid dynamical structures near Couette flow. Arch. Ration. Mech. Anal. 200(3), 1075–1097 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nikolski, N.K.: Operators, functions, and systems: an easy reading, vol. 1. Hardy, Hankel, and Toeplitz. In: Mathematical Surveys and Monographs, vol. 92. American Mathematical Society, Providence (2002)

  13. Overman E.: Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting V-states. SIAM J. Appl. Math. 46(5), 765–800 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Rodrigo J.: On the evolution of sharp fronts for the quasi-geostrophic equation. Comm. Pure Appl. Math. 58(6), 821–866 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wolibner W.: Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. (French) Mat. Z. 37, 698–726 (1933)

  16. Wu H., Overman E., Zabusky N.: Steady-state solutions of the Euler equations in two dimensions: rotating and translating V-states with limiting cases. I. Numerical algorithms and results. J. Comput. Phys. 53(1), 42–71 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Yudovich V.I.: Non-stationary flow of an incompressible liquid, Zh. Vychils. Mat. Mat. Fiz. 3, 1032–1066 (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Denisov.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, S.A. The Centrally Symmetric V-States for Active Scalar Equations. Two-Dimensional Euler with Cut-Off. Commun. Math. Phys. 337, 955–1009 (2015). https://doi.org/10.1007/s00220-015-2298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2298-8

Keywords

Navigation