Skip to main content

Transgenic Animals for the Generation of Human Antibodies

  • Chapter
  • First Online:
Introduction to Antibody Engineering

Part of the book series: Learning Materials in Biosciences ((LMB))

What You Will Learn in This Chapter

Currently, 28% of all monoclonal antibody (mAb) therapies and 74% of fully human mAb therapies approved by US Food and Drug Administration (FDA) are derived from transgenic animal platforms. In these platforms, the host antibody heavy chain VDJ and light chain VJ repertoire are substituted by their counterparts which are encoded exclusively by human transgenes. These platforms take advantage of the host’s naturally antigen-driven antibody selection and maturation process associated with the primary and secondary immune response. Through immunisations and subsequent antibody discovery using common technologies including hybridoma and single B-cell screening, a large panel of mAbs exhibiting high affinity and specificity against the target antigen along with ideal biophysical characteristics and developability can be obtained. They can be streamlined into clinical development. This chapter gives a comprehensive overview of the transgenic strategies, methods of creating knockout of the endogenous immunoglobulin (Ig) production and generation of transgenic constructs containing human Ig heavy and light chain gene locus. Brief introductions are also given to a list of representative transgenic platforms which have originated in multiple species and can produce human antibodies in various formats. The strategies for antibody discovery in these platforms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shawler DL, Bartholomew RM, Smith LM, Dillman RO. Human immune response to multiple injections of murine monoclonal IgG. J Immunol. 1985;135(2):1530–5.

    CAS  PubMed  Google Scholar 

  2. Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  3. Abramowicz D, Crusiaux A, Goldman M. Anaphylactic shock after retreatment with OKT3 monoclonal antibody. N Engl J Med. 1992;327(10):736.

    Article  CAS  PubMed  Google Scholar 

  4. Boulianne GL, Hozum N, Shulman MJ. Production of functional chimaeric mouse/human antibody. Nature. 1984;312:643–6.

    Article  CAS  PubMed  Google Scholar 

  5. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984;81:6851–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321(6069):522–5.

    Article  CAS  PubMed  Google Scholar 

  7. Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, et al. A humanised antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A. 1989;88(24):10029–33.

    Article  Google Scholar 

  8. Clavero-Álvarez A, Di Mambro T, Perez-Gaviro S, Magnani M, Bruscolini P. Humanization of antibodies using a statistical inference approach. Sci Rep. 2018;8(1):14820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hwang WY, Almagro JC, Buss TN, Tan P, Foote J. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods. 2005;36:35–42.

    Article  CAS  PubMed  Google Scholar 

  10. Torres M, Fernandez-Fuentes N, Fiser A, Casadevall A. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity. PLoS One. 2007;2:e1310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Garber E, Demarest SJ. A broad range of fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun. 2007;355:751–7.

    Article  CAS  PubMed  Google Scholar 

  12. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348:552–4.

    Article  CAS  PubMed  Google Scholar 

  13. de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, et al. A large non-immunized human fab fragment phage library that permits rapid isolation and kinetics analysis of high affinity antibodies. J Biol Chem. 1999;274(26):18218–30.

    Article  PubMed  Google Scholar 

  14. Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A. 2017;114(5):944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spencer S, Bethea D, Shantha Raju T, Giles-Komar J. Feng Y. Solubility evaluation of murine hybridoma antibodies mAb. 2012;4:319–25.

    Google Scholar 

  16. Brüggemann M, Caskey HM, Teale C, Waldmann H, Williams GT, Surani MA, Neuberger MS. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci U S A. 1989;86:6709–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brüggemann M, Spicer C, Buluwela L, Rosewell I, Barton S, Surani MA, Rabbitts TH. Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus. Eur J Immunol. 1991;21:1323–6.

    Article  PubMed  Google Scholar 

  18. Taylor LD, Carmack CE, Schramm SR, Mashayekh R, Higgins KM, Kuo C, et al. A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res. 1992;20(23):6287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tuaillon N, Taylor LD, Lonberg N, Tucker PW, Capra JD. Human immunoglobulin heavy-chain minilocus recombination in transgenic mice: gene-segment use in μ and ƴ transcripts. Proc Natl Acad Sci U S A. 1993;90:3720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. 2001;73(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Muyrers JP, Testa G, Stewart AF. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol. 2000;18(12):1314–7.

    Article  CAS  PubMed  Google Scholar 

  22. Macdonald LE, Karow M, Stevens S, Auerbach W, Poueymirou WT, Yasenchak J, et al. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc Natl Acad Sci U S A. 2014;111(14):5147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li L, Blankenstein T. Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast-embryonic stem cell fusion. Nat Protoc. 2013;8(8):1567–82.

    Article  PubMed  CAS  Google Scholar 

  24. Kuroiwa Y, Tomizuka K, Shinohara T, Kazuki Y, Yoshida H, Ohguma A, et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol. 2000;18(10):1086–90.

    Article  CAS  PubMed  Google Scholar 

  25. Ishida I, Tomizuka K, Yoshida H, Kuroiwa Y. TransChromo mouse. Biotechnol Genet Eng Rev. 2002;19(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  26. Wall RJ. Pronuclear microinjection. Cloning Stem Cells. 2001;3(4):209–20.

    Article  CAS  PubMed  Google Scholar 

  27. Vintersten K, Testa G, Stewart AF. Microinjection of BAC DNA into the pronuclei of fertilized mouse oocytes. Methods Mol Biol. 2004;256:141–58.

    CAS  PubMed  Google Scholar 

  28. Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol. 2003;21(6):652–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zou X, Xian J, Davies NP, Popov AV, Brüggemann M. Dominant expression of a 1.3 Mb human Ig kappa locus replacing mouse light chain production. FASEB J. 1996;10(10):1227–32.

    Article  CAS  PubMed  Google Scholar 

  30. Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, et al. Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol. 2002;20(9):889–94.

    Article  CAS  PubMed  Google Scholar 

  31. Kuroiwa Y, Kasinathan P, Sathiyaseelan T, Jiao JA, Matsushita H, Sathiyaseelan J, et al. Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol. 2009;27(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  32. van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, et al. Germline transmission of genetically modified primordial germ cells. Nature. 2006;441(7094):766–9.

    Article  PubMed  CAS  Google Scholar 

  33. Collarini EJ, Leighton PA, Van de Lavoir MC. Production of transgenic chickens using cultured primordial germ cells and Gonocytes. Methods Mol Biol. 1874;2019:403–30.

    Google Scholar 

  34. Kitamura D, Roes J, Kühn R, Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991;350(6317):423–6.

    Article  CAS  PubMed  Google Scholar 

  35. Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF, et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol. 1993;5(6):647–56.

    Article  CAS  PubMed  Google Scholar 

  36. Ren L, Zou X, Smith JA, Brüggemann M. Silencing of the immunoglobulin heavy chain locus by removal of all eight constant-region genes in a 200-kb region. Genomics. 2004;84(4):686–95.

    Article  CAS  PubMed  Google Scholar 

  37. Sanchez P, Drapier AM, Cohen-Tannoudji M, Colucci E, Babinet C, Cazenave PA. Compartmentalization of lambda subtype expression in the B cell repertoire of mice with a disrupted or normal C kappa gene segment. Int Immunol. 1994;6(5):711–9.

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Trounstine M, Kurahara C, Young F, Kuo CC, Xu Y, et al. B cell development in mice that lack one or both immunoglobulin kappa light chain genes. EMBO J. 1993;12(3):821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zou X, Piper TA, Smith JA, Allen ND, Xian J, Brüggemann M. Block in development at the pre-B-II to immature B cell stage in mice without Ig kappa and Ig lambda light chain. J Immunol. 2003;170(3):1354–61.

    Article  CAS  PubMed  Google Scholar 

  40. Kuroiwa Y1, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, et al. Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet. 2004;36(7):775–80.

    Google Scholar 

  41. Matsushita H, Sano A, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, et al. Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production. PLoS One. 2014;9(3):e90383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mendicino M, Ramsoondar J, Phelps C, Vaught T, Ball S, LeRoith T, et al. Generation of antibody- and B cell-deficient pigs by targeted disruption of the J-region gene segment of the heavy chain locus. Transgenic Res. 2011;20(3):625–41.

    Article  CAS  PubMed  Google Scholar 

  43. Ramsoondar J, Mendicino M, Phelps C, Vaught T, Ball S, Monahan J, et al. Targeted disruption of the porcine immunoglobulin kappa light chain locus. Transgenic Res. 2011;20(3):643–53.

    Article  CAS  PubMed  Google Scholar 

  44. Schusser B, Collarini EJ, Yi H, Izquierdo SM, Fesler J, Pedersen D, et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci U S A. 2013;110(50):20170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325(5939):433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One. 2011;6(6):e21045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ménoret S, Iscache AL, Tesson L, Rémy S, Usal C, Osborn MJ, et al. Characterization of immunoglobulin heavy chain knockout rats. Eur J Immunol. 2010;40(10):2932–41.

    Article  PubMed  CAS  Google Scholar 

  48. Osborn MJ, Ma B, Avis S, Binnie A, Dilley J, Yang X, et al. High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igκ/Igλ loci bearing the rat CH region. J Immunol. 2013;190(4):1481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giudicelli V, Chaume D, Lefranc MP. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 2005;33:D256–61.

    Article  CAS  PubMed  Google Scholar 

  50. Kidd MJ, Chen Z, Wang Y, Jackson KJ, Zhang L, Boyd SD, et al. The inference of phased haplotypes for the immunoglobulin H chain V region gene loci by analysis of VDJ gene rearrangements. J Immunol. 2012;188:1333–40.

    Article  CAS  PubMed  Google Scholar 

  51. Ewert S, Huber T, Honegger A, Plüchthun A. Biophysical properties of human antibody variable domains. J Mol Biol. 2003;325:531–53.

    Article  CAS  PubMed  Google Scholar 

  52. Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol. 1992;227:776–98.

    Article  CAS  PubMed  Google Scholar 

  53. Green LL. Transgenic mouse strains as platforms for the successful discovery and development of human therapeutic monoclonal antibodies. Curr Drug Discov Technol. 2014;11(1):74–84.

    Article  CAS  PubMed  Google Scholar 

  54. Murphy AJ, Macdonald LE, Stevens S, Karow M, Dore AT, Pobursky K, et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A. 2014;111(14):5153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsushita H, Sano A, Wu H, Wang Z, Jiao JA, Kasinathan P, et al. Species-specific chromosome engineering greatly improves fully human polyclonal antibody production profile in cattle. PLoS One. 2015;10(6):e0130699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hombach J, Tsubata T, Leclercq L, Stappert H, Reth M. Molecular components of the B-cell antigen receptor complex of the IgM class. Nature. 1990;343(6260):760–2.

    Article  CAS  PubMed  Google Scholar 

  57. Nimmerjahn F, Ravetch JV. Fc-receptors as regulators of immunity. Adv Immunol. 2007;96:179–204.

    Article  CAS  PubMed  Google Scholar 

  58. Shi X, Eckhardt LA. Deletional analyses reveal an essential role for the hs3b/hs4 IgH 3′ enhancer pair in an Ig-secreting but not an earlier-stage B cell line. Int Immunol. 2001;13(8):1003–12.

    Article  CAS  PubMed  Google Scholar 

  59. Ma B, Osborn MJ, Avis S, Ouisse LH, Ménoret S, Anegon I, et al. Human antibody expression in transgenic rats: comparison of chimeric IgH loci with human VH, D and JH but bearing different rat C-gene regions. J Immunol Methods. 2013;400-401:78–86.

    Article  CAS  PubMed  Google Scholar 

  60. Lee EC, Liang Q, Ali H, Bayliss L, Beasley A, Bloomfield-Gerdes T, et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol. 2014;32(4):356–63.

    Article  CAS  PubMed  Google Scholar 

  61. Weichhold GM, Ohnheiser R, Zachau HG. The human immunoglobulin kappa locus consists of two copies that are organized in opposite polarity. Genomics. 1993;16(2):503–11.

    Article  CAS  PubMed  Google Scholar 

  62. Watson CT, Steinberg KM, Graves TA, Warren RL, Malig M, Schein J, et al. Sequencing of the human IG light chain loci from a hydatidiform mole BAC library reveals locus-specific signatures of genetic diversity. Genes Immun. 2015;16(1):24–34.

    Article  CAS  PubMed  Google Scholar 

  63. Schaible G, Rappold GA, Pargent W, Zachau HG. The immunoglobulin kappa locus: polymorphism and haplotypes of Caucasoid and non-Caucasoid individuals. Hum Genet. 1993;91(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  64. Collins AM, Watson CT. Immunoglobulin light chain gene rearrangements. Receptor editing and the development of a self-tolerant antibody repertoire. Front Immunol. 2018;9:2249.

    PubMed  Google Scholar 

  65. Popov AV, Zou X, Xian J, Nicholson IC, Brüggemann M. A human immunoglobulin lambda locus is similarly well expressed in mice and humans. J Exp Med. 1999;189(10):1611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Woloschak GE, Krco CJ. Regulation of kappa/lambda immunoglobulin light chain expression in normal murine lymphocytes. Mol Immunol. 1987;24(7):751–7.

    Article  CAS  PubMed  Google Scholar 

  67. Molé CM, Béne MC, Montagne PM, Seilles E, Faure GC. Light chains of immunoglobulins in human secretions. Clin Chim Acta. 1994;224(2):191–7.

    Article  PubMed  Google Scholar 

  68. Nicholson IC, Zou X, Popov AV, Cook GP, Corps EM, Humphries S, et al. Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol. 1999;163(12):6898–906.

    CAS  PubMed  Google Scholar 

  69. Pruzina S, Williams GT, Kaneva G, Davies SL, Martín-López A, Brüggemann M, et al. Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci. Protein Eng Des Sel. 2011;24(10):791–9.

    Article  CAS  PubMed  Google Scholar 

  70. Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR, et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature. 1994;368(6474):856–9.

    Article  CAS  PubMed  Google Scholar 

  71. Fishwild DM, O'Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL, et al. High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol. 1996;14(7):845–51.

    Article  CAS  PubMed  Google Scholar 

  72. Strohl WR. Current progress in innovative engineered antibodies. Protein Cell. 2018;9(1):86–120.

    Article  CAS  PubMed  Google Scholar 

  73. Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet. 1994;7(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  74. Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD, et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet. 1997;15(2):146–56.

    Article  CAS  PubMed  Google Scholar 

  75. Jakobovits A, Amado RG, Yang X, Roskos L, Schwab G. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol. 2007;25(10):1134–43.

    Article  CAS  PubMed  Google Scholar 

  76. Ishida I, Tomizuka K, Yoshida H, Tahara T, Takahashi N, Ohguma A, et al. Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells. 2002;4(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  77. Sano A, Matsushita H, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, et al. Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle. PLoS One. 2013;8(10):e78119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dye JM, Wu H, Hooper JW, Khurana S, Kuehne AI, Coyle EM, et al. Production of potent fully human polyclonal antibodies against Ebola Zaire virus in Transchromosomal cattle. Sci Rep. 2016;6:24897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beigel JH, Voell J, Kumar P, Raviprakash K, Wu H, Jiao JA, et al. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis. 2018;18(4):410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Luke T, Bennett RS, Gerhardt DM, Burdette T, Postnikova E, Mazur S, et al. Fully Human Immunoglobulin G from Transchromosomic bovines treats nonhuman primates infected with Ebola virus Makona isolate. J Infect Dis 2018; 218(suppl_5):S636-S648.

    Google Scholar 

  81. Wu H, Fan Z, Brandsrud M, Meng Q, Bobbitt M, Regouski M, et al. Generation of H7N9-specific human polyclonal antibodies from a transchromosomic goat (caprine) system. Sci Rep. 2019;9(1):366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Buelow R, van Schooten W. The future of antibody therapy. Ernst Schering Found Symp Proc. 2006;4:83–106.

    Google Scholar 

  83. Clarke SC, Ma B, Trinklein ND, Schellenberger U, Osborn MJ, Ouisse LH, et al. Multispecific antibody development platform based on human heavy chain antibodies. Front Immunol. 2019;9:3037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ching KH, Collarini EJ, Abdiche YN, Bedinger D, Pedersen D, Izquierdo S, et al. Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets. MAbs. 2018;10(1):71–80.

    Article  CAS  PubMed  Google Scholar 

  85. Harris KE, Aldred SF, Davison LM, Ogana HAN, Boudreau A, Brüggemann M, et al. Sequence-based discovery demonstrates that fixed light chain human transgenic rats produce a diverse repertoire of antigen-specific antibodies. Front Immunol. 2018;9:889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.

    Article  CAS  PubMed  Google Scholar 

  87. Könning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S, et al. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol. 2017;45:10–6.

    Article  PubMed  CAS  Google Scholar 

  88. Nguyen VK, Hamers R, Wyns L, Muyldermans S. Loss of splice consensus signal is responsible for the removal of the entire C(H)1 domain of the functional camel IGG2A heavy-chain antibodies. Mol Immunol. 1999;36:515–24.

    Article  CAS  PubMed  Google Scholar 

  89. Nguyen VK, Muyldermans S, Hamers R. The specific variable domain of camel heavy-chain antibodies is encoded in the germline. J Mol Biol. 1998;275:413–8.

    Article  CAS  PubMed  Google Scholar 

  90. Hendershot LM. Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition. J Cell Biol. 1990;111:829–37.

    Article  CAS  PubMed  Google Scholar 

  91. Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H, Hendershot LM, et al. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol Cell. 2009;34:569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, et al. Single-domain antibody fragments with high conformational stability. Protein Sci. 2002;11(3):500–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta. 1999;1431(1):37–46.

    Article  PubMed  Google Scholar 

  94. Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998;17:3512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103(12):4586–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tijink BM, Laeremans T, Budde M, Stigter-van Walsum M, Dreier T, de Haard HJ, et al. Improved tumor targeting of anti-epidermal growth factor receptor nanobodies through albumin binding: taking advantage of modular nanobody technology. Mol Cancer Ther. 2008;7(8):2288–97.

    Article  CAS  PubMed  Google Scholar 

  97. Oliveira S, van Dongen GA, Stigter-van Walsum M, Roovers RC, Stam JC, Mali W, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 2012;11(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  98. Huet HA, Growney JD, Johnson JA, Li J, Bilic S, Ostrom L, et al. Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction. MAbs. 2014;6(6):1560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P, Kremer Hovinga JA, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46.

    Article  CAS  PubMed  Google Scholar 

  100. Janssens R, Dekker S, Hendriks RW, Panayotou G, Remoortere AV, San JK, et al. Generation of heavy-chain-only antibodies in mice. Proc Natl Acad Sci U S A. 2006;103:15130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Drabek D, Janssens R, de Boer E, Rademaker R, Kloess J, Skehel J, et al. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells. Front Immunol. 2016;7:619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Teng Y, Young JL, Edwards B, Hayes P, Thompson L, Johnston C, et al. Diverse human VH antibody fragments with bio-therapeutic properties from the crescendo mouse. New Biotechnol. 2020;55:65–76.

    Article  CAS  Google Scholar 

  103. Chothia C, Novotny J, Bruccoleri R, Karplus M. Domain association in immunoglobulin molecules. The packing of variable domains. The packing of variable domains. J Mol Biol. 1985;186:651–63.

    Article  CAS  PubMed  Google Scholar 

  104. Ouisse LH, Gautreau-Rolland L, Devilder MC, Osborn M, Moyon M, Visentin J, et al. Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies. BMC Biotechnol. 2017;17(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Winters A, McFadden K, Bergen J, Landas J, Berry KA, Gonzalez A, et al. Rapid single B cell antibody discovery using nanopens and structured light. MAbs. 2019;11(6):1025–35.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Adler AS, Bedinger D, Adams MS, Asensio MA, Edgar RC, Leong R, et al. A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library. MAbs. 2018;10(3):431–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Further Reading

Further Reading

  • Almagro JC, Daniels-Wells TR, Perez-Tapia SM, Penichet ML. Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Front Immunol 2018; 8:1751

  • Brüggemann M, Osborn MJ, Ma B, Buelow R. Strategies to obtain diverse and specific Human monoclonal antibodies from transgenic animals. Transplantation 2017; 101(8):1770–1776

  • Chen WC, Murawsky CM. Strategies for Generating Diverse Antibody Repertoires Using Transgenic Animals Expressing Human Antibodies. Front Immunol 2018; 9:460.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, B., Osborn, M. (2021). Transgenic Animals for the Generation of Human Antibodies. In: Rüker, F., Wozniak-Knopp, G. (eds) Introduction to Antibody Engineering. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-54630-4_5

Download citation

Publish with us

Policies and ethics