Skip to main content

Hepatitis A and Other Viral Infections

  • Chapter
  • First Online:
Liver Immunology
  • 665 Accesses

Abstract

Viral-mediated liver injury can result from infections with the classic hepatotropic viruses, hepatitis A through E, or by other viruses. In the present chapter, we review the immune-based pathogenesis and liver-related manifestations of hepatitis A virus as well as several additional viruses that affect the liver including Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex virus (HSV), varicella-zoster virus (VZV), human herpesviruses (HHV 6, 7, and 8), human parvovirus B19, adenoviruses, and influenza virus. The clinical presentations range from mild and transient elevation of aminotransferases to severe chronic liver disease and liver failure. These viruses should be considered as possible etiologic agents in patients who manifest liver injury and whose serologic markers for the classic hepatotropic viruses are negative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMV:

Cytomegalovirus

EBV:

Epstein-Barr virus

HAV:

Hepatitis A virus

HHV:

Human herpesvirus

HSV:

Herpes simplex virus

IM:

Infectious mononucleosis

PCR:

Polymerase chain reaction

PTLD:

Posttransplant lymphoproliferative disorder

VZV:

Varicella-zoster virus

XLP:

X-linked lymphoproliferative disorder

References

  1. Gallegos-Orozco JF, Rakela-Brodner J. Hepatitis viruses: not always what it seems to be. Rev Med Chil. 2010;138:1302–11.

    Article  Google Scholar 

  2. Cohen JI, Rosenblum B, Ticehurst JR, Daemer RJ, Feinstone SM, Purcell RH. Complete nucleotide sequence of an attenuated hepatitis A virus: comparison with wild-type virus. Proc Natl Acad Sci U S A. 1987;84:2497–501.

    Article  CAS  Google Scholar 

  3. Martin A, Lemon SM. The molecular biology of hepatitis A virus. In: Ou JHJ, editor. Hepatitis viruses. Boston: Springer US; 2002. p. 23–50.

    Chapter  Google Scholar 

  4. Teterina NL, Bienz K, Egger D, Gorbalenya AE, Ehrenfeld E. Induction of intracellular membrane rearrangements by HAV proteins 2C and 2BC. Virology. 1997;237:66–77.

    Article  CAS  Google Scholar 

  5. Graff J, Cha J, Blyn LB, Ehrenfeld E. Interaction of poly(rC) binding protein 2 with the 5′ noncoding region of hepatitis A virus RNA and its effects on translation. J Virol. 1998;72:9668–75.

    Article  CAS  Google Scholar 

  6. Esser-Nobis K, Harak C, Schult P, Kusov Y, Lohmann V. Novel perspectives for hepatitis A virus therapy revealed by comparative analysis of hepatitis C virus and hepatitis A virus RNA replication. Hepatology. 2015;62:397–408.

    Article  CAS  Google Scholar 

  7. Bird SW, Kirkegaard K. Escape of non-enveloped virus from intact cells. Virology. 2015;479–480:444–9.

    Article  CAS  Google Scholar 

  8. Lemon SM, Ott JJ, Van Damme P, Shouval D. Type A viral hepatitis: a summary and update on the molecular virology, epidemiology, pathogenesis and prevention. J Hepatol. 2018;68:167–84.

    Article  CAS  Google Scholar 

  9. Kirkegaard K. Unconventional secretion of hepatitis A virus. Proc Natl Acad Sci. 2017;114:6653.

    CAS  Google Scholar 

  10. Hirai-Yuki A, Hensley L, Whitmire JK, Lemon SM. Biliary secretion of quasi-enveloped human hepatitis A virus. MBio. 2016;7:e01998-16.

    Article  Google Scholar 

  11. Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature. 2013;496:367.

    Article  CAS  Google Scholar 

  12. Blank CA, Anderson DA, Beard M, Lemon SM. Infection of polarized cultures of human intestinal epithelial cells with hepatitis A virus: vectorial release of progeny virions through apical cellular membranes. J Virol. 2000;74:6476–84.

    Article  CAS  Google Scholar 

  13. Ouzilou L, Caliot E, Pelletier I, Prévost MC, Pringault E, Colbère-Garapin F. Poliovirus transcytosis through M-like cells. J Gen Virol. 2002;83:2177–82.

    Article  CAS  Google Scholar 

  14. Najarian R, Caput D, Gee W, Potter SJ, Renard A, Merryweather J, et al. Primary structure and gene organization of human hepatitis A virus. Proc Natl Acad Sci. 1985;82:2627.

    Article  CAS  Google Scholar 

  15. Dotzauer A, Brenner M, Gebhardt U, Vallbracht A. IgA-coated particles of hepatitis A virus are translocalized antivectorially from the apical to the basolateral site of polarized epithelial cells via the polymeric immunoglobulin receptor. J Gen Virol. 2005;86:2747–51.

    Article  CAS  Google Scholar 

  16. Feigelstock D, Thompson P, Mattoo P, Zhang Y, Kaplan GG. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J Virol. 1998;72:6621.

    Article  CAS  Google Scholar 

  17. Dotzauer A, Gebhardt U, Bieback K, Göttke U, Kracke A, Mages J, et al. Hepatitis A virus-specific immunoglobulin A mediates infection of hepatocytes with hepatitis A virus via the asialoglycoprotein receptor. J Virol. 2000;74:10950–7.

    Article  CAS  Google Scholar 

  18. Snooks MJ, Bhat P, Mackenzie J, Counihan NA, Vaughan N, Anderson DA. Vectorial entry and release of hepatitis A virus in polarized human hepatocytes. J Virol. 2008;82:8733.

    Article  CAS  Google Scholar 

  19. Cuthbert JA. Hepatitis A: old and new. Clin Microbiol Rev. 2001;14:38.

    Article  CAS  Google Scholar 

  20. Paulmann D, Magulski T, Schwarz R, Heitmann L, Flehmig B, Vallbracht A, et al. Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. J Gen Virol. 2008;89:1593–604.

    Article  CAS  Google Scholar 

  21. Lanford RE, Feng Z, Chavez D, Guerra B, Brasky KM, Zhou Y, et al. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc Natl Acad Sci U S A. 2011;108:11223–8.

    Article  CAS  Google Scholar 

  22. Feng Z, Li Y, McKnight KL, Hensley L, Lanford RE, Walker CM, et al. Human pDCs preferentially sense enveloped hepatitis A virions. J Clin Invest. 2015;125:169–76.

    Article  Google Scholar 

  23. Sung PS, Hong S-H, Lee J, Park SH, Yoon SK, Chung WJ, et al. CXCL10 is produced in hepatitis A virus-infected cells in an IRF3-dependent but IFN-independent manner. Sci Rep. 2017;7:6387.

    Article  CAS  Google Scholar 

  24. Schulte I, Hitziger T, Giugliano S, Timm J, Gold H, Heinemann FM, et al. Characterization of CD8+ T-cell response in acute and resolved hepatitis A virus infection. J Hepatol. 2011;54:201–8.

    Article  CAS  Google Scholar 

  25. Vallbracht A, Fleischer B, Flehmig B, Wiedmann KH, Flehmig B, Fleischer B. Liver-derived cytotoxic T cells in hepatitis A virus infection. J Infect Dis. 1989;160:209–17.

    Article  CAS  Google Scholar 

  26. Choi YS, Lee J, Lee HW, Chang DY, Sung PS, Jung MK, et al. Liver injury in acute hepatitis A is associated with decreased frequency of regulatory T cells caused by Fas-mediated apoptosis. Gut. 2015;64:1303.

    Article  Google Scholar 

  27. Zhou Y, Callendret B, Xu D, Brasky KM, Feng Z, Hensley LL, et al. Dominance of the CD4(+) T helper cell response during acute resolving hepatitis A virus infection. J Exp Med. 2012;209:1481.

    Article  CAS  Google Scholar 

  28. Herkel J, Jagemann B, Wiegard C, Lazaro JF, Lueth S, Kanzler S, et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocytes. Hepatology. 2003;37:1079–85.

    Article  CAS  Google Scholar 

  29. Baba M, Hasegawa H, Nakayabu M, Fukai K, Suzuki S. Cytolytic activity of natural killer cells and lymphokine activated killer cells against hepatitis A virus infected fibroblasts. J Clin Lab Immunol. 1993;40:47–60.

    CAS  Google Scholar 

  30. Yamane D, Feng H, Rivera-Serrano EE, Selitsky SR, Hirai-Yuki A, Das A, et al. Basal expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses. Nat Microbiol. 2019;4(7):1096–104.

    Article  CAS  Google Scholar 

  31. Hirai-Yuki A, Hensley L, McGivern DR, González-López O, Das A, Feng H, et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science. 2016;353:1541.

    Article  CAS  Google Scholar 

  32. Hong S, Lee HW, Chang D-Y, You S, Kim J, Park JY, et al. Antibody-secreting cells with a phenotype of Ki-67low, CD138high, CD31high, and CD38high secrete nonspecific IgM during primary hepatitis A virus infection. J Immunol. 2013;191:127–34.

    Article  CAS  Google Scholar 

  33. Lee MJ, Douthwaite S, Kulasegaram R. Acute hepatitis A infection after hepatitis A immunity in a HIV-positive individual. Sex Transm Infect. 2018;94:30–1.

    Article  Google Scholar 

  34. Arslan M, Wiesner RH, Poterucha JJ, Gross JB Jr, Zein NN. Hepatitis A antibodies in liver transplant recipients: evidence for loss of immunity posttransplantation. Liver Transpl. 2000;6:191–5.

    Article  CAS  Google Scholar 

  35. Ogholikhan S, Schwarz KB. Hepatitis vaccines. Vaccines. 2016;4:6.

    Article  CAS  Google Scholar 

  36. Petrova M, Kamburov V. Epstein-Barr virus: silent companion or causative agent of chronic liver disease? World J Gastroenterol. 2010;16:4130–4.

    Article  Google Scholar 

  37. Savard M, Gosselin J. Epstein-Barr virus immunossuppression of innate immunity mediated by phagocytes. Virus Res. 2006;119:134–45.

    Article  CAS  Google Scholar 

  38. Ali A, Khan A, Kaushik AC, Wang Y, Ali SS, Junaid M, et al. Immunoinformatic and systems biology approaches to predict and validate peptide vaccines against Epstein-Barr virus (EBV). Sci Rep. 2019;9:720.

    Article  CAS  Google Scholar 

  39. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.

    Article  CAS  Google Scholar 

  40. Markin RS. Manifestations of Epstein-Barr virus-associated disorders in liver. Liver. 1994;14:1–13.

    Article  CAS  Google Scholar 

  41. Martorelli D, Muraro E, Merlo A, Turrini R, Faè DA, Rosato A, et al. Exploiting the interplay between innate and adaptive immunity to improve immunotherapeutic strategies for Epstein-Barr-virus-driven disorders. Clin Dev Immunol. 2012;2012:931952.

    Article  CAS  Google Scholar 

  42. Yamashita N, Kimura H, Morishima T. Virological aspects of Epstein-Barr virus infections. Acta Med Okayama. 2005;59:239–46.

    CAS  Google Scholar 

  43. Liu X, Cohen JI. Epstein-Barr virus (EBV) tegument protein BGLF2 promotes EBV reactivation through activation of the p38 mitogen-activated protein kinase. J Virol. 2016;90:1129–38.

    Article  CAS  Google Scholar 

  44. Kholodnyuk I, Rudevica Z, Leonciks A, Ehlin-Henriksson B, Kashuba E. Expression of the chemokine receptors CCR1 and CCR2B is up-regulated in peripheral blood B cells upon EBV infection and in established lymphoblastoid cell lines. Virology. 2017;512:1–7.

    Article  CAS  Google Scholar 

  45. Ressing ME, Horst D, Griffin BD, Tellam J, Zuo J, Khanna R, et al. Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol. 2008;18:397–408.

    Article  CAS  Google Scholar 

  46. Fu W, Verma D, Burton A, Swaminathan S. Cellular RNA helicase DHX9 interacts with the essential Epstein-Barr virus (EBV) protein SM and restricts EBV lytic replication. J Virol. 2019;93:e01244-18.

    Article  Google Scholar 

  47. Strowig T, Brilot F, Munz C. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol. 2008;180:7785–91.

    Article  CAS  Google Scholar 

  48. Strowig T, Brilot F, Arrey F, Bougras G, Thomas D, Muller WA, et al. Tonsillar NK cells restrict B cell transformation by the Epstein-Barr virus via IFN-gamma. PLoS Pathog. 2008;4:e27.

    Article  CAS  Google Scholar 

  49. Lopez-Montanes M, Alari-Pahissa E, Sintes J, Martínez-Rodríguez JE, Muntasell A, López-Botet M. Antibody-dependent NK cell activation differentially targets EBV-infected cells in lytic cycle and bystander B lymphocytes bound to viral antigen-containing particles. J Immunol. 2017;199:656–65.

    Article  CAS  Google Scholar 

  50. Ning S. Innate immune modulation in EBV infection. Herpesviridae. 2011;2:1.

    Article  CAS  Google Scholar 

  51. Gilardini Montani MS, Santarelli R, Falcinelli L, Gonnella R, Granato M, Di Renzo L, et al. EBV up-regulates PD-L1 on the surface of primary monocytes by increasing ROS and activating TLR signaling and STAT3. J Leukoc Biol. 2018;104:821–32.

    Article  CAS  Google Scholar 

  52. Skalsky RL, Cullen BR. EBV noncoding RNAs. Curr Top Microbiol Immunol. 2015;391:181–217.

    CAS  Google Scholar 

  53. Lunemann A, Rowe M, Nadal D. Innate immune recognition of EBV. Curr Top Microbiol Immunol. 2015;391:265–87.

    CAS  Google Scholar 

  54. Skalsky RL. Analysis of viral and cellular MicroRNAs in EBV-infected cells. Methods Mol Biol. 2017;1532:133–46.

    Article  CAS  Google Scholar 

  55. Hartung A, Makarewicz O, Egerer R, Karrasch M, Klink A, Sauerbrei A, et al. EBV miRNA expression profiles in different infection stages: a prospective cohort study. PLoS One. 2019;14:e0212027.

    Article  CAS  Google Scholar 

  56. Hooykaas MJG, van Gent M, Soppe JA, Kruse E, Boer IGJ, van Leenen D, et al. EBV MicroRNA BART16 suppresses type I IFN signaling. J Immunol. 2017;198:4062–73.

    Article  CAS  Google Scholar 

  57. Ahmed W, Philip PS, Tariq S, Khan G. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS One. 2014;9:e99163.

    Article  CAS  Google Scholar 

  58. Kagoya Y, Hangaishi A, Takahashi T, Imai Y, Kurokawa M. High-dose dexamethasone therapy for severe thrombocytopenia and neutropenia induced by EBV infectious mononucleosis. Int J Hematol. 2010;91:326–7.

    Article  Google Scholar 

  59. Larochelle B, Flamand L, Gourde P, Beauchamp D, Gosselin J. Epstein-Barr virus infects and induces apoptosis in human neutrophils. Blood. 1998;92:291–9.

    Article  CAS  Google Scholar 

  60. Levitsky V, Masucci MG. Manipulation of immune responses by Epstein-Barr virus. Virus Res. 2002;88:71–86.

    Article  CAS  Google Scholar 

  61. Gilardini Montani MS, Santarelli R, Granato M, Gonnella R, Torrisi MR, Faggioni A, et al. EBV reduces autophagy, intracellular ROS and mitochondria to impair monocyte survival and differentiation. Autophagy. 2019;15(4):652–67. https://doi.org/10.1080/15548627.2018.1536530.

  62. Lin YL, Li M. Human cytomegalovirus and Epstein-Barr virus inhibit oral bacteria-induced macrophage activation and phagocytosis. Oral Microbiol Immunol. 2009;24:243–8.

    Article  CAS  Google Scholar 

  63. Mautner J, Bornkamm GW. The role of virus-specific CD4+ T cells in the control of Epstein-Barr virus infection. Eur J Cell Biol. 2012;91:31–5.

    Article  CAS  Google Scholar 

  64. Forrest C, Hislop AD, Rickinson AB, Zuo J. Proteome-wide analysis of CD8+ T cell responses to EBV reveals differences between primary and persistent infection. PLoS Pathog. 2018;14:e1007110.

    Article  CAS  Google Scholar 

  65. Lam JKP, Hui KF, Ning RJ, Xu XQ, Chan KH, AKSl C. Emergence of CD4+ and CD8+ polyfunctional T cell responses against immunodominant lytic and latent EBV antigens in children with primary EBV infection. Front Microbiol. 2018;9:416.

    Article  Google Scholar 

  66. Sohn DH, Sohn HJ, Lee HJ, Lee SD, Kim S, Hyun SJ, et al. Measurement of CD8+ and CD4+ T cell frequencies specific for EBV LMP1 and LMP2a using mRNA-transfected DCs. PLoS One. 2015;10:e0127899.

    Article  CAS  Google Scholar 

  67. Shah KM, Young LS. Epstein-Barr virus and carcinogenesis: beyond Burkitt’s lymphoma. Clin Microbiol Infect. 2009;15:982–8.

    Article  CAS  Google Scholar 

  68. Arfelt KN, Fares S, Rosenkilde MM. EBV, the human host, and the 7TM receptors: defense or offense? Prog Mol Biol Transl Sci. 2015;129:395–427.

    Article  CAS  Google Scholar 

  69. Tempera I, De Leo A, Kossenkov AV, Cesaroni M, Song H, Dawany N, et al. Identification of MEF2B, EBF1, and IL6R as direct gene targets of Epstein-Barr virus (EBV) nuclear antigen 1 critical for EBV-infected B-lymphocyte survival. J Virol. 2016;90:345–55.

    Article  CAS  Google Scholar 

  70. Petrova M, Muhtarova M, Nikolova M, Magaev S, Taskov H, Nikolovska D, et al. Chronic Epstein-Barr virus-related hepatitis in immunocompetent patients. World J Gastroenterol. 2006;12:5711–6.

    Article  Google Scholar 

  71. van Baarle D, Tsegaye A, Miedema F, Akbar A. Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol Lett. 2005;97:19–29.

    Article  CAS  Google Scholar 

  72. Wills MR, Okecha G, Weekes MP, Gandhi MK, Sissons PJ, Carmichael AJ. Identification of naive or antigen-experienced human CD8(+) T cells by expression of costimulation and chemokine receptors: analysis of the human cytomegalovirus-specific CD8(+) T cell response. J Immunol. 2002;168:5455–64.

    Article  CAS  Google Scholar 

  73. Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.

    Article  CAS  Google Scholar 

  74. Hutt-Fletcher LM. EBV glycoproteins: where are we now? Futur Virol. 2015;10:1155–62.

    Article  CAS  Google Scholar 

  75. Rist MJ, Hibbert KM, Croft NP, Smith C, Neller MA, Burrows JM, et al. T cell cross-reactivity between a highly immunogenic EBV epitope and a self-peptide naturally presented by HLA-B*18:01+ cells. J Immunol. 2015;194:4668–75.

    Article  CAS  Google Scholar 

  76. Fitzsimmons L, Kelly GL. EBV and apoptosis: the viral master regulator of cell fate? Viruses. 2017;9:339.

    Article  CAS  Google Scholar 

  77. Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol. 2014;24:142–53.

    Article  CAS  Google Scholar 

  78. Filatova EN, Sakharnov NA, Knyazev DI, Utkin OV. Changes in mRNA expression of members of TGFB1-associated pathways in human leukocytes during EBV infection. Acta Microbiol Immunol Hung. 2019;66(2):247–54. https://doi.org/10.1556/030.65.2018.047.

  79. Yin H, Qu J, Peng Q, Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol. 2019;208(5):573–83.

    Article  CAS  Google Scholar 

  80. Giunco S, Celeghin A, Gianesin K, Dolcetti R, Indraccolo S, De Rossi A. Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus. Cell Death Dis. 2015;6:e1774.

    Article  CAS  Google Scholar 

  81. Kang D, Skalsky RL, Cullen BR. EBV BART MicroRNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival. PLoS Pathog. 2015;11:e1004979.

    Article  CAS  Google Scholar 

  82. Niller HH, Tarnai Z, Decsi G, Zsedényi A, Bánáti F, Minarovits J. Role of epigenetics in EBV regulation and pathogenesis. Future Microbiol. 2014;9:747–56.

    Article  CAS  Google Scholar 

  83. Hafez AY, Luftig MA. Characterization of the EBV-induced persistent DNA damage response. Viruses. 2017;9:366.

    Article  CAS  Google Scholar 

  84. Allday MJ, Bazot Q, White RE. The EBNA3 family: two oncoproteins and a tumour suppressor that are central to the biology of EBV in B cells. Curr Top Microbiol Immunol. 2015;391:61–117.

    CAS  Google Scholar 

  85. Kalra M, Gerdemann U, Luu JD, Ngo MC, Leen AM, Louis CU, et al. Epstein-Barr Virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy. Cytotherapy. 2018;21(2):212–23.

    Article  CAS  Google Scholar 

  86. Rider MA, Cheerathodi MR, Hurwitz SN, Nkosi D, Howell LA, Tremblay DC, et al. The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology. 2018;516:55–70.

    Article  CAS  Google Scholar 

  87. Rancan C, Schirrmann L, Huls C, Zeidler R, Moosmann A. Latent membrane protein LMP2A impairs recognition of EBV-infected cells by CD8+ T cells. PLoS Pathog. 2015;11:e1004906.

    Article  CAS  Google Scholar 

  88. Fish K, Sora RP, Schaller SJ, Longnecker R, Ikeda M. EBV latent membrane protein 2A orchestrates p27(kip1) degradation via Cks1 to accelerate MYC-driven lymphoma in mice. Blood. 2017;130:2516–26.

    Article  CAS  Google Scholar 

  89. Dai YM, Liu HY, Liu YF, Zhang Y, He W. EBV transformation induces overexpression of hMSH2/3/6 on B lymphocytes and enhances gammadeltaT-cell-mediated cytotoxicity via TCR and NKG2D. Immunology. 2018;154(4):673–82.

    Article  CAS  Google Scholar 

  90. Gandhi J, Gaur N, Khera L, Kaul R, Robertson ES. COX-2 induces lytic reactivation of EBV through PGE2 by modulating the EP receptor signaling pathway. Virology. 2015;484:1–14.

    Article  CAS  Google Scholar 

  91. Guo L, Bodo J, Durkin L, Hsi ED. Evaluation of PD1/PDL1 expression and their clinicopathologic association in EBV-associated lymphoproliferative disorders in nonimmunosuppressed patients. Appl Immunohistochem Mol Morphol. 2019;27:101–6.

    Article  CAS  Google Scholar 

  92. Tangye SG, Palendira U, Edwards ES. Human immunity against EBV-lessons from the clinic. J Exp Med. 2017;214:269–83.

    Article  Google Scholar 

  93. Pagano JS, Whitehurst CB, Andrei G. Antiviral drugs for EBV. Cancers (Basel). 2018;10:197.

    Article  CAS  Google Scholar 

  94. Cohen JI. Epstein-Barr virus infection. N Engl J Med. 2000;343:481–92.

    Article  CAS  Google Scholar 

  95. Vine LJ, Shepherd K, Hunter JG, Madden R, Thornton C, Ellis V, et al. Characteristics of Epstein-Barr virus hepatitis among patients with jaundice or acute hepatitis. Aliment Pharmacol Ther. 2012;36:16–21.

    Article  CAS  Google Scholar 

  96. Lang F, Pei Y, Lamplugh ZL, Robertson ES. Molecular biology of EBV in relationship to HIV/AIDS-associated oncogenesis. Cancer Treat Res. 2019;177:81–103.

    Article  CAS  Google Scholar 

  97. Klenerman P, Hill A. T cells and viral persistence: lessons from diverse infections. Nat Immunol. 2005;6:873–9.

    Article  CAS  Google Scholar 

  98. Shaukat A, Tsai HT, Rutherford R, Anania FA. Epstein-Barr virus induced hepatitis: an important cause of cholestasis. Hepatol Res. 2005;33:24–6.

    Article  CAS  Google Scholar 

  99. Okano M, Gross TG. Acute or chronic life-threatening diseases associated with Epstein-Barr virus infection. Am J Med Sci. 2012;343:483–9.

    Article  Google Scholar 

  100. Mellinger JL, Rossaro L, Naugler WE, Nadig SN, Appelman H, Lee WM, et al. Epstein-Barr virus (EBV) related acute liver failure: a case series from the US Acute Liver Failure Study Group. Dig Dis Sci. 2014;59:1630–7.

    Article  CAS  Google Scholar 

  101. Koay LB, Tsai SL, Sun CS, Wu KT. Chronic autoimmune hepatitis with Epstein-Barr virus superinfection: a case report and review of literature. Hepato-Gastroenterology. 2008;55:1781–4.

    Google Scholar 

  102. Ader F, Chatellier D, Le Berre R, Morand P, Fourrier F. Fulminant Epstein-Barr virus (EBV) hepatitis in a young immunocompetent subject. Med Mal Infect. 2006;36:396–8.

    Article  CAS  Google Scholar 

  103. Chiba T, Goto S, Yokosuka O, Imazeki F, Tanaka M, Fukai K, et al. Fatal chronic active Epstein-Barr virus infection mimicking autoimmune hepatitis. Eur J Gastroenterol Hepatol. 2004;16:225–8.

    Article  Google Scholar 

  104. Babel N, Schwarzmann F, Prang N, Jaeger M, Wolf H, Kern F, et al. Association between Epstein-Barr virus infection and late acute transplant rejection in long-term transplant patients. Transplantation. 2001;72:736–9.

    Article  CAS  Google Scholar 

  105. Kanakry J, Ambinder R. The biology and clinical utility of EBV monitoring in blood. Curr Top Microbiol Immunol. 2015;391:475–99.

    CAS  Google Scholar 

  106. Smatti MK, Yassine HM, AbuOdeh R, AlMarawani A, Taleb SA, Althani AA, et al. Prevalence and molecular profiling of Epstein Barr virus (EBV) among healthy blood donors from different nationalities in Qatar. PLoS One. 2017;12:e0189033.

    Article  CAS  Google Scholar 

  107. Hyams C, Mabayoje DA, Copping R, Maranao D, Patel M, Labbett W, et al. Serological cross reactivity to CMV and EBV causes problems in the diagnosis of acute hepatitis E virus infection. J Med Virol. 2014;86:478–83.

    Article  CAS  Google Scholar 

  108. Kanakry JA, Hegde AM, Durand CM, Massie AB, Greer AE, Ambinder RF, et al. The clinical significance of EBV DNA in the plasma and peripheral blood mononuclear cells of patients with or without EBV diseases. Blood. 2016;127:2007–17.

    Article  CAS  Google Scholar 

  109. Thorley-Lawson DA. EBV persistence--introducing the virus. Curr Top Microbiol Immunol. 2015;390:151–209.

    CAS  Google Scholar 

  110. Drebber U, Kasper HU, Krupacz J, Haferkamp K, Kern MA, Steffen HM, et al. The role of Epstein-Barr virus in acute and chronic hepatitis. J Hepatol. 2006;44:879–85.

    Article  CAS  Google Scholar 

  111. Cohen JI, Niemela JE, Stoddard JL, Pittaluga S, Heslop H, Jaffe ES, et al. Late-onset severe chronic active EBV in a patient for five years with mutations in STXBP2 (MUNC18-2) and PRF1 (perforin 1). J Clin Immunol. 2015;35:445–8.

    Article  Google Scholar 

  112. Mehal WZ. Intrahepatic T cell survival versus death: which one prevails and why? J Hepatol. 2003;39:1070–1.

    Article  Google Scholar 

  113. Mehal WZ, Azzaroli F, Crispe IN. Immunology of the healthy liver: old questions and new insights. Gastroenterology. 2001;120:250–60.

    Article  CAS  Google Scholar 

  114. Crispe IN, Dao T, Klugewitz K, Mehal WZ, Metz DP. The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev. 2000;174:47–62.

    Article  CAS  Google Scholar 

  115. Straus SE. The chronic mononucleosis syndrome. J Infect Dis. 1988;157:405–12.

    Article  CAS  Google Scholar 

  116. Vento S, Cainelli F. Is there a role for viruses in triggering autoimmune hepatitis? Autoimmun Rev. 2004;3:61–9.

    Article  Google Scholar 

  117. Biest S, Schubert TT. Chronic Epstein-Barr virus infection: a cause of granulomatous hepatitis? J Clin Gastroenterol. 1989;11:343–6.

    Article  CAS  Google Scholar 

  118. Kikuchi K, Miyakawa H, Abe K, Fujikawa H, Horiuchi T, Nagai K, et al. Vanishing bile duct syndrome associated with chronic EBV infection. Dig Dis Sci. 2000;45:160–5.

    Article  CAS  Google Scholar 

  119. Kimura H, Fujiwara S. Overview of EBV-associated T/NK-cell lymphoproliferative diseases. Front Pediatr. 2018;6:417.

    Article  Google Scholar 

  120. Lee TH, Ko YH. Chronic active EBV infection: the experience of the Samsung Medical Center in South Korea. Bol Med Hosp Infant Mex. 2016;73:10–7.

    Google Scholar 

  121. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-kappaB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187–97.

    Article  CAS  Google Scholar 

  122. Smets F, Sokal EM. Lymphoproliferation in children after liver transplantation. J Pediatr Gastroenterol Nutr. 2002;34:499–505.

    Article  Google Scholar 

  123. Kamdar KY, Rooney CM, Heslop HE. Posttransplant lymphoproliferative disease following liver transplantation. Curr Opin Organ Transplant. 2011;16:274–80.

    Article  CAS  Google Scholar 

  124. D’Antiga L, Del Rizzo M, Mengoli C, Cillo U, Guariso G, Zancan L. Sustained Epstein-Barr virus detection in paediatric liver transplantation. Insights into the occurrence of late PTLD. Liver Transpl. 2007;13:343–8.

    Article  Google Scholar 

  125. Bergallo M, Gambarino S, Pinon M, Barat V, Montanari P, Daprà V, et al. EBV-encoded microRNAs profile evaluation in pediatric liver transplant recipients. J Clin Virol. 2017;91:36–41.

    Article  CAS  Google Scholar 

  126. Colombini E, Guzzo I, Morolli F, Longo G, Russo C, Lombardi A, et al. Viral load of EBV DNAemia is a predictor of EBV-related post-transplant lymphoproliferative disorders in pediatric renal transplant recipients. Pediatr Nephrol. 2017;32:1433–42.

    Article  Google Scholar 

  127. Luskin MR, Heil DS, Tan KS, Choi S, Stadtmauer EA, Schuster SJ, et al. The impact of EBV status on characteristics and outcomes of posttransplantation lymphoproliferative disorder. Am J Transplant. 2015;15:2665–73.

    Article  CAS  Google Scholar 

  128. Kataoka K, Seo S, Sugawara Y, Ota S, Imai Y, Takahashi T, et al. Post-transplant lymphoproliferative disorder after adult-to-adult living donor liver transplant: case series and review of literature. Leuk Lymphoma. 2010;51:1494–501.

    Article  Google Scholar 

  129. Van Besien K, Bachier-Rodriguez L, Satlin M, Brown MA, Gergis U, Guarneri D, et al. Prophylactic rituximab prevents EBV PTLD in haplo-cord transplant recipients at high risk. Leuk Lymphoma. 2019;60(7):1693–6. https://doi.org/10.1080/10428194.2018.

  130. Bieling M, Tischer S, Kalinke U, Blasczyk R, Buus S, Maecker-Kolhoff B, et al. Personalized adoptive immunotherapy for patients with EBV-associated tumors and complications: evaluation of novel naturally processed and presented EBV-derived T-cell epitopes. Oncotarget. 2018;9:4737–57.

    Article  Google Scholar 

  131. Li W, Wu BA, Zeng YM, Chen GC, Li XX, Chen JT, et al. Epstein-Barr virus in hepatocellular carcinogenesis. World J Gastroenterol. 2004;10:3409–13.

    Article  CAS  Google Scholar 

  132. Chen ZX, Peng XT, Tan L, Zhai GQ, Chen G, Gan TQ, et al. EBV as a potential risk factor for hepatobiliary system cancer: a meta-analysis with 918 cases. Pathol Res Pract. 2019;215:278–85.

    Article  Google Scholar 

  133. Luzuriaga K, Sullivan JL. Infectious mononucleosis. N Engl J Med. 2010;362:1993–2000.

    Article  CAS  Google Scholar 

  134. Candy B, Hotopf M. Steroids for symptom control in infectious mononucleosis. Cochrane Database Syst Rev. 2006;(3):CD004402.

    Google Scholar 

  135. Rafailidis PI, Mavros MN, Kapaskelis A, Falagas ME. Antiviral treatment for severe EBV infections in apparently immunocompetent patients. J Clin Virol. 2010;49:151–7.

    Article  CAS  Google Scholar 

  136. Pisapia R, Mariano A, Rianda A, Testa A, Oliva A, Vincenzi L. Severe EBV hepatitis treated with valganciclovir. Infection. 2013;41(1):251–4.

    Article  CAS  Google Scholar 

  137. Adams LA, Deboer B, Jeffrey G, Marley R, Garas G. Ganciclovir and the treatment of Epstein-Barr virus hepatitis. J Gastroenterol Hepatol. 2006;21:1758–60.

    Article  Google Scholar 

  138. Feranchak AP, Tyson RW, Narkewicz MR, Karrer FM, Sokol RJ. Fulminant Epstein-Barr viral hepatitis: orthotopic liver transplantation and review of the literature. Liver Transpl Surg. 1998;4:469–76.

    Article  CAS  Google Scholar 

  139. Okano M, Gross TG. Advanced therapeutic and prophylactic strategies for Epstein-Barr virus infection in immunocompromised patients. Expert Rev Anti-Infect Ther. 2007;5:403–13.

    Article  CAS  Google Scholar 

  140. Shatzer A, Ali MA, Chavez M, Dowdell K, Lee MJ, Tomita Y, et al. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV)-infected B and T cells and reduces the percentage of EBV-infected cells in the blood. Leuk Lymphoma. 2017;58:923–31.

    Article  CAS  Google Scholar 

  141. Sathiyamoorthy K, Jiang J, Mohl BS, Chen J, Zhou ZH, Longnecker R, et al. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies. Proc Natl Acad Sci U S A. 2017;114:E8703–10.

    Article  CAS  Google Scholar 

  142. van Zyl DG, Tsai MH, Shumilov A, Schneidt V, Poirey R, Schlehe B, et al. Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice. PLoS Pathog. 2018;14:e1007464.

    Article  CAS  Google Scholar 

  143. Goodier MR, Jonjic S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol. 2018;48:50–65.

    Article  CAS  Google Scholar 

  144. Hill AB. The immune response to CMV infection and vaccination in mice, monkeys and humans: recent developments. Curr Opin Virol. 2018;28:161–6.

    Article  CAS  Google Scholar 

  145. Terrazzini N, Kern F. Cell-mediated immunity to human CMV infection: a brief overview. F1000Prime Rep. 2014;6:28.

    Article  CAS  Google Scholar 

  146. Hassouneh F, Campos C, Lopez-Sejas N, Alonso C, Tarazona R, Solana R, et al. Effect of age and latent CMV infection on CD8+ CD56+ T cells (NKT-like) frequency and functionality. Mech Ageing Dev. 2016;158:38–45.

    Article  CAS  Google Scholar 

  147. Pera A, Vasudev A, Tan C, Kared H, Solana R, Larbi A. CMV induces expansion of highly polyfunctional CD4+ T cell subset coexpressing CD57 and CD154. J Leukoc Biol. 2017;101:555–66.

    Article  CAS  Google Scholar 

  148. Bigley AB, Spielmann G, Agha N, O’Connor DP, Simpson RJ. Dichotomous effects of latent CMV infection on the phenotype and functional properties of CD8+ T-cells and NK-cells. Cell Immunol. 2016;300:26–32.

    Article  CAS  Google Scholar 

  149. Almanan M, Raynor J, Sholl A, Wang M, Chougnet C, Cardin RD, et al. Tissue-specific control of latent CMV reactivation by regulatory T cells. PLoS Pathog. 2017;13:e1006507.

    Article  CAS  Google Scholar 

  150. Gordon CL, Miron M, Thome JJ, Matsuoka N, Weiner J, Rak MA, et al. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection. J Exp Med. 2017;214:651–67.

    Article  CAS  Google Scholar 

  151. Smith CJ, Quinn M, Snyder CM. CMV-specific CD8 T cell differentiation and localization: implications for adoptive therapies. Front Immunol. 2016;7:352.

    Google Scholar 

  152. Bayard C, Lepetitcorps H, Roux A, Larsen M, Fastenackels S, Salle V, et al. Coordinated expansion of both memory T cells and NK cells in response to CMV infection in humans. Eur J Immunol. 2016;46:1168–79.

    Article  CAS  Google Scholar 

  153. Soderberg-Naucler C. CMV and NK cells: an unhealthy tryst? Cell Host Microbe. 2016;19:277–9.

    Article  CAS  Google Scholar 

  154. Jackson SE, Redeker A, Arens R, van Baarle D, van den Berg SPH, Benedict CA, et al. CMV immune evasion and manipulation of the immune system with aging. Geroscience. 2017;39:273–91.

    Article  CAS  Google Scholar 

  155. Hassouneh F, Lopez-Sejas N, Campos C, Sanchez-Correa B, Tarazona R, Pera A, et al. Effect of cytomegalovirus (CMV) and ageing on T-Bet and eomes expression on T-cell subsets. Int J Mol Sci. 2017;18:1391.

    Article  CAS  Google Scholar 

  156. Puissant-Lubrano B, Apoil PA, Guedj K, Congy-Jolivet N, Roubinet F, Guyonnet S, et al. Distinct effect of age, sex, and CMV seropositivity on dendritic cells and monocytes in human blood. Immunol Cell Biol. 2018;96:114–20.

    Article  CAS  Google Scholar 

  157. Kallemeijn MJ, Boots AMH, van der Klift MY, Brouwer E, Abdulahad WH, Verhaar JAN, et al. Ageing and latent CMV infection impact on maturation, differentiation and exhaustion profiles of T-cell receptor gammadelta T-cells. Sci Rep. 2017;7:5509.

    Article  CAS  Google Scholar 

  158. Jackson SE, Sedikides GX, Okecha G, Poole EL, Sinclair JH, Wills MR. Latent cytomegalovirus (CMV) infection does not detrimentally alter T cell responses in the healthy old, but increased latent CMV carriage is related to expanded CMV-specific T cells. Front Immunol. 2017;8:733.

    Article  CAS  Google Scholar 

  159. Corrales-Aguilar E, Hoffmann K, Hengel H. CMV-encoded Fcgamma receptors: modulators at the interface of innate and adaptive immunity. Semin Immunopathol. 2014;36:627–40.

    Article  CAS  Google Scholar 

  160. Zdziarski P. CMV-specific immune response-new patients, new insight: central role of specific IgG during infancy and long-lasting immune deficiency after allogenic stem cell transplantation. Int J Mol Sci. 2019;20:271.

    Article  CAS  Google Scholar 

  161. Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis. 2006;43:1143–51.

    Article  Google Scholar 

  162. Lachmann R, Loenenbach A, Waterboer T, Brenner N, Pawlita M, Michel A, et al. Cytomegalovirus (CMV) seroprevalence in the adult population of Germany. PLoS One. 2018;13:e0200267.

    Article  CAS  Google Scholar 

  163. Styczynski J. Who is the patient at risk of CMV recurrence: a review of the current scientific evidence with a focus on hematopoietic cell transplantation. Infect Dis Ther. 2018;7:1–16.

    Article  Google Scholar 

  164. Kunno A, Abe M, Yamada M, Murakami K. Clinical and histological features of cytomegalovirus hepatitis in previously healthy adults. Liver. 1997;17:129–32.

    Article  CAS  Google Scholar 

  165. Rafailidis PI, Mourtzoukou EG, Varbobitis IC, Falagas ME. Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J. 2008;5:47.

    Article  Google Scholar 

  166. Galiatsatos P, Shrier I, Lamoureux E, Szilagyi A. Meta-analysis of outcome of cytomegalovirus colitis in immunocompetent hosts. Dig Dis Sci. 2005;50:609–16.

    Article  Google Scholar 

  167. Karakozis S, Gongora E, Caceres M, Brun E, Cook JW. Life-threatening cytomegalovirus colitis in the immunocompetent patient: report of a case and review of the literature. Dis Colon Rectum. 2001;44:1716–20.

    Article  CAS  Google Scholar 

  168. Al-Zafiri R, Gologan A, Galiatsatos P, Szilagyi A. Cytomegalovirus complicating inflammatory bowel disease: a 10-year experience in a community-based, university-affiliated hospital. Gastroenterol Hepatol (N Y). 2012;8:230–9.

    Google Scholar 

  169. Wen J, Xiao Y, Wang J, Pan W, Zhou Y, Zhang X, et al. Low doses of CMV induce autoimmune-mediated and inflammatory responses in bile duct epithelia of regulatory T cell-depleted neonatal mice. Lab Investig. 2015;95:180–92.

    Article  CAS  Google Scholar 

  170. Razonable RR. Cytomegalovirus infection after liver transplantation: current concepts and challenges. World J Gastroenterol. 2008;14:4849–60.

    Article  Google Scholar 

  171. Poizot-Martin I, Allavena C, Duvivier C, Cano CE, Guillouet de Salvador F, Rey D, et al. CMV+ serostatus associates negatively with CD4:CD8 ratio normalization in controlled HIV-infected patients on cART. PLoS One. 2016;11:e0165774.

    Article  CAS  Google Scholar 

  172. El Haddad L, Ariza-Heredia E, Shah DP, Jiang Y, Blanchard T, Ghantoji SS, et al. The ability of a cytomegalovirus ELISPOT assay to predict outcome of low-level CMV reactivation in hematopoietic cell transplant recipients. J Infect Dis. 2019;219(6):898–907.

    Article  CAS  Google Scholar 

  173. Affandi JS, Montgomery J, Brunt SJ, Nolan D, Price P. The immunological footprint of CMV in HIV-1 patients stable on long-term ART. Immun Ageing. 2015;12:14.

    Article  CAS  Google Scholar 

  174. Abana CO, Pilkinton MA, Gaudieri S, Chopra A, McDonnell WJ, Wanjalla C, et al. Cytomegalovirus (CMV) epitope-specific CD4(+) T cells are inflated in HIV(+) CMV(+) subjects. J Immunol. 2017;199:3187–201.

    Article  CAS  Google Scholar 

  175. Roulot D, Valla D, Brun-Vezinet F, Rey MA, Clavel F, Degott C, et al. Cholangitis in the acquired immunodeficiency syndrome: report of two cases and review of the literature. Gut. 1987;28:1653–60.

    Article  CAS  Google Scholar 

  176. Singh N. Optimal prevention of late-onset cytomegalovirus (CMV) disease and other sequelae of CMV infection in organ transplant recipients. Clin Infect Dis. 2008;47:296–7; author reply 297.

    Article  CAS  Google Scholar 

  177. Lodding IP, Mocroft A, da Cunha Bang C, Gustafsson F, Iversen M, Kirkby N, et al. Impact of CMV PCR blips in recipients of solid organ and hematopoietic stem cell transplantation. Transplant Direct. 2018;4:e355.

    Article  Google Scholar 

  178. Navarro D, Fernandez-Ruiz M, Aguado JM, Sandonís V, Pérez-Romero P. Going beyond serology for stratifying the risk of CMV infection in transplant recipients. Rev Med Virol. 2019;29:e2017.

    Article  Google Scholar 

  179. Lopez-Oliva MO, Martinez V, Buitrago A, Jiménez C, Rivas B, Escuin F, et al. Pretransplant CD8 T-cell response to IE-1 discriminates seropositive kidney recipients at risk of developing CMV infection posttransplant. Transplantation. 2014;97:839–45.

    Article  CAS  Google Scholar 

  180. Yong MK, Lewin SR, Manuel O. Immune monitoring for CMV in transplantation. Curr Infect Dis Rep. 2018;20:4.

    Article  Google Scholar 

  181. Arthurs SK, Eid AJ, Pedersen RA, Dierkhising RA, Kremers WK, Patel R, et al. Delayed-onset primary cytomegalovirus disease after liver transplantation. Liver Transpl. 2007;13:1703–9.

    Article  Google Scholar 

  182. Meesing A, Abraham RS, Razonable RR. Clinical correlation of cytomegalovirus infection with CMV-specific CD8+ T cell immune competence score and lymphocyte subsets in solid organ transplant recipients. Transplantation. 2019;103(4):832–8.

    Article  CAS  Google Scholar 

  183. Cantisan S, Rodelo-Haad C, Paez-Vega A, Nieto A, Vaquero JM, Poyato A, et al. Factors related to the development of CMV-specific CD8+ T cell response in CMV-seropositive solid organ transplant candidates. Am J Transplant. 2015;15:715–22.

    Article  CAS  Google Scholar 

  184. Mena-Romo JD, Perez Romero P, Martin-Gandul C, Gentil MÁ, Suárez-Artacho G, Lage E, et al. CMV-specific T-cell immunity in solid organ transplant recipients at low risk of CMV infection. Chronology and applicability in preemptive therapy. J Infect. 2017;75:336–45.

    Article  Google Scholar 

  185. Molina-Ortega A, Martin-Gandul C, Mena-Romo JD, Rodríguez-Hernández MJ, Suñer M, Bernal C, et al. Impact of pretransplant CMV-specific T-cell immune response in the control of CMV infection after solid organ transplantation: a prospective cohort study. Clin Microbiol Infect. 2019;25(6):753–8.

    Article  CAS  Google Scholar 

  186. Lodding IP, da Cunha Bang C, Sorensen SS, Gustafsson F, Iversen M, Kirkby N, et al. Cytomegalovirus (CMV) disease despite weekly preemptive CMV strategy for recipients of solid organ and hematopoietic stem cell transplantation. Open Forum Infect Dis. 2018;5:ofy080.

    Article  CAS  Google Scholar 

  187. Paez-Vega A, Poyato A, Rodriguez-Benot A, Guirado L, Fortún J, Len O, et al. Analysis of spontaneous resolution of cytomegalovirus replication after transplantation in CMV-seropositive patients with pretransplant CD8+IFNG+ response. Antivir Res. 2018;155:97–105.

    Article  CAS  Google Scholar 

  188. Shin KH, Lee HJ, Chang CL, Kim EJ, Lim S, Lee SJ, et al. CMV specific T cell immunity predicts early viremia after liver transplantation. Transpl Immunol. 2018;51:62–5.

    Article  CAS  Google Scholar 

  189. van der Heiden PLJ, van Egmond HM, Veld SAJ, van de Meent M, Eefting M, de Wreede LC, et al. CMV seronegative donors: effect on clinical severity of CMV infection and reconstitution of CMV-specific immunity. Transpl Immunol. 2018;49:54–8.

    Article  Google Scholar 

  190. Bak S, Tischer S, Dragon A, Ravens S, Pape L, Koenecke C, et al. Selective effects of mTOR inhibitor sirolimus on naive and CMV-specific T cells extending its applicable range beyond immunosuppression. Front Immunol. 2018;9:2953.

    Article  CAS  Google Scholar 

  191. Cristelli MP, Esmeraldo RM, Pinto CM, Sandes-Freitas TV, Felipe C, Lobo CF, et al. The influence of mTOR inhibitors on the incidence of CMV infection in high-risk donor positive-recipient negative (D+/R-) kidney transplant recipients. Transpl Infect Dis. 2018;20:e12907.

    Article  CAS  Google Scholar 

  192. Shi XL, de Mare-Bredemeijer EL, Tapirdamaz O, Hansen BE, van Gent R, van Campenhout MJ, et al. CMV primary infection is associated with donor-specific T cell hyporesponsiveness and fewer late acute rejections after liver transplantation. Am J Transplant. 2015;15:2431–42.

    Article  CAS  Google Scholar 

  193. Burak KW, Kremers WK, Batts KP, Wiesner RH, Rosen CB, Razonable RR, et al. Impact of cytomegalovirus infection, year of transplantation, and donor age on outcomes after liver transplantation for hepatitis C. Liver Transpl. 2002;8:362–9.

    Article  Google Scholar 

  194. Roman A, Manito N, Campistol JM, Cuervas-Mons V, Almenar L, Arias M, et al. The impact of the prevention strategies on the indirect effects of CMV infection in solid organ transplant recipients. Transplant Rev (Orlando). 2014;28:84–91.

    Article  Google Scholar 

  195. Mendez JC, Dockrell DH, Espy MJ, Smith TF, Wilson JA, Harmsen WS, et al. Human beta-herpesvirus interactions in solid organ transplant recipients. J Infect Dis. 2001;183:179–84.

    Article  CAS  Google Scholar 

  196. Limaye AP, Bakthavatsalam R, Kim HW, Randolph SE, Halldorson JB, Healey PJ, et al. Impact of cytomegalovirus in organ transplant recipients in the era of antiviral prophylaxis. Transplantation. 2006;81:1645–52.

    Article  Google Scholar 

  197. Emery VC, Sabin CA, Cope AV, Gor D, Hassan-Walker AF, Griffiths PD. Application of viral-load kinetics to identify patients who develop cytomegalovirus disease after transplantation. Lancet. 2000;355:2032–6.

    Article  CAS  Google Scholar 

  198. Walker JK, Scholz LM, Scheetz MH, Gallon LG, Kaufman DB, Rachwalski EJ, et al. Leukopenia complicates cytomegalovirus prevention after renal transplantation with alemtuzumab induction. Transplantation. 2007;83:874–82.

    Article  CAS  Google Scholar 

  199. Hodson EM, Jones CA, Webster AC, Strippoli GF, Barclay PG, Kable K, et al. Antiviral medications to prevent cytomegalovirus disease and early death in recipients of solid-organ transplants: a systematic review of randomised controlled trials. Lancet. 2005;365:2105–15.

    Article  CAS  Google Scholar 

  200. Kim JM, Kwon CH, Joh JW, Ha YE, Sinn DH, Choi GS, et al. Oral valganciclovir as a preemptive treatment for cytomegalovirus (CMV) infection in CMV-seropositive liver transplant recipients. PLoS One. 2015;10:e0123554.

    Article  CAS  Google Scholar 

  201. Mengelle C, Rostaing L, Weclawiak H, Rossignol C, Kamar N, Izopet J. Prophylaxis versus pre-emptive treatment for prevention of cytomegalovirus infection in CMV-seropositive orthotopic liver-transplant recipients. J Med Virol. 2015;87:836–44.

    Article  Google Scholar 

  202. Eid AJ, Razonable RR. New developments in the management of cytomegalovirus infection after solid organ transplantation. Drugs. 2010;70:965–81.

    Article  CAS  Google Scholar 

  203. Badley AD, Seaberg EC, Porayko MK, Wiesner RH, Keating MR, Wilhelm MP, et al. Prophylaxis of cytomegalovirus infection in liver transplantation: a randomized trial comparing a combination of ganciclovir and acyclovir to acyclovir. NIDDK Liver Transplantation Database. Transplantation. 1997;64:66–73.

    Article  CAS  Google Scholar 

  204. Gane E, Saliba F, Valdecasas GJ, O’Grady J, Pescovitz MD, Lyman S, et al. Randomised trial of efficacy and safety of oral ganciclovir in the prevention of cytomegalovirus disease in liver-transplant recipients. The Oral Ganciclovir International Transplantation Study Group [corrected]. Lancet. 1997;350:1729–33.

    Article  CAS  Google Scholar 

  205. Lautenschlager I. CMV infection, diagnosis and antiviral strategies after liver transplantation. Transpl Int. 2009;22:1031–40.

    Article  Google Scholar 

  206. Watt K, Veldt B, Charlton M. A practical guide to the management of HCV infection following liver transplantation. Am J Transplant. 2009;9:1707–13.

    Article  CAS  Google Scholar 

  207. Sun HY, Wagener MM, Singh N. Prevention of posttransplant cytomegalovirus disease and related outcomes with valganciclovir: a systematic review. Am J Transplant. 2008;8:2111–8.

    Article  Google Scholar 

  208. Singh N, Wannstedt C, Keyes L, Wagener MM, Gayowski T, Cacciarelli TV. Indirect outcomes associated with cytomegalovirus (opportunistic infections, hepatitis C virus sequelae, and mortality) in liver-transplant recipients with the use of preemptive therapy for 13 years. Transplantation. 2005;79:1428–34.

    Article  Google Scholar 

  209. Opelz G, Dohler B, Ruhenstroth A. Cytomegalovirus prophylaxis and graft outcome in solid organ transplantation: a collaborative transplant study report. Am J Transplant. 2004;4:928–36.

    Article  Google Scholar 

  210. Limaye AP. Ganciclovir-resistant cytomegalovirus in organ transplant recipients. Clin Infect Dis. 2002;35:866–72.

    Article  CAS  Google Scholar 

  211. Paya C, Humar A, Dominguez E, Washburn K, Blumberg E, Alexander B, et al. Efficacy and safety of valganciclovir vs. oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant. 2004;4:611–20.

    Article  CAS  Google Scholar 

  212. Arthurs SK, Eid AJ, Deziel PJ, Marshall WF, Cassivi SD, Walker RC, et al. The impact of invasive fungal diseases on survival after lung transplantation. Clin Transpl. 2010;24:341–8.

    Article  Google Scholar 

  213. Low CY, Hosseini-Moghaddam SM, Rotstein C, Renner EL, Husain S. The effect of different immunoprophylaxis regimens on post-transplant cytomegalovirus (CMV) infection in CMV-seropositive liver transplant recipients. Transpl Infect Dis. 2017;19:e12736.

    Article  CAS  Google Scholar 

  214. San-Juan R, Navarro D, Garcia-Reyne A, Montejo M, Muñoz P, Carratala J, et al. Effect of delaying prophylaxis against CMV in D+/R- solid organ transplant recipients in the development of CMV-specific cellular immunity and occurrence of late CMV disease. J Infect. 2015;71:561–70.

    Article  CAS  Google Scholar 

  215. Lautenschlager I, Loginov R, Makisalo H, Höckerstedt K. Prospective long-term study on primary CMV infections in adult liver transplant (D+/R-) patients after valganciclovir prophylaxis. J Clin Virol. 2015;71:73–5.

    Article  CAS  Google Scholar 

  216. Asberg A, Hansen CN, Reubsaet L. Determination of ganciclovir in different matrices from solid organ transplanted patients treated with a wide range of concomitant drugs. J Pharm Biomed Anal. 2007;43:1039–44.

    Article  CAS  Google Scholar 

  217. Balfour HH Jr. Antiviral drugs. N Engl J Med. 1999;340:1255–68.

    Article  CAS  Google Scholar 

  218. Schampera MS, Schweinzer K, Abele H, Kagan KO, Klein R, Rettig I, et al. Comparison of cytomegalovirus (CMV)-specific neutralization capacity of hyperimmunoglobulin (HIG) versus standard intravenous immunoglobulin (IVIG) preparations: impact of CMV IgG normalization. J Clin Virol. 2017;90:40–5.

    Article  CAS  Google Scholar 

  219. Beloki L, Ciaurriz M, Mansilla C, Zabalza A, Perez-Valderrama E, Samuel ER, et al. Assessment of the effector function of CMV-specific CTLs isolated using MHC-multimers from granulocyte-colony stimulating factor mobilized peripheral blood. J Transl Med. 2015;13:165.

    Article  CAS  Google Scholar 

  220. Parker ZM, Pasieka TJ, Parker GA, Leib DA. Immune- and nonimmune-compartment-specific interferon responses are critical determinants of herpes simplex virus-induced generalized infections and acute liver failure. J Virol. 2016;90:10789–99.

    Article  CAS  Google Scholar 

  221. Minuk GY, Nicolle LE. Genital herpes and hepatitis in healthy young adults. J Med Virol. 1986;19:269–75.

    Article  CAS  Google Scholar 

  222. Magawa S, Tanaka H, Furuhashi F, Maki S, Nii M, Toriyabe K, et al. A literature review of herpes simplex virus hepatitis in pregnancy. J Matern Fetal Neonatal Med. 2020;33(10):1774–9. https://doi.org/10.1080/14767058.2018.

  223. Peters DJ, Greene WH, Ruggiero F, McGarrity TJ. Herpes simplex-induced fulminant hepatitis in adults: a call for empiric therapy. Dig Dis Sci. 2000;45:2399–404.

    Article  CAS  Google Scholar 

  224. Glorioso DV, Molloy PJ, Van Thiel DH, Kania RJ. Successful empiric treatment of HSV hepatitis in pregnancy. Case report and review of the literature. Dig Dis Sci. 1996;41:1273–5.

    Article  CAS  Google Scholar 

  225. Kaufman B, Gandhi SA, Louie E, Rizzi R, Illei P. Herpes simplex virus hepatitis: case report and review. Clin Infect Dis. 1997;24:334–8.

    Article  CAS  Google Scholar 

  226. Pinna AD, Rakela J, Demetris AJ, Fung JJ. Five cases of fulminant hepatitis due to herpes simplex virus in adults. Dig Dis Sci. 2002;47:750–4.

    Article  Google Scholar 

  227. Norvell JP, Blei AT, Jovanovic BD, Levitsky J. Herpes simplex virus hepatitis: an analysis of the published literature and institutional cases. Liver Transpl. 2007;13:1428–34.

    Article  Google Scholar 

  228. Sampaio AM, Guardia AC, Milan A, Sasaki AN, Andrade PD, Bonon SH, et al. Co-infection and clinical impact of human herpesvirus 5 and 6 in liver transplantation. Transplant Proc. 2012;44:2455–8.

    Article  CAS  Google Scholar 

  229. Lautenschlager I, Razonable RR. Human herpesvirus-6 infections in kidney, liver, lung, and heart transplantation: review. Transpl Int. 2012;25:493–502.

    Article  Google Scholar 

  230. Wang W, Wang X, Yang L, Fu W, Pan D, Liu J, et al. Modulation of host CD59 expression by varicella-zoster virus in human xenografts in vivo. Virology. 2016;491:96–105.

    Article  CAS  Google Scholar 

  231. Patti ME, Selvaggi KJ, Kroboth FJ. Varicella hepatitis in the immunocompromised adult: a case report and review of the literature. Am J Med. 1990;88:77–80.

    Article  CAS  Google Scholar 

  232. Alford CA. Acyclovir treatment of herpes simplex virus infections in immunocompromised humans. An overview. Am J Med. 1982;73:225–8.

    Article  CAS  Google Scholar 

  233. Bihari C, Rastogi A, Saxena P, Rangegowda D, Chowdhury A, Gupta N, et al. Parvovirus b19 associated hepatitis. Hepat Res Treat. 2013;2013:472027.

    Google Scholar 

  234. Ganaie SS, Qiu J. Recent advances in replication and infection of human parvovirus B19. Front Cell Infect Microbiol. 2018;8:166.

    Article  CAS  Google Scholar 

  235. Ganaie SS, Zou W, Xu P, Deng X, Kleiboeker S, Qiu J. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex. PLoS Pathog. 2017;13:e1006370.

    Article  CAS  Google Scholar 

  236. Xu P, Chen AY, Ganaie SS, Cheng F, Shen W, Wang X, et al. The nonstructural protein 11-kDa of human parvovirus B19 facilitates viral DNA replication by interacting with Grb2 through its proline-rich motifs. J Virol. 2018;93(1):e01464-18.

    Article  Google Scholar 

  237. Rodriguez Bandera AI, Mayor Arenal M, Vorlicka K, Ruiz Bravo-Burguilllos E, Montero Vega D, Vidaurrázaga Díaz-Arcaya C. Acute parvovirus B19 infection in adults: a retrospective study of 49 cases. Actas Dermosifiliogr. 2015;106:44–50.

    Article  CAS  Google Scholar 

  238. Zhang J, Ren B, Hui R, Sun Y, Liu Z, Zhou S. Clinical heterogeneity of human parvovirus B19 infection following adult liver transplantation. Medicine (Baltimore). 2018;97:e12074.

    Article  CAS  Google Scholar 

  239. Lynch JP 3rd, Kajon AE. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin Respir Crit Care Med. 2016;37:586–602.

    Article  Google Scholar 

  240. Schaberg KB, Kambham N, Sibley RK, Higgins JPT. Adenovirus hepatitis: clinicopathologic analysis of 12 consecutive cases from a single institution. Am J Surg Pathol. 2017;41:810–9.

    Article  Google Scholar 

  241. Rothenberg M, Cheung R, Ahmed A. Adenovirus-induced acute liver failure. Dig Dis Sci. 2009;54:218–21.

    Article  Google Scholar 

  242. Carmichael GP Jr, Zahradnik JM, Moyer GH, Porter DD. Adenovirus hepatitis in an immunosuppressed adult patient. Am J Clin Pathol. 1979;71:352–5.

    Article  Google Scholar 

  243. Ronan BA, Agrwal N, Carey EJ, De Petris G, Kusne S, Seville MT, et al. Fulminant hepatitis due to human adenovirus. Infection. 2014;42:105–11.

    Article  CAS  Google Scholar 

  244. Shen CF, Wang SM, Ho TS, Liu CC. Clinical features of community acquired adenovirus pneumonia during the 2011 community outbreak in southern Taiwan: role of host immune response. BMC Infect Dis. 2017;17:196.

    Article  CAS  Google Scholar 

  245. Lutschg V, Boucke K, Hemmi S, Greber UF. Chemotactic antiviral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells. Nat Commun. 2011;2:391.

    Article  CAS  Google Scholar 

  246. Papic N, Pangercic A, Vargovic M, Barsic B, Vince A, Kuzman I. Liver involvement during influenza infection: perspective on the 2009 influenza pandemic. Influenza Other Respir Viruses. 2012;6:e2–5.

    Article  Google Scholar 

  247. Zhang Y, Liu J, Yu L, Zhou N, Ding W, Zheng S, et al. Prevalence and characteristics of hypoxic hepatitis in the largest single-centre cohort of avian influenza A(H7N9) virus-infected patients with severe liver impairment in the intensive care unit. Emerg Microbes Infect. 2016;5:e1.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Ilan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishay, Y., Ilan, Y. (2020). Hepatitis A and Other Viral Infections. In: Gershwin, M.E., M. Vierling, J., Tanaka, A., P. Manns, M. (eds) Liver Immunology . Springer, Cham. https://doi.org/10.1007/978-3-030-51709-0_15

Download citation

Publish with us

Policies and ethics