Skip to main content

Inherited Neuroendocrine Neoplasms

  • Chapter
  • First Online:
The Spectrum of Neuroendocrine Neoplasia

Abstract

Inherited neuroendocrine neoplasms (NENs) represent a heterogeneous group of disorders that often present with subtle clinical or biochemical features. The well-recognized entities include a spectrum of associated neoplasms harboring various degrees of biologic aggressiveness, which often show variable degrees of genotype-phenotype correlations and penetrance. The rate of germline susceptibility in endocrine neoplasms is generally underestimated as most healthcare providers do not routinely consider the possibility of germline disease in a seemingly sporadic presentation in adults over the age of 50–60 years. Variations in disease penetrance and de novo pathogenic variants can lead to late-onset manifestations of inherited NENs that can simulate sporadic disease in the absence of family history. Some of these also manifest with a non-syndromic presentation as seen in patients with familial isolated hyperparathyroidism (FIHP), familial isolated pituitary adenoma (FIPA), as well as in a subset of multiple endocrine neoplasia type 2 (MEN2) patients manifesting only with medullary thyroid carcinoma (formerly known as familial isolated medullary thyroid carcinoma syndrome). The suspicion of an underlying germline susceptibility for NENs should be based on tumor multifocality and morphology including non-tumorous parenchyma, identification of hyperplasia-to-neoplasia progression sequence, early-onset, and coexistence of synchronous or asynchronous endocrinopathies, including endocrine neoplasias. The delivery of genetic care for hereditary inherited disorders is multifaceted and involves multiple healthcare practitioners, including laboratory geneticists, physician geneticists, and genetic counsellors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duan K, Mete O. Hereditary endocrine tumor syndromes: the clinical and predictive role of molecular histopathology. AJSP Rev Rep. 2017;22(5):246–68.

    Google Scholar 

  2. Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, Busam KJ, de Krijger RR, Dietel M, El-Naggar AK, Fernandez-Cuesta L, Klöppel G, McCluggage WG, Moch H, Ohgaki H, Rakha EA, Reed NS, Rous BA, Sasano H, Scarpa A, Scoazec JY, Travis WD, Tallini G, Trouillas J, van Krieken JH, Cree IA. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31(12):1770–86.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Minnetti M, Grossman A. Somatic and germline mutations in NETs: implications for their diagnosis and management. Best Pract Res Clin Endocrinol Metab. 2016;30(1):115–27.

    Article  CAS  PubMed  Google Scholar 

  4. Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, Rusev B, Scardoni M, Antonello D, Barbi S, Sikora KO, Cingarlini S, Vicentini C, McKay S, Quinn MC, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, McLean S, Nourse C, Nourbakhsh E, Wilson PJ, Anderson MJ, Fink JL, Newell F, Waddell N, Holmes O, Kazakoff SH, Leonard C, Wood S, Xu Q, Nagaraj SH, Amato E, Dalai I, Bersani S, Cataldo I, Dei Tos AP, Capelli P, Davì MV, Landoni L, Malpaga A, Miotto M, Whitehall VL, Leggett BA, Harris JL, Harris J, Jones MD, Humphris J, Chantrill LA, Chin V, Nagrial AM, Pajic M, Scarlett CJ, Pinho A, Rooman I, Toon C, Wu J, Pinese M, Cowley M, Barbour A, Mawson A, Humphrey ES, Colvin EK, Chou A, Lovell JA, Jamieson NB, Duthie F, Gingras MC, Fisher WE, Dagg RA, Lau LM, Lee M, Pickett HA, Reddel RR, Samra JS, Kench JG, Merrett ND, Epari K, Nguyen NQ, Zeps N, Falconi M, Simbolo M, Butturini G, Van Buren G, Partelli S, Fassan M, Australian Pancreatic Cancer Genome Initiative, Khanna KK, Gill AJ, Wheeler DA, Gibbs RA, Musgrove EA, Bassi C, Tortora G, Pederzoli P, Pearson JV, Waddell N, Biankin AV, Grimmond SM. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71.

    Article  CAS  PubMed  Google Scholar 

  5. Szybowska M, Mete O, Weber E, Silver J, Kim RH. Neuroendocrine neoplasms associated with germline pathogenic variants in the homologous recombination pathway. Endocr Pathol. 2019;30(3):237–45.

    Article  PubMed  Google Scholar 

  6. Asa SL, Mete O. Immunohistochemical biomarkers in pituitary pathology. Endocr Pathol. 2018;29(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  7. Erickson LA, Mete O. Immunohistochemistry in diagnostic parathyroid pathology. Endocr Pathol. 2018;29(2):113–29.

    Article  CAS  PubMed  Google Scholar 

  8. Kapur A, Singh N, Mete O, Hegele RA, Fantus IG. A young male with parafibromin-deficient parathyroid carcinoma due to a rare germline HRPT2/CDC73 mutation. Endocr Pathol. 2018;29(4):374–9.

    Article  CAS  PubMed  Google Scholar 

  9. Gill AJ. Understanding the genetic basis of parathyroid carcinoma. Endocr Pathol. 2014;25(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  10. Juhlin CC, Villablanca A, Sandelin K, Haglund F, Nordenström J, Forsberg L, Bränström R, Obara T, Arnold A, Larsson C, Höög A. Parafibromin immunoreactivity: its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer. 2007;14(2):501–12.

    Article  CAS  PubMed  Google Scholar 

  11. Uccella S, La Rosa S, Volante M, Papotti M. Immunohistochemical biomarkers of gastrointestinal, pancreatic, pulmonary, and thymic neuroendocrine neoplasms. Endocr Pathol. 2018;29(2):150–68.

    Article  PubMed  Google Scholar 

  12. Cheung VKY, Gill AJ, Chou A. Old, new, and emerging immunohistochemical markers in pheochromocytoma and paraganglioma. Endocr Pathol. 2018;29(2):169–75.

    Article  PubMed  Google Scholar 

  13. De Sousa SMC, McCabe MJ, Wu K, Roscioli T, Gayevskiy V, Brook K, Rawlings L, Scott HS, Thompson TJ, Earls P, Gill AJ, Cowley MJ, Dinger ME, McCormack AI. Germline variants in familial pituitary tumour syndrome genes are common in young patients and families with additional endocrine tumours. Eur J Endocrinol. 2017;176(5):635–44.

    Article  PubMed  Google Scholar 

  14. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol. 2014;386(1–2):2–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schernthaner-Reiter MH, Trivellin G, Stratakis CA. MEN1, MEN4, and carney complex: pathology and molecular genetics. Neuroendocrinology. 2016;103(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  16. Kamilaris CDC, Faucz FR, Voutetakis A, Stratakis CA. Carney complex. Exp Clin Endocrinol Diabetes. 2019;127(2–03):156–64.

    CAS  PubMed  Google Scholar 

  17. Daly AF, Beckers A. Familial isolated pituitary adenomas (FIPA) and mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocrinol Metab Clin North Am. 2015;44(1):19–25.

    Article  PubMed  Google Scholar 

  18. Pepe S, Korbonits M, Iacovazzo D. Germline and mosaic mutations causing pituitary tumours: genetic and molecular aspects. J Endocrinol. 2019;240(2):R21–45.

    Article  PubMed  Google Scholar 

  19. Vortmeyer AO, Gläsker S, Mehta GU, Abu-Asab MS, Smith JH, Zhuang Z, Collins MT, Oldfield EH. Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune-Albright syndrome. J Clin Endocrinol Metab. 2012;97(7):2404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tatsi C, Stratakis CA. The genetics of pituitary adenomas. J Clin Med. 2019;9(1). pii: E30.

    Google Scholar 

  21. Trivellin G, Daly AF, Faucz FR, Yuan B, Rostomyan L, Larco DO, Schernthaner-Reiter MH, Szarek E, Leal LF, Caberg JH, Castermans E, Villa C, Dimopoulos A, Chittiboina P, Xekouki P, Shah N, Metzger D, Lysy PA, Ferrante E, Strebkova N, Mazerkina N, Zatelli MC, Lodish M, Horvath A, de Alexandre RB, Manning AD, Levy I, Keil MF, Sierra Mde L, Palmeira L, Coppieters W, Georges M, Naves LA, Jamar M, Bours V, Wu TJ, Choong CS, Bertherat J, Chanson P, Kamenický P, Farrell WE, Barlier A, Quezado M, Bjelobaba I, Stojilkovic SS, Wess J, Costanzi S, Liu P, Lupski JR, Beckers A, Stratakis CA. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014;371(25):2363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bengtsson D, Joost P, Aravidis C, Askmalm Stenmark M, Backman AS, Melin B, von Salomé J, Zagoras T, Gebre-Medhin S, Burman P. Corticotroph pituitary carcinoma in a patient with lynch syndrome (LS) and pituitary tumors in a nationwide LS cohort. J Clin Endocrinol Metab. 2017;102(11):3928–32.

    Article  PubMed  Google Scholar 

  23. Gill AJ, Toon CW, Clarkson A, Sioson L, Chou A, Winship I, Robinson BG, Benn DE, Clifton-Bligh RJ, Dwight T. Succinate dehydrogenase deficiency is rare in pituitary adenomas. Am J Surg Pathol. 2014;38(4):560–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tufton N, Roncaroli F, Hadjidemetriou I, Dang MN, Dénes J, Guasti L, Thom M, Powell M, Baldeweg SE, Fersht N, Korbonits M. Pituitary carcinoma in a patient with an SDHB mutation. Endocr Pathol. 2017;28(4):320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roszko KL, Blouch E, Blake M, Powers JF, Tischler AS, Hodin R, Sadow P, Lawson EA. Case report of a prolactinoma in a patient with a novel MAX mutation and bilateral pheochromocytomas. J Endocr Soc. 2017;1(11):1401–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xekouki P, Brennand A, Whitelaw B, Pacak K, Stratakis CA. The 3PAs: an update on the association of pheochromocytomas, paragangliomas, and pituitary tumors. Horm Metab Res. 2019;51(7):419–36.

    Article  CAS  PubMed  Google Scholar 

  27. Hernández-Ramírez LC, Gam R, Valdés N, Lodish MB, Pankratz N, Balsalobre A, Gauthier Y, Faucz FR, Trivellin G, Chittiboina P, Lane J, Kay DM, Dimopoulos A, Gaillard S, Neou M, Bertherat J, Assié G, Villa C, Mills JL, Drouin J, Stratakis CA. Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing’s disease. Endocr Relat Cancer. 2017;24(8):379–92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cohen M, Persky R, Stegemann R, Hernández-Ramírez LC, Zeltser D, Lodish MB, Chen A, Keil MF, Tatsi C, Faucz FR, Buchner DA, Stratakis CA, Tiosano D. Germline USP8 mutation associated with pediatric Cushing disease and other clinical features: a new syndrome. J Clin Endocrinol Metab. 2019;104(10):4676–82.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Faucz FR, Horvath AD, Azevedo MF, Levy I, Bak B, Wang Y, Xekouki P, Szarek E, Gourgari E, Manning AD, de Alexandre RB, Saloustros E, Trivellin G, Lodish M, Hofman P, Anderson YC, Holdaway I, Oldfield E, Chittiboina P, Nesterova M, Biermasz NR, Wit JM, Bernard DJ, Stratakis CA. Is IGSF1 involved in human pituitary tumor formation? Endocr Relat Cancer. 2015;22(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  30. de Kock L, Sabbaghian N, Plourde F, Srivastava A, Weber E, Bouron-Dal Soglio D, Hamel N, Choi JH, Park SH, Deal CL, Kelsey MM, Dishop MK, Esbenshade A, Kuttesch JF, Jacques TS, Perry A, Leichter H, Maeder P, Brundler MA, Warner J, Neal J, Zacharin M, Korbonits M, Cole T, Traunecker H, McLean TW, Rotondo F, Lepage P, Albrecht S, Horvath E, Kovacs K, Priest JR, Foulkes WD. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol. 2014;128(1):111–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, Cho-Chung YS, Stratakis CA. Mutations of the gene encoding the protein kinase A type I-[alpha] regulatory subunit in patients with the Carney complex. Nat Genet. 2000;26:89–92.

    Article  CAS  PubMed  Google Scholar 

  32. Mete O, Boyce AM, Stratakis CA, Weinstein LS. McCune-Albright syndrome. In: Lloyd RV, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: IARC; 2017. p. 272–4.

    Google Scholar 

  33. Pellegata NS, Quintanilla-Martinez L, Siggelkow H, et al. Germline mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A. 2006;103(42):15558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verges B, Boureille F, Goudet P, et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab. 2002;87(2):457–65.

    Article  CAS  PubMed  Google Scholar 

  35. Trouillas J, Labat-Moleur F, Sturm N, Kujas M, Heymann MF, Figarella-Branger D, Patey M, Mazucca M, Decullier E, Vergès B, Chabre O, Calender A, Groupe d’études des Tumeurs Endocrines. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study in a series of 77 patients versus 2509 non-MEN1 patients. Am J Surg Pathol. 2008;32(4):534–43.

    Article  PubMed  Google Scholar 

  36. Mete O, Gomez-Hernandez K, Kucharczyk W, Ridout R, Zadeh G, Gentili F, Ezzat S, Asa SL. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod Pathol. 2016;29(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  37. Moran A, Asa SL, Kovacs K, Horvath E, Singer W, Sagman U, Reubi JC, Wilson CB, Larson R, Pescovitz OH. Gigantism due to pituitary mammosomatotroph hyperplasia. N Engl J Med. 1990;323(5):322–7.

    Article  CAS  PubMed  Google Scholar 

  38. Boikos SA, Stratakis CA. Pituitary pathology in patients with Carney Complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities. Pituitary. 2006;9(3):203–9.

    Article  CAS  PubMed  Google Scholar 

  39. Pack SD, Kirschner LS, Pak E, Zhuang Z, Carney JA, Stratakis CA. Genetic and histologic studies of somatomammotropic pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). J Clin Endocrinol Metab. 2000;85(10):3860–5.

    CAS  PubMed  Google Scholar 

  40. Mete O, Asa SL. Precursor lesions of endocrine system neoplasms. Pathology. 2013;45(3):316–30.

    Article  CAS  PubMed  Google Scholar 

  41. Hannah-Shmouni F, Stratakis CA. Growth hormone excess in neurofibromatosis 1. Genet Med. 2019;21(5):1254–5.

    Article  PubMed  Google Scholar 

  42. Hannah-Shmouni F, Demidowich AP, Rowell J, Lodish M, Stratakis CA. Large pituitary gland with an expanding lesion in the context of neurofibromatosis 1. BMJ Case Rep. 2017;2017. pii: bcr-2017-222411.

    Google Scholar 

  43. Mete O, Cintosun A, Pressman I, Asa SL. Epidemiology and biomarker profile of pituitary adenohypophysial tumors. Mod Pathol. 2018;31(6):900–9.

    Article  CAS  PubMed  Google Scholar 

  44. Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev. 2013;34:239–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schofl C, Honegger J, Droste M, et al. Frequency of AIP gene mutations in young patients with acromegaly: a registry-based study. J Clin Endocrinol Metab. 2014;99(12):E2789–93.

    Article  PubMed  CAS  Google Scholar 

  46. Hernandez-Ramirez LC, Gabrovska P, Denes J, Stals K, Trivellin G, Tilley D, Ferrau F, Evanson J, Ellard S, Grossman AB, et al. Landscape of familial isolated and young-onset pituitary adenomas: prospective diagnosis in AIP mutation carriers. J Clin Endocrinol Metab. 2015;100:E1242–54.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Daly AF, Jaffrain-Rea ML, Ciccarelli A, Valdes-Socin H, Rohmer V, Tamburrano G, Borson-Chazot C, Estour B, Ciccarelli E, Brue T, Ferolla P, Emy P, Colao A, De Menis E, Lecomte P, Penfornis F, Delemer B, Bertherat J, Wémeau JL, De Herder W, Archambeaud F, Stevenaert A, Calender A, Murat A, Cavagnini F, Beckers A. Clinical characterization of familial isolated pituitary adenomas. J Clin Endocrinol Metab. 2006;91:3316–23.

    Article  CAS  PubMed  Google Scholar 

  48. Heck A, Emblem KE, Casar-Borota O, Bollerslev J, Ringstad G. Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly. Endocrine. 2016;52(2):333–43.

    Article  CAS  PubMed  Google Scholar 

  49. Potorac I, Petrossians P, Daly AF, Alexopoulou O, Borot S, Sahnoun-Fathallah M, Castinetti F, Devuyst F, Jaffrain-Rea ML, Briet C, Luca F, Lapoirie M, Zoicas F, Simoneau I, Diallo AM, Muhammad A, Kelestimur F, Nazzari E, Centeno RG, Webb SM, Nunes ML, Hana V, Pascal-Vigneron V, Ilovayskaya I, Nasybullina F, Achir S, Ferone D, Neggers SJ, Delemer B, Petit JM, Schöfl C, Raverot G, Goichot B, Rodien P, Corvilain B, Brue T, Schillo F, Tshibanda L, Maiter D, Bonneville JF, Beckers A. T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer. 2016;23(11):871–81.

    Article  PubMed  Google Scholar 

  50. Alhambra-Expósito MR, Ibáñez-Costa A, Moreno-Moreno P, Rivero-Cortés E, Vázquez-Borrego MC, Blanco-Acevedo C, Toledano-Delgado Á, Lombardo-Galera MS, Vallejo-Casas JA, Gahete MD, Castaño JP, Gálvez MA, Luque RM. Association between radiological parameters and clinical and molecular characteristics in human somatotropinomas. Sci Rep. 2018;8(1):6173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Daly AF, Tichomirowa MA, Petrossians P, Heliövaara E, Jaffrain-Rea ML, Barlier A, Naves LA, Ebeling T, Karhu A, Raappana A, Cazabat L, De Menis E, Montañana CF, Raverot G, Weil RJ, Sane T, Maiter D, Neggers S, Yaneva M, Tabarin A, Verrua E, Eloranta E, Murat A, Vierimaa O, Salmela PI, Emy P, Toledo RA, Sabaté MI, Villa C, Popelier M, Salvatori R, Jennings J, Longás AF, Labarta Aizpún JI, Georgitsi M, Paschke R, Ronchi C, Valimaki M, Saloranta C, De Herder W, Cozzi R, Guitelman M, Magri F, Lagonigro MS, Halaby G, Corman V, Hagelstein MT, Vanbellinghen JF, Barra GB, Gimenez-Roqueplo AP, Cameron FJ, Borson-Chazot F, Holdaway I, Toledo SP, Stalla GK, Spada A, Zacharieva S, Bertherat J, Brue T, Bours V, Chanson P, Aaltonen LA, Beckers A. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab. 2020;95:E373–83.

    Article  Google Scholar 

  52. Dénes J, Kasuki L, Trivellin G, Colli LM, Takiya CM, Stiles CE, Barry S, de Castro M, Gadelha MR, Korbonits M. Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS One. 2015;10(2):e0117107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Villa C, Lagonigro MS, Magri F, Koziak M, Jaffrain-Rea ML, Brauner R, Bouligand J, Junier MP, Di Rocco F, Sainte-Rose C, Beckers A, Roux FX, Daly AF, Chiovato L. Hyperplasia-adenoma sequence in pituitary tumorigenesis related to aryl hydrocarbon receptor interacting protein gene mutation. Endocr Relat Cancer. 2011;18(3):347–56.

    Article  CAS  PubMed  Google Scholar 

  54. Asa SL, Ezzat S. Aggressive pituitary tumors or localized pituitary carcinomas: defining pituitary tumors. Expert Rev Endocrinol Metab. 2016;11(2):149–62.

    Article  CAS  PubMed  Google Scholar 

  55. Hannah-Shmouni F, Stratakis CA. An update on the genetics of benign pituitary adenomas in children and adolescents. Curr Opin Endocr Metab Res. 2018;1:19–24.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Beckers A, Lodish MB, Trivellin G, Rostomyan L, Lee M, Faucz FR, Yuan B, Choong CS, Caberg JH, Verrua E, et al. X-linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr Relat Cancer. 2015;22:353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rostomyan L, Daly AF, Petrossians P, Nachev E, Lila AR, Lecoq AL, Lecumberri B, Trivellin G, Salvatori R, Moraitis AG, Holdaway I, Kranenburg-van Klaveren DJ, Chiara Zatelli M, Palacios N, Nozieres C, Zacharin M, Ebeling T, Ojaniemi M, Rozhinskaya L, Verrua E, Jaffrain-Rea ML, Filipponi S, Gusakova D, Pronin V, Bertherat J, Belaya Z, Ilovayskaya I, Sahnoun-Fathallah M, Sievers C, Stalla GK, Castermans E, Caberg JH, Sorkina E, Auriemma RS, Mittal S, Kareva M, Lysy PA, Emy P, De Menis E, Choong CS, Mantovani G, Bours V, De Herder W, Brue T, Barlier A, Neggers SJ, Zacharieva S, Chanson P, Shah NS, Stratakis CA, Naves LA, Beckers A. Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocr Relat Cancer. 2015;22(5):745–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guerrero-Pérez F, Fajardo C, Torres Vela E, Giménez-Palop O, Lisbona Gil A, Martín T, González N, Díez JJ, Iglesias P, Robledo M, Villabona C. 3P association (3PAs): pituitary adenoma and pheochromocytoma/paraganglioma. A heterogeneous clinical syndrome associated with different gene mutations. Eur J Intern Med. 2019;pii: S0953–6205(19):30276. https://doi.org/10.1016/j.ejim.2019.08.005. [Epub head of print].

    Article  CAS  Google Scholar 

  59. Scheithauer BW, Kovacs K, Horvath E, Kim DS, Osamura RY, Ketterling RP, Lloyd RV, Kim OL. Pituitary blastoma. Acta Neuropathol. 2008;116(6):657–66.

    Article  PubMed  Google Scholar 

  60. Scheithauer BW, Horvath E, Abel TW, Robital Y, Park SH, Osamura RY, Deal C, Lloyd RV, Kovacs K. Pituitary blastoma: a unique embryonal tumor. Pituitary. 2012;15(3):365–73.

    Article  PubMed  Google Scholar 

  61. Wasserman JD, Sabbaghian N, Fahiminiya S, Chami R, Mete O, Acker M, Wu MK, Shlien A, de Kock L, Foulkes WD. DICER1 mutations are frequent in adolescent-onset papillary thyroid carcinoma. J Clin Endocrinol Metab. 2018;103(5):2009–15. Erratum in: J Clin Endocrinol Metab. 2018;103(8):3114.

    Article  PubMed  Google Scholar 

  62. Khan NE, Bauer AJ, Schultz KAP, Doros L, Decastro RM, Ling A, Lodish MB, Harney LA, Kase RG, Carr AG, et al. Quantification of thyroid cancer and multinodular goiter risk in the DICER1 syndrome: a family-based cohort study. J Clin Endocrinol Metab. 2017;102:1614–22.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F, Meitinger T, Mizuno-Yamasaki E, Kawaguchi K, Saeki Y, Tanaka K, Wieland T, Graf E, Saeger W, Ronchi CL, Allolio B, Buchfelder M, Strom TM, Fassnacht M, Komada M. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet. 2015;47(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  64. Perez-Rivas LG, Theodoropoulou M, Ferraù F, Nusser C, Kawaguchi K, Stratakis CA, Faucz FR, Wildemberg LE, Assié G, Beschorner R, Dimopoulou C, Buchfelder M, Popovic V, Berr CM, Tóth M, Ardisasmita AI, Honegger J, Bertherat J, Gadelha MR, Beuschlein F, Stalla G, Komada M, Korbonits M, Reincke M. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J Clin Endocrinol Metab. 2015;100(7):E997–E1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Faucz FR, Tirosh A, Tatsi C, Berthon A, Hernández-Ramírez LC, Settas N, Angelousi A, Correa R, Papadakis GZ, Chittiboina P, Quezado M, Pankratz N, Lane J, Dimopoulos A, Mills JL, Lodish M, Stratakis CA. Somatic USP8 gene mutations are a common cause of pediatric Cushing disease. J Clin Endocrinol Metab. 2017;102(8):2836–43.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ballmann C, Thiel A, Korah HE, Reis AC, Saeger W, Stepanow S, Köhrer K, Reifenberger G, Knobbe-Thomsen CB, Knappe UJ, Scholl UI. USP8 mutations in pituitary Cushing adenomas-targeted analysis by next-generation sequencing. J Endocr Soc. 2018;2(3):266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tudorancea A, François P, Trouillas J, Cottier JP, Girard JJ, Jan M, Gilbert-Dussardier B, Richard S, Lecomte P. Von Hippel-Lindau disease and aggressive GH-PRL pituitary adenoma in a young boy. Ann Endocrinol (Paris). 2012;73(1):37–42.

    Article  Google Scholar 

  68. Nandagopal R, Vortmeyer A, Oldfield EH, Keil MF, Stratakis CA. Cushing’s syndrome due to a pituitary corticotropinoma in a child with tuberous sclerosis: an association or a coincidence? Clin Endocrinol (Oxf). 2007;67(4):639–41.

    Google Scholar 

  69. Saito T, Miura D, Taguchi M, Takeshita A, Miyakawa M, Takeuchi Y. Coincidence of multiple endocrine neoplasia type 2A with acromegaly. Am J Med Sci. 2010;340(4):329–31.

    Article  PubMed  Google Scholar 

  70. Hozumi K, Fukuoka H, Odake Y, Takeuchi T, Uehara T, Sato T, Inoshita N, Yoshida K, Matsumoto R, Bando H, Hirota Y, Iguchi G, Taniguchi M, Otsuki N, Nishigori C, Kosaki K, Hasegawa T, Ogawa W, Takahashi Y. Acromegaly caused by a somatotroph adenoma in patient with neurofibromatosis type 1. Endocr J. 2019;66(10):853–7.

    Article  PubMed  Google Scholar 

  71. Kurozumi K, Tabuchi A, Ono Y, Tamiya T, Ohmoto T, Furuta T, Hamasaki S. Pituitary adenoma associated with neurofibromatosis type 1: case report. No Shinkei Geka. 2002;30(7):741–5.

    PubMed  Google Scholar 

  72. Thomas CM, Asa SL, Ezzat S, Sawka AM, Goldstein D. Diagnosis and pathologic characteristics of medullary thyroid carcinoma-review of current guidelines. Curr Oncol. 2019;26(5):338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Asa SL, Mete O. Cytology and pathology of medullary thyroid carcinoma: pitfalls and challenges. In: Evans D, Wang TS, editors. Medullary thyroid cancer. Berlin: Springer; 2016. p. 33–46.

    Chapter  Google Scholar 

  74. LiVolsi V, DeLellis R, Komminoth P, Mete O, Mulligan L, Schmid KW, Waguespack SG, Elisei R, Eng C. Multiple endocrine neoplasia type 2. In: Lloyd RV, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: IARC; 2017. p. 248–52.

    Google Scholar 

  75. Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, Raue F, Frank-Raue K, Robinson B, Rosenthal MS, Santoro M, Schlumberger M, Shah M, Waguespack SG, American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mete O, Asa SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN 2B: case report and review of C-cell lesions of the thyroid. Pathol Case Rev. 2009;14:208–13.

    Article  Google Scholar 

  77. Reagh J, Bullock M, Andrici J, Turchini J, Sioson L, Clarkson A, Watson N, Sheen A, Lim G, Delbridge L, Sidhu S, Sywak M, Aniss A, Shepherd P, Ng D, Oei P, Field M, Learoyd D, Robinson BG, Clifton-Bligh RJ, Gill AJ. NRASQ61R mutation-specific immunohistochemistry also identifies the HRASQ61R mutation in medullary thyroid cancer and may have a role in triaging genetic testing for MEN2. Am J Surg Pathol. 2017;41(1):75–81.

    Article  PubMed  Google Scholar 

  78. Sponziello M, Benvenuti S, Gentile A, Pecce V, Rosignolo F, Virzì AR, Milan M, Comoglio PM, Londin E, Fortina P, Barnabei A, Appetecchia M, Marandino F, Russo D, Filetti S, Durante C, Verrienti A. Whole exome sequencing identifies a germline MET mutation in two siblings with hereditary wild-type RET medullary thyroid cancer. Hum Mutat. 2018;39(3):371–7.

    Article  CAS  PubMed  Google Scholar 

  79. Levy MT, Braun JT, Pennant M, Thompson LD. Primary paraganglioma of the parathyroid: a case report and clinicopathologic review. Head Neck Pathol. 2010;4(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  80. Thakker RV, Newey PJ, Walls GV, Bilezikian J, Dralle H, Ebeling PR, Melmed S, Sakurai A, Tonelli F, Brandi ML, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab. 2012;97:2990–3011.

    Article  CAS  PubMed  Google Scholar 

  81. Duan K, Gomez Hernandez K, Mete O. Clinicopathological correlates of hyperparathyroidism. J Clin Pathol. 2015;68(10):771–87.

    Article  CAS  PubMed  Google Scholar 

  82. Erovic BM, Harris L, Jamali M, Goldstein DP, Irish JC, Asa SL, Mete O. Biomarkers of parathyroid carcinoma. Endocr Pathol. 2012;23(4):221–31.

    Article  CAS  PubMed  Google Scholar 

  83. Silva-Figueroa AM, Bassett R Jr, Christakis I, Moreno P, Clarke CN, Busaidy NL, Grubbs EG, Lee JE, Perrier ND, Williams MD. Using a novel diagnostic nomogram to differentiate malignant from benign parathyroid neoplasms. Endocr Pathol. 2019;30(4):285–96.

    Article  CAS  PubMed  Google Scholar 

  84. Duan K, Mete O. Familial hyperparathyroidism syndromes. Diagn Histopathol. 2016;22(3):92–100.

    Article  Google Scholar 

  85. Belcher R, Metrailer AM, Bodenner DL, Stack BC Jr. Characterization of hyperparathyroidism in youth and adolescents: a literature review. Int J Pediatr Otorhinolaryngol. 2013;77:318–22.

    Article  PubMed  Google Scholar 

  86. Thakker RV. Genetics of parathyroid tumours. J Intern Med. 2016;280:574–83.

    Article  CAS  PubMed  Google Scholar 

  87. Komminoth P, Kloppel G, Korbonits M, Mete O, Scoazec JY, Stratakis CA. Multiple endocrine neoplasia type 1. In: Lloyd RV, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: IARC; 2017. p. 243–7.

    Google Scholar 

  88. Iacobone M, Carnaille B, Palazzo FF, Vriens M. Hereditary hyperparathyroidism consensus report of the European Society of endocrine surgeons (ESES). Langenbecks Arch Surg 2015;400(8):867–86.

    Google Scholar 

  89. Giusti F, Cavalli L, Cavalli T, Brandi ML. Hereditary hyperparathyroidism syndromes. J Clin Densitom. 2013;16:69e74.

    Article  Google Scholar 

  90. Udelsman R, _Akerstr€om G, Biagini C, et al. The surgical management of asymptomatic primary hyperparathyroidism: proceedings of the fourth international workshop. J Clin Endocrinol Metab. 2014;99:3595e606.

    Article  Google Scholar 

  91. Scholten A, Schreinemakers JMJ, Pieterman CRC, Valk GD, Vriens MR, Borel Rinkes IHM. Evolution of surgical treatment of primary hyperparathyroidism in patients with multiple endocrine neoplasia type 2A. Endocr Pract. 2011;17:7e15.

    Article  Google Scholar 

  92. Twigt BA, Scholten A, Valk GD, Rinkes IHB, Vriens MR. Differences between sporadic and MEN related primary hyperparathyroidism: clinical expression, preoperative workup, operative strategy and follow-up. Orphanet J Rare Dis. 2013;8:1e8.

    Article  Google Scholar 

  93. Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet. 2002;32:676–80.

    Article  CAS  PubMed  Google Scholar 

  94. Jackson CE, Norum RA, Boyd SB, Talpos GB, Wilson SD, Taggart RT, Mallette LE. Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically and genetically distinct syndrome. Surgery. 1990;108:1006–12; discussion 1012-1003.

    CAS  PubMed  Google Scholar 

  95. Guan B, Welch JM, Vemulapalli M, Li Y, Ling H, Kebebew E, Simonds WF, Marx SJ, Agarwal SK. Ethnicity of patients with germline GCM2-activating variants and primary hyperparathyroidism. J Endocr Soc. 2017;1(5):488–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guan B, Welch JM, Sapp JC, Ling H, Li Y, Johnston JJ, Kebebew E, Biesecker LG, Simonds WF, Marx SJ, Agarwal SK. GCM2-activating mutations in familial isolated hyperparathyroidism. Am J Hum Genet. 2016;99(5):1034–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mizusawa N, Uchino S, Iwata T, et al. Genetic analyses in patients with familial isolated hyperparathyroidismand hyperparathyroidism jaw tumour syndrome. Clin Endocrinol (Oxf). 2006;65:9e16.

    Article  CAS  Google Scholar 

  98. Costa-Guda J, Soong C-P, Parekh VI, Agarwal SK, Arnold A. Germline and somatic mutations in cyclin-dependent kinase inhibitor genes CDKN1A, CDKN2B, and CDKN2C in sporadic parathyroid adenomas. Horm Cancer. 2013;4:301e7.

    Article  CAS  Google Scholar 

  99. Starker LF, Akerström T, Long WD, Delgado-Verdugo A, Donovan P, Udelsman R, Lifton RP, Carling T. Frequent germ-line mutations of the MEN1, CASR, and HRPT2/CDC73 genes in young patients with clinically non-familial primary hyperparathyroidism. Horm Cancer. 2012;3(1–2):44–51.

    Article  CAS  PubMed  Google Scholar 

  100. Warner J, Epstein M, Sweet A, Singh D, Burgess J, Stranks S, Hill P, Perry-Keene D, Learoyd D, Robinson B, Birdsey P, Mackenzie E, Teh BT, Prins JB, Cardinal J. Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. J Med Genet. 2004;41(3):155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Juhlin CC, Haglund F, Obara T, Arnold A, Larsson C, Höög A. Absence of nucleolar parafibromin immunoreactivity in subsets of parathyroid malignant tumours. Virchows Arch. 2011;459(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  102. Hodgson A, Pakbaz S, Tayyari F, Young JEM, Mete O. Diagnostic pitfall: parathyroid carcinoma expands the spectrum of calcitonin and calcitonin gene-related peptide expressing neuroendocrine neoplasms. Endocr Pathol. 2019;30(2):168–72.

    Article  PubMed  Google Scholar 

  103. Gill AJ, Lim G, Cheung VKY, Andrici J, Perry-Keene JL, Paik J, Sioson L, Clarkson A, Sheen A, Luxford C, Elston MS, Meyer-Rochow GY, Nano MT, Kruijff S, Engelsman AF, Sywak M, Sidhu SB, Delbridge LW, Robinson BG, Marsh DJ, Toon CW, Chou A, Clifton-Bligh RJ. Parafibromin-deficient (HPT-JT type, CDC73 mutated) parathyroid tumors demonstrate distinctive morphologic features. Am J Surg Pathol. 2019;43(1):35–46.

    Article  PubMed  Google Scholar 

  104. Bartsch DK, Albers MB, Lopez CL, Apitzsch JC, Walthers EM, Fink L, Fendrich V, Slater EP, Waldmann J, Anlauf M. Bronchopulmonary neuroendocrine neoplasms and their precursor lesions in multiple endocrine neoplasia type 1. Neuroendocrinology. 2016;103(3–4):240–7.

    Article  CAS  PubMed  Google Scholar 

  105. Pieterman CR, Conemans EB, Dreijerink KM, de Laat JM, Timmers HT, Vriens MR, Valk GD. Thoracic and duodenopancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1: natural history and function of menin in tumorigenesis. Endocr Relat Cancer. 2014;21:121–42.

    Article  CAS  Google Scholar 

  106. Sachithanandan N, Harle RA, Burgess JR. Bronchopulmonary carcinoid in multiple endocrine neoplasia type 1. Cancer. 2005;103:509–15.

    Article  PubMed  Google Scholar 

  107. Murat A, Heymann MF, Bernat S, Dupas B, Delajartre AY, Calender A, Despins P, Michaud JL, Giraud S, Le Bodic MF, Charbonnel B. Thymic and bronchial neuroendocrine tumors in multiple endocrine neoplasia type 1 (in French). Presse Med. 1997;26:1616–21.

    CAS  PubMed  Google Scholar 

  108. Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA. Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann Intern Med. 1998;129:484–94.

    Article  CAS  PubMed  Google Scholar 

  109. de Laat JM, Pieterman CR, van den Broek MF, Twisk JW, Hermus AR, Dekkers OM, de Herder WW, van der Horst-Schrivers AN, Drent ML, Bisschop PH, Havekes B, Vriens MR, Valk GD. Natural course and survival of neuroendocrine tumors of thymus and lung in MEN1 patients. J Clin Endocrinol Metab. 2014;99:3325–33.

    Article  PubMed  CAS  Google Scholar 

  110. Ye L, Wang W, Ospina NS, Jiang L, Christakis I, Lu J, Zhou Y, Zhu W, Cao Y, Wang S, Perrier ND, Young WF Jr, Ning G, Wang W. Clinical features and prognosis of thymic neuroendocrine tumours associated with multiple endocrine neoplasia type 1: a single-centre study, systematic review and meta-analysis. Clin Endocrinol (Oxf). 2017;87(6):706–16.

    Article  CAS  Google Scholar 

  111. Christakis I, Qiu W, Silva Figueroa AM, et al. Clinical features, treatments, and outcomes of patients with thymic carcinoids and multiple endocrine neoplasia type 1 syndrome at MD Anderson Cancer Center. Horm Cancer. 2016;7:279–87.

    Article  CAS  PubMed  Google Scholar 

  112. Asa SL, Mete O. Multiple endocrine neoplasia type 1: problems and pitfalls. Pathology Case Reviews. 2014;19(2):85–9.

    Article  Google Scholar 

  113. Alrezk R, Hannah-Shmouni F, Stratakis CA. MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer. 2017;24(10):T195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Larouche V, Akirov A, Thain E, Kim RH, Ezzat S. Co-occurrence of breast cancer and neuroendocrine tumours: new genetic insights beyond Multiple Endocrine Neoplasia syndromes. Endocrinol Diabetes Metab. 2019;2(4):e00092.

    Article  PubMed  PubMed Central  Google Scholar 

  115. La Rosa S, Vanoli A. Gastric neuroendocrine neoplasms and related precursor lesions. J Clin Pathol. 2014;67(11):938–48.

    Article  PubMed  Google Scholar 

  116. Vanoli A, La Rosa S, Klersy C, Grillo F, Albarello L, Inzani F, Maragliano R, Manca R, Luinetti O, Milione M, Doglioni C, Rindi G, Capella C, Solcia E. Four neuroendocrine tumor types and neuroendocrine carcinoma of the duodenum: analysis of 203 cases. Neuroendocrinology. 2017;104(2):112–25.

    Article  CAS  PubMed  Google Scholar 

  117. Klöppel G, Anlauf M, Perren A, Sipos B. Hyperplasia to neoplasia sequence of duodenal and pancreatic neuroendocrine diseases and pseudohyperplasia of the PP-cells in the pancreas. Endocr Pathol. 2014;25(2):181–5.

    Article  PubMed  CAS  Google Scholar 

  118. Gucer H, Szentgyorgyi E, Ezzat S, Asa SL, Mete O. Inhibin-expressing clear cell neuroendocrine tumor of the ampulla: an unusual presentation of von Hippel-Lindau disease. Virchows Arch. 2013;463(4):593–7.

    Article  CAS  PubMed  Google Scholar 

  119. Sei Y, Zhao X, Forbes J, Szymczak S, Li Q, Trivedi A, Voellinger M, Joy G, Feng J, Whatley M, Jones MS, Harper UL, Marx SJ, Venkatesan AM, Chandrasekharappa SC, Raffeld M, Quezado MM, Louie A, Chen CC, Lim RM, Agarwala R, Schäffer AA, Hughes MS, Bailey-Wilson JE, Wank SA. A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology. 2015;149(1):67–78.

    Article  CAS  PubMed  Google Scholar 

  120. de Mestier L, Pasmant E, Fleury C, Brixi H, Sohier P, Féron T, Diebold MD, Clauser E, Cadiot G, Groupe d’Étude des Tumeurs Endocrines. Familial small-intestine carcinoids: chromosomal alterations and germline inositol polyphosphate multikinase sequencing. Dig Liver Dis. 2017;49(1):98–102.

    Article  PubMed  CAS  Google Scholar 

  121. Eelloo JA, Smith MJ, Bowers NL, Ealing J, Hulse P, Wylie JP, Shenjere P, Clarke NW, Soh C, Whitehouse RW, Jones M, Duff C, Freemont A, Evans DG. Multiple primary malignancies associated with a germline SMARCB1 pathogenic variant. Fam Cancer. 2019;18(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  122. Quaas A, Waldschmidt D, Alakus H, Zander T, Heydt C, Goeser T, Daheim M, Kasper P, Plum P, Bruns C, Brunn A, Roth W, Hartmann N, Bunck A, Schmidt M, Göbel H, Tharun L, Buettner R, Merkelbach-Bruse S. Therapy susceptible germline-related BRCA 1-mutation in a case of metastasized mixed adeno-neuroendocrine carcinoma (MANEC) of the small bowel. BMC Gastroenterol. 2018;18(1):75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kolin DL, Duan K, Ngan B, Gerstle JT, Krzyzanowska MK, Somers GR, Mete O. Expanding the spectrum of colonic manifestations in tuberous sclerosis: L-cell neuroendocrine tumor arising in the background of rectal PEComa. Endocr Pathol. 2018;29(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  124. Mete O, Chetty R. Pancreatic endocrine neoplasia: familial syndromes. Diagn Histopathol. 2017;23(8):378–85.

    Article  Google Scholar 

  125. Salama Y, Albanyan S, Szybowska M, Bullivant G, Gallinger B, Giles RH, Asa S, Badduke C, Chiorean A, Druker H, Ezzat S, Hannah-Shmouni F, Hernandez KG, Inglese C, Jani P, Kaur Y, Krema H, Krimus L, Laperriere N, Lichner Z, Mete O, Sit M, Zadeh G, Jewett MAS, Malkin D, Stockley T, Wasserman JD, Xu W, Schachter NF, Kim RH. Comprehensive characterization of a Canadian cohort of von Hippel-Lindau disease patients. Clin Genet. 2019;96(5):461–7.

    Article  CAS  PubMed  Google Scholar 

  126. Cassol C, Mete O. Endocrine manifestations of von Hippel-Lindau disease. Arch Pathol Lab Med. 2015;139(2):263–8.

    Article  PubMed  Google Scholar 

  127. Larson AM, Hedgire SS, Deshpande V, Stemmer-Rachamimov AO, Harisinghani MG, Ferrone CR, Shah U, Thiele EA. Pancreatic neuroendocrine tumors in patients with tuberous sclerosis complex. Clin Genet. 2012;82(6):558–63.

    Article  CAS  PubMed  Google Scholar 

  128. Nishi T, Kawabata Y, Hari Y, Imaoka H, Ishikawa N, Yano S, Maruyama R, Tajima Y. A case of pancreatic neuroendocrine tumor in a patient with neurofibromatosis-1. World J Surg Oncol. 2012;10:153.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Takai A, Setoyama T, Miyamoto S. Pancreatic somatostatinoma with von Recklinghausen’s disease. Clin Gastroenterol Hepatol. 2009;7(5):A28.

    Article  PubMed  Google Scholar 

  130. Iacovazzo D, Flanagan SE, Walker E, Quezado R, de Sousa Barros FA, Caswell R, Johnson MB, Wakeling M, Brändle M, Guo M, Dang MN, Gabrovska P, Niederle B, Christ E, Jenni S, Sipos B, Nieser M, Frilling A, Dhatariya K, Chanson P, de Herder WW, Konukiewitz B, Klöppel G, Stein R, Korbonits M, Ellard S. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci U S A. 2018;115(5):1027–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Henopp T, Anlauf M, Schmitt A, Schlenger R, Zalatnai A, Couvelard A, Ruszniewski P, Schaps KP, Jonkers YM, Speel EJ, Pellegata NS, Heitz PU, Komminoth P, Perren A, Klöppel G. Glucagon cell adenomatosis: a newly recognized disease of the endocrine pancreas. J Clin Endocrinol Metab. 2009;94(1):213–7.

    Article  CAS  PubMed  Google Scholar 

  132. Yu R, Wawrowsky K, Zhou C. A natural inactivating mutant of human glucagon receptor exhibits multiple abnormalities in processing and signaling. Endocrinol Nutr. 2011;58(6):258–66.

    Article  CAS  PubMed  Google Scholar 

  133. Miller HC, Kidd M, Modlin IM, Cohen P, Dina R, Drymousis P, Vlavianos P, Klöppel G, Frilling A. Glucagon receptor gene mutations with hyperglucagonemia but without the glucagonoma syndrome. World J Gastrointest Surg. 2015;7(4):60–6.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sipos B, Sperveslage J, Anlauf M, Hoffmeister M, Henopp T, Buch S, Hampe J, Weber A, Hammel P, Couvelard A, Höbling W, Lieb W, Boehm BO, Klöppel G. Glucagon cell hyperplasia and neoplasia with and without glucagon receptor mutations. J Clin Endocrinol Metab. 2015;100(5):E783–8.

    Article  PubMed  CAS  Google Scholar 

  135. Niemeijer ND, Papathomas TG, Korpershoek E, de Krijger RR, Oudijk L, Morreau H, Bayley JP, Hes FJ, Jansen JC, Dinjens WN, Corssmit EP. Succinate dehydrogenase (SDH)-deficient pancreatic neuroendocrine tumor expands the SDH-related tumor spectrum. J Clin Endocrinol Metab. 2015;100(10):E1386–93.

    Article  CAS  PubMed  Google Scholar 

  136. Karamurzin Y, Zeng Z, Stadler ZK, Zhang L, Ouansafi I, Al-Ahmadie HA, Sempoux C, Saltz LB, Soslow RA, O’Reilly EM, Paty PB, Coit DG, Shia J, Klimstra DS. Unusual DNA mismatch repair-deficient tumors in Lynch syndrome: a report of new cases and review of the literature. Hum Pathol. 2012;43(10):1677–87.

    Article  CAS  PubMed  Google Scholar 

  137. Serracant Barrera A, Serra Pla S, Blázquez Maña CM, Salas RC, García Monforte N, Bejarano González N, Romaguera Monzonis A, Andreu Navarro FJ, Bella Cueto MR, Borobia FG. Pancreatic non-functioning neuroendocrine tumor: a new entity genetically related to Lynch syndrome. J Gastrointest Oncol. 2017;8(5):E73–9.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Asa SL. Pancreatic endocrine tumors. Mod Pathol. 2011;24(Suppl 2):S66–77.

    Article  CAS  PubMed  Google Scholar 

  139. Chetty R, Kennedy M, Ezzat S, Asa SL. Pancreatic endocrine pathology in von Hippel-Lindau disease: an expanding spectrum of lesions. Endocr Pathol. 2004;15(2):141–8.

    Article  PubMed  Google Scholar 

  140. Fryer E, Serra S, Chetty R. Lipid-rich (“clear cell”) neuroendocrine tumors of the pancreas in MEN I patients. Endocr Pathol. 2012;23(4):243–6.

    Article  CAS  PubMed  Google Scholar 

  141. Périgny M, Hammel P, Corcos O, Larochelle O, Giraud S, Richard S, Sauvanet A, Belghiti J, Ruszniewski P, Bedossa P, Couvelard A. Pancreatic endocrine microadenomatosis in patients with von Hippel-Lindau disease: characterization by VHL/HIF pathway proteins expression. Am J Surg Pathol. 2009;33(5):739–48.

    Article  PubMed  Google Scholar 

  142. Koc G, Sugimoto S, Kuperman R, Kammen BF, Karakas SP. Pancreatic tumors in children and young adults with tuberous sclerosis complex. Pediatr Radiol. 2017;47(1):39–45.

    Article  PubMed  Google Scholar 

  143. Mortaji P, Morris KT, Samedi V, Eberhardt S, Ryan S. Pancreatic neuroendocrine tumor in a patient with a TSC1 variant: case report and review of the literature. Fam Cancer. 2018;17(2):275–80.

    Article  PubMed  Google Scholar 

  144. Hernandez KG, Ezzat S, Morel CF, Swallow C, Otremba M, Dickson BC, Asa SL, Mete O. Familial pheochromocytoma and renal cell carcinoma syndrome: TMEM127 as a novel candidate gene for the association. Virchows Arch. 2015;466(6):727–32.

    Article  CAS  PubMed  Google Scholar 

  145. Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Pérez L, King EE, Toledo RA, Ercolino T, Rapizzi E, Ricketts CJ, Mori L, Giacchè M, Mendola A, Taschin E, Boaretto F, Loli P, Iacobone M, Rossi GP, Biondi B, Lima-Junior JV, Kater CE, Bex M, Vikkula M, Grossman AB, Gruber SB, Barontini M, Persu A, Castellano M, Toledo SP, Maher ER, Mannelli M, Opocher G, Robledo M, Dahia PL. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA. 2010;304(23):2611–9.

    Article  CAS  PubMed  Google Scholar 

  146. Irwin T, Konnick EQ, Tretiakova MS. Malignant intrarenal/renal pelvis paraganglioma with co-occurring SDHB and ATRX mutations. Endocr Pathol. 2019;30(4):270–5.

    Article  PubMed  Google Scholar 

  147. Astuti D, Hart-Holden N, Latif F, Lalloo F, Black GC, Lim C, Moran A, Grossman AB, Hodgson SV, Freemont A, Ramsden R, Eng C, Evans DG, Maher ER. Genetic analysis of mitochondrial complex II subunits SDHD, SDHB and SDHC in paraganglioma and phaeochromocytoma susceptibility. Clin Endocrinol (Oxf). 2003;59(6):728–33.

    Article  CAS  Google Scholar 

  148. Millar AC, Mete O, Cusimano RJ, Fremes SE, Keshavjee S, Morgan CD, Asa SL, Ezzat S, Gilbert J. Functional cardiac paraganglioma associated with a rare SDHC mutation. Endocr Pathol. 2014;25(3):315–20.

    Article  CAS  PubMed  Google Scholar 

  149. Jamilloux Y, Favier J, Pertuit M, Delage-Corre M, Lopez S, Teissier MP, Mathonnet M, Galinat S, Barlier A, Archambeaud F. A MEN1 syndrome with a paraganglioma. Eur J Hum Genet. 2014;22(2):283–5.

    Article  CAS  PubMed  Google Scholar 

  150. Juhlin CC, Stenman A, Haglund F, Clark VE, Brown TC, Baranoski J, Bilguvar K, Goh G, Welander J, Svahn F, Rubinstein JC, Caramuta S, Yasuno K, Günel M, Bäckdahl M, Gimm O, Söderkvist P, Prasad ML, Korah R, Lifton RP, Carling T. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes Cancer. 2015;54(9):542–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cascón A, Comino-Méndez I, Currás-Freixes M, de Cubas AA, Contreras L, Richter S, Peitzsch M, Mancikova V, Inglada-Pérez L, Pérez-Barrios A, Calatayud M, Azriel S, Villar-Vicente R, Aller J, Setién F, Moran S, Garcia JF, Río-Machín A, Letón R, Gómez-Graña Á, Apellániz-Ruiz M, Roncador G, Esteller M, Rodríguez-Antona C, Satrústegui J, Eisenhofer G, Urioste M, Robledo M. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst. 2015;107(5):djv053.

    Article  PubMed  CAS  Google Scholar 

  152. Buffet A, Morin A, Castro-Vega LJ, Habarou F, Lussey-Lepoutre C, Letouzé E, Lefebvre H, Guilhem I, Haissaguerre M, Raingeard I, Padilla-Girola M, Tran T, Tchara L, Bertherat J, Amar L, Ottolenghi C, Burnichon N, Gimenez-Roqueplo AP, Favier J. Germline mutations in the mitochondrial 2-Oxoglutarate/malate carrier SLC25A11 gene confer a predisposition to metastatic paragangliomas. Cancer Res. 2018;78(8):1914–22.

    Article  CAS  PubMed  Google Scholar 

  153. Remacha L, Comino-Méndez I, Richter S, Contreras L, Currás-Freixes M, Pita G, Letón R, Galarreta A, Torres-Pérez R, Honrado E, Jiménez S, Maestre L, Moran S, Esteller M, Satrústegui J, Eisenhofer G, Robledo M, Cascón A. Targeted exome sequencing of Krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin Cancer Res. 2017;23(20):6315–24.

    Article  CAS  PubMed  Google Scholar 

  154. Remacha L, Currás-Freixes M, Torres-Ruiz R, Schiavi F, Torres-Pérez R, Calsina B, Letón R, Comino-Méndez I, Roldán-Romero JM, Montero-Conde C, Santos M, Pérez LI, Pita G, Alonso MR, Honrado E, Pedrinaci S, Crespo-Facorro B, Percesepe A, Falcioni M, Rodríguez-Perales S, Korpershoek E, Ramón-Maiques S, Opocher G, Rodríguez-Antona C, Robledo M, Cascón A. Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genet Med. 2018;20(12):1644–51.

    Article  CAS  PubMed  Google Scholar 

  155. Romanet P, Guerin C, Pedini P, Essamet W, Castinetti F, Sebag F, Roche P, Cascon A, Tischler AS, Pacak K, Barlier A, Taïeb D. Pathological and genetic characterization of bilateral adrenomedullary hyperplasia in a patient with germline MAX mutation. Endocr Pathol. 2017;28(4):302–7.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Burnichon N, Cascón A, Schiavi F, Morales NP, Comino-Méndez I, Abermil N, Inglada-Pérez L, de Cubas AA, Amar L, Barontini M, de Quirós SB, Bertherat J, Bignon YJ, Blok MJ, Bobisse S, Borrego S, Castellano M, Chanson P, Chiara MD, Corssmit EP, Giacchè M, de Krijger RR, Ercolino T, Girerd X, Gómez-García EB, Gómez-Graña A, Guilhem I, Hes FJ, Honrado E, Korpershoek E, Lenders JW, Letón R, Mensenkamp AR, Merlo A, Mori L, Murat A, Pierre P, Plouin PF, Prodanov T, Quesada-Charneco M, Qin N, Rapizzi E, Raymond V, Reisch N, Roncador G, Ruiz-Ferrer M, Schillo F, Stegmann AP, Suarez C, Taschin E, Timmers HJ, Tops CM, Urioste M, Beuschlein F, Pacak K, Mannelli M, Dahia PL, Opocher G, Eisenhofer G, Gimenez-Roqueplo AP, Robledo M. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res. 2012;18(10):2828–37.

    Article  CAS  PubMed  Google Scholar 

  157. Castro-Vega LJ, Buffet A, De Cubas AA, Cascón A, Menara M, Khalifa E, Amar L, Azriel S, Bourdeau I, Chabre O, Currás-Freixes M, Franco-Vidal V, Guillaud-Bataille M, Simian C, Morin A, Letón R, Gómez-Graña A, Pollard PJ, Rustin P, Robledo M, Favier J, Gimenez-Roqueplo AP. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23(9):2440–6.

    Article  CAS  PubMed  Google Scholar 

  158. Bausch B, Schiavi F, Ni Y, Welander J, Patocs A, Ngeow J, Wellner U, Malinoc A, Taschin E, Barbon G, Lanza V, Söderkvist P, Stenman A, Larsson C, Svahn F, Chen JL, Marquard J, Fraenkel M, Walter MA, Peczkowska M, Prejbisz A, Jarzab B, Hasse-Lazar K, Petersenn S, Moeller LC, Meyer A, Reisch N, Trupka A, Brase C, Galiano M, Preuss SF, Kwok P, Lendvai N, Berisha G, Makay Ö, Boedeker CC, Weryha G, Racz K, Januszewicz A, Walz MK, Gimm O, Opocher G, Eng C, Neumann HPH, European-American-Asian Pheochromocytoma-Paraganglioma Registry Study Group. Clinical characterization of the pheochromocytoma and paraganglioma susceptibility genes SDHA, TMEM127, MAX, and SDHAF2 for gene-informed prevention. JAMA Oncol. 2017;3(9):1204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  159. McInerney-Leo AM, Marshall MS, Gardiner B, Benn DE, McFarlane J, Robinson BG, Brown MA, Leo PJ, Clifton-Bligh RJ, Duncan EL. Whole exome sequencing is anefficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas. Clin Endocrinol (Oxf). 2014;80(1):25–33.

    Article  CAS  Google Scholar 

  160. Yeh IT, Lenci RE, Qin Y, Buddavarapu K, Ligon AH, Leteurtre E, Do Cao C, Cardot-Bauters C, Pigny P, Dahia PL. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet. 2008;124(3):279–85.

    Article  CAS  PubMed  Google Scholar 

  161. Astuti D, Ricketts CJ, Chowdhury R, McDonough MA, Gentle D, Kirby G, Schlisio S, Kenchappa RS, Carter BD, Kaelin WG Jr, Ratcliffe PJ, Schofield CJ, Latif F, Maher ER. Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility. Endocr Relat Cancer. 2010;18(1):73–83.

    Article  PubMed  CAS  Google Scholar 

  162. Petr EJ, Else T. Pheochromocytoma and paraganglioma in neurofibromatosis type 1: frequent surgeries and cardiovascular crises indicate the need for screening. Clin Diabetes Endocrinol. 2018;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Favier J, Meatchi T, Robidel E, Badoual C, Sibony M, Nguyen AT, Gimenez-Roqueplo AP, Burnichon N. Carbonic anhydrase 9 immunohistochemistry as a tool to predict or validate germline and somatic VHL mutations in pheochromocytoma and paraganglioma-a retrospective and prospective study. Mod Pathol. 2020;33(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  164. Pinato DJ, Ramachandran R, Toussi ST, Vergine M, Ngo N, Sharma R, Lloyd T, Meeran K, Palazzo F, Martin N, Khoo B, Dina R, Tan TM. Immunohistochemical markers of the hypoxic response can identify malignancy in phaeochromocytomas and paragangliomas and optimize the detection of tumours with VHL germline mutations. Br J Cancer. 2013;108(2):429–37.

    Article  CAS  PubMed  Google Scholar 

  165. Lorenzo FR, Yang C, Fui MNT, Vankayalapati H, Zhuang Z, Huynh T, Grossmann M, Pacak K, Prchal JT. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med (Berl). 2013;91(4):507–12.

    Article  CAS  Google Scholar 

  166. Buffet A, Burnichon N, Favier J, Gimenez-Roqueplo AP. An overview of 20 years of genetic studies in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab. 2020;34:101416.

    Article  CAS  PubMed  Google Scholar 

  167. Gimenez-Roqueplo AP, Tischler AS. Pheochromocytoma and paraganglioma: progress on all fronts. Endocr Pathol. 2012;23(1):1–3.

    Article  PubMed  Google Scholar 

  168. Asa SL, Ezzat S, Mete O. The diagnosis and clinical significance of paragangliomas in unusual locations. J Clin Med. 2018;7(9):280.

    Article  CAS  PubMed Central  Google Scholar 

  169. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, Lichtenberg TM, Murray BA, Ghayee HK, Else T, Ling S, Jefferys SR, de Cubas AA, Wenz B, Korpershoek E, Amelio AL, Makowski L, Rathmell WK, Gimenez-Roqueplo AP, Giordano TJ, Asa SL, Tischler AS, Cancer Genome Atlas Research Network, Pacak K, Nathanson KL, Wilkerson MD. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31(2):181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Oudijk L, Gaal J, de Krijger RR. The role of immunohistochemistry and molecular analysis of succinate dehydrogenase in the diagnosis of endocrine and non-endocrine tumors and related syndromes. Endocr Pathol. 2019;30(1):64–73.

    Article  CAS  PubMed  Google Scholar 

  171. Alrezk R, Suarez A, Tena I, Pacak K. Update of pheochromocytoma syndromes: genetics, biochemical evaluation, and imaging. Front Endocrinol (Lausanne). 2018;9:515.

    Article  PubMed Central  Google Scholar 

  172. Crona J, Lamarca A, Ghosal S, Welin S, Skogseid B, Pacak K. Genotype-phenotype correlations in pheochromocytoma and paraganglioma: a systematic review and individual patient meta-analysis. Endocr Relat Cancer. 2019;26(5):539–50.

    Article  CAS  PubMed  Google Scholar 

  173. Eisenhofer G, Tischler AS, de Krijger RR. Diagnostic tests and biomarkers for pheochromocytoma and extra-adrenal paraganglioma: from routine laboratory methods to disease stratification. Endocr Pathol. 2012;23(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  174. Kimura N, Takekoshi K, Naruse M. Risk stratification on pheochromocytoma and paraganglioma from laboratory and clinical medicine. J Clin Med. 2018;7(9). pii: E242.

    Google Scholar 

  175. Dwight T, Kim E, Novos T, Clifton-Bligh RJ. Metabolomics in the diagnosis of pheochromocytoma and paraganglioma. Horm Metab Res. 2019;51(7):443–50.

    Article  CAS  PubMed  Google Scholar 

  176. Richter S, Gieldon L, Pang Y, Peitzsch M, Huynh T, Leton R, Viana B, Ercolino T, Mangelis A, Rapizzi E, Menschikowski M, Aust D, Kroiss M, Beuschlein F, Gudziol V, Timmers HJ, Lenders J, Mannelli M, Cascon A, Pacak K, Robledo M, Eisenhofer G, Klink B. Metabolome-guided genomics to identify pathogenic variants in isocitrate dehydrogenase, fumarate hydratase, and succinate dehydrogenase genes in pheochromocytoma and paraganglioma. Genet Med. 2019;21(3):705–17.

    Article  CAS  PubMed  Google Scholar 

  177. Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, Pacak K. Current management of pheochromocytoma/paraganglioma: a guide for the practicing clinician in the era of precision medicine. Cancers (Basel). 2019;11(10). pii: E1505.

    Google Scholar 

  178. Pakbaz S, Asa SL, Mete O. Alpha-inhibin expression in paragangliomas and pheochromocytomas shows strong correlation with VHL- and SDHx-driven pseudohypoxic pathway disease. In abstracts from USCAP 2020: endocrine pathology (565-611). Mod Pathol. 2020;33:720–63.

    Google Scholar 

  179. Grogan RH, Pacak K, Pasche L, Huynh TT, Greco RS. Bilateral adrenal medullary hyperplasia associated with an SDHB mutation. J Clin Oncol. 2011;29(8):e200–2.

    Article  PubMed  Google Scholar 

  180. van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn EM, Sleddens HF, Derkx P, Rivière J, Dannenberg H, Petri BJ, Komminoth P, Pacak K, Hop WC, Pollard PJ, Mannelli M, Bayley JP, Perren A, Niemann S, Verhofstad AA, de Bruïne AP, Maher ER, Tissier F, Méatchi T, Badoual C, Bertherat J, Amar L, Alataki D, Van Marck E, Ferrau F, François J, de Herder WW, Peeters MP, van Linge A, Lenders JW, Gimenez-Roqueplo AP, de Krijger RR, Dinjens WN. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol. 2009;10(8):764–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Udager AM, Magers MJ, Goerke DM, Vinco ML, Siddiqui J, Cao X, Lucas DR, Myers JL, Chinnaiyan AM, McHugh JB, Giordano TJ, Else T, Mehra R. The utility of SDHB and FH immunohistochemistry in patients evaluated for hereditary paraganglioma-pheochromocytoma syndromes. Hum Pathol. 2018;71:47–54.

    Article  CAS  PubMed  Google Scholar 

  182. Papathomas TG, Oudijk L, Persu A, Gill AJ, van Nederveen F, Tischler AS, Tissier F, Volante M, Matias-Guiu X, Smid M, Favier J, Rapizzi E, Libe R, Currás-Freixes M, Aydin S, Huynh T, Lichtenauer U, van Berkel A, Canu L, Domingues R, Clifton-Bligh RJ, Bialas M, Vikkula M, Baretton G, Papotti M, Nesi G, Badoual C, Pacak K, Eisenhofer G, Timmers HJ, Beuschlein F, Bertherat J, Mannelli M, Robledo M, Gimenez-Roqueplo AP, Dinjens WN, Korpershoek E, de Krijger RR. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol. 2015;28(6):807–21.

    Article  CAS  PubMed  Google Scholar 

  183. Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, Badoual C, Gadessaud N, Venisse A, Bayley JP, van Dooren MF, de Herder WW, Tissier F, Plouin PF, van Nederveen FH, Dinjens WN, Gimenez-Roqueplo AP, de Krijger RR. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab. 2011;96(9):E1472–6.

    Article  CAS  PubMed  Google Scholar 

  184. Stratakis CA, Carney JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J Intern Med. 2009;266(1):43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Settas N, Faucz FR, Stratakis CA. Succinate dehydrogenase (SDH) deficiency, Carney triad and the epigenome. Mol Cell Endocrinol. 2018;469:107–11.

    Article  CAS  PubMed  Google Scholar 

  186. Koch CA, Mauro D, Walther MM, Linehan WM, Vortmeyer AO, Jaffe R, Pacak K, Chrousos GP, Zhuang Z, Lubensky IA. Pheochromocytoma in von hippel-lindau disease: distinct histopathologic phenotype compared to pheochromocytoma in multiple endocrine neoplasia type 2. Endocr Pathol. 2002;13(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  187. Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, Landa I, Leandro-García LJ, Letón R, Honrado E, Ramos-Medina R, Caronia D, Pita G, Gómez-Graña A, de Cubas AA, Inglada-Pérez L, Maliszewska A, Taschin E, Bobisse S, Pica G, Loli P, Hernández-Lavado R, Díaz JA, Gómez-Morales M, González-Neira A, Roncador G, Rodríguez-Antona C, Benítez J, Mannelli M, Opocher G, Robledo M, Cascón A. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43(7):663–7.

    Article  PubMed  CAS  Google Scholar 

  188. NGS in PPGL (NGSnPPGL) Study Group, Toledo RA, Burnichon N, Cascon A, Benn DE, Bayley JP, Welander J, Tops CM, Firth H, Dwight T, Ercolino T, Mannelli M, Opocher G, Clifton-Bligh R, Gimm O, Maher ER, Robledo M, Gimenez-Roqueplo AP, Dahia PL. Consensus statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat Rev Endocrinol. 2017;13(4):233–47.

    Article  CAS  Google Scholar 

  189. Weitzel JN, Blazer KR, MacDonald DJ, Culver JO, Offit K. Genetics, genomics,and cancer risk assessment: state of the art and future directions in the era of personalized medicine. CA Cancer J Clin. 2011;61(5):327–59.

    PubMed  PubMed Central  Google Scholar 

  190. Mandelker D, Donoghue M, Talukdar S, Bandlamudi C, Srinivasan P, Vivek M, Jezdic S, Hanson H, Snape K, Kulkarni A, Hawkes L, Douillard JY, Wallace SE, Rial-Sebbag E, Meric-Bersntam F, George A, Chubb D, Loveday C, Ladanyi M, Berger MF, Taylor BS, Turnbull C. Germline-focussed analysis of tumour-only sequencing: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol. 2019;30(8):1221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11.

    Article  CAS  PubMed  Google Scholar 

  192. Yadav S, Couch FJ. Germline genetic testing for breast cancer risk: the past, present, and future. Am Soc Clin Oncol Educ Book. 2019;39:61–74.

    Article  PubMed  Google Scholar 

  193. Bélisle-Pipon JC, Vayena E, Green RC, Cohen IG. Genetic testing, insurance discrimination and medical research: what the United States can learn from peer countries. Nat Med. 2019;25(8):1198–204.

    Article  PubMed  CAS  Google Scholar 

  194. Hoekstra AS, Devilee P, Bayley JP. Models of parent-of-origin tumorigenesis in hereditary paraganglioma. Semin Cell Dev Biol. 2015;43:117–24.

    Article  PubMed  Google Scholar 

  195. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108–19.

    Article  CAS  PubMed  Google Scholar 

  196. Hernández-Ramírez LC, Gabrovska P, Dénes J, Stals K, Trivellin G, Tilley D, Ferrau F, Evanson J, Ellard S, Grossman AB, Roncaroli F, Gadelha MR, Korbonits M, International FIPA Consortium. Landscape of familial isolated and young-onset pituitary adenomas: prospective diagnosis in AIP mutation carriers. J Clin Endocrinol Metab. 2015;100(9):E1242–54.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Mete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mete, O., Hannah-Shmouni, F., Kim, R., Stratakis, C.A. (2021). Inherited Neuroendocrine Neoplasms. In: Asa, S.L., La Rosa, S., Mete, O. (eds) The Spectrum of Neuroendocrine Neoplasia. Springer, Cham. https://doi.org/10.1007/978-3-030-54391-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54391-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54390-7

  • Online ISBN: 978-3-030-54391-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics