Skip to main content

FTLD Treatment: Current Practice and Future Possibilities

  • Chapter
  • First Online:
Frontotemporal Dementias

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1281))

Abstract

While behavioral variant frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA) remain unrelenting and universally fatal conditions, there is a framework for supportive treatment in patients diagnosed with these frontotemporal dementia (FTD) syndromes and the larger spectrum of clinical syndromes associated with frontotemporal lobar degeneration (FTLD) pathology on autopsy. A managing physician has an important role in weighing therapeutic options, organizing caregiver support, and framing long-term expectations for patients and caregivers. Additionally, a dedicated neurologist may assist patients and caregivers in navigating a growing range of FTD research, including exciting opportunities in clinical therapeutic trials. This chapter will review current therapeutic options for patients with bvFTD and PPA and detail the landscape of potential new disease-modifying therapies targeting the pathophysiology or FTLD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Talerico KA, Evans LK (2001) Responding to safety issues in frontotemporal dementias. Neurology 56(11 SUPPL. 4):S52–S55

    Article  CAS  PubMed  Google Scholar 

  2. Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain

    Google Scholar 

  3. Iverson DJ, Gronseth GS, Reger MA et al (2010) Practice parameter update: evaluation and management of driving risk in dementia: report of the quality standards subcommittee of the American academy of neurology. Neurology 74(16):1316–1324

    Google Scholar 

  4. Riedijk SR, De Vugt ME, Duivenvoorden HJ et al (2006) Caregiver burden, health-related quality of life and coping in dementia caregivers: a comparison of frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord 22(5–6):405–412

    Google Scholar 

  5. Lillo P, Garcin B, Hornberger M et al (2010) Neurobehavioral features in frontotemporal dementia with amyotrophic lateral sclerosis. Arch Neurol 67(7):826–830

    Google Scholar 

  6. Perry DC, Brown JA, Possin KL et al (2017) Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain

    Google Scholar 

  7. Gómez-Tortosa E, Rigual R, Prieto-Jurczynska C et al (2016) Behavioral evolution of progressive semantic aphasia in comparison with nonfluent aphasia. Dement Geriatr Cogn Disord 41(1–2):1–8

    Article  PubMed  Google Scholar 

  8. Höglinger GU, Respondek G, Stamelou M et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32(6):853–864

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee SE, Rabinovici GD, Mayo MC et al (2011) Clinicopathological correlations in corticobasal degeneration. Ann Neurol 70(2):327–340

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kales HC, Gitlin LN, Lyketsos CG (2014) Management of neuropsychiatric symptoms of dementia in clinical settings: recommendations from a multidisciplinary expert panel. J Am Geriatr Soc 62(4):762–769

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gorno-Tempini M, Hillis A, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76(11):1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  12. Volkmer A, Rogalski E, Henry M et al (2019) Speech and language therapy approaches to managing primary progressive aphasia. Pract Neurol

    Google Scholar 

  13. Jokel R, Graham NL, Rochon E et al (2014) Word retrieval therapies in primary progressive aphasia. Aphasiology 28(8–9):1038–1068

    Google Scholar 

  14. Henry ML, Hubbard HI, Grasso SM et al (2018) Retraining speech production and fluency in non-fluent/agrammatic primary progressive aphasia. Brain 141(6):1799–1814

    Article  PubMed  PubMed Central  Google Scholar 

  15. Henry ML, Meese MV, Truong S et al (2013) Treatment for apraxia of speech in nonfluent variant primary progressive aphasia. Behav Neurol 26(1–2):77–88

    Google Scholar 

  16. Deckers K, van Boxtel MPJ, Schiepers OJG et al (2015) Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry 30(3):234–246

    Article  PubMed  Google Scholar 

  17. Casaletto KB, Staffaroni AM, Wolf A et al (2020) Active lifestyles moderate clinical outcomes in autosomal dominant frontotemporal degeneration. Alzheimers Dement 16(1):91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huey ED, Putnam KT, Grafman J (2006) A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology 66(1):17–22

    Article  CAS  PubMed  Google Scholar 

  19. Engelborghs S, Vloeberghs E, Le Bastard N et al (2008) The dopaminergic neurotransmitter system is associated with aggression and agitation in frontotemporal dementia. Neurochem Int 52(6):1052–1060

    Article  CAS  PubMed  Google Scholar 

  20. Chow TW, Mendez MF (2002) Goals in symptomatic pharmacologic management of frontotemporal lobar degeneration. Am J Alzheimers Dis Other Dement 17(5):267–272

    Article  Google Scholar 

  21. Lanctôt KL, Herrmann N, Ganjavi H et al (2007) Serotonin-1A receptors in frontotemporal dementia compared with controls. Psychiatry Res Neuroimaging 156(3):247–250

    Article  CAS  Google Scholar 

  22. Sparks DL, Markesbery WR (1991) Altered serotonergic and cholinergic synaptic markers in Pick’s disease. Arch Neurol 48(8):796–799

    Article  CAS  PubMed  Google Scholar 

  23. Francis PT, Holmes C, Webster MT et al (1993) Preliminary neurochemical findings in non-Alzheimer dementia due to lobar atrophy. Dementia 4:172–177

    Google Scholar 

  24. Procter AW, Qurne M, Francis PT (1999) Neurochemical features of frontotemporal dementia. Dement Geriatr Cogn Disord 10(Suppl 1):80–84

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Schmitt HP (2001) Frontotemporal dementia: evidence for impairment of ascending serotoninergic but not noradrenergic innervation. Immunocytochemical and quantitative study using a graph method. Acta Neuropathol 101(3):256–270

    Article  CAS  PubMed  Google Scholar 

  26. Swartz JR, Miller BL, Lesser IM et al (1997) Frontotemporal dementia: treatment response to serotonin selective reuptake inhibitors. J Clin Psychiatry 58558:212–216

    Google Scholar 

  27. Moretti R, Torre P, Antonello RM et al (2003) Frontotemporal dementia: paroxetine as a possible treatment of behavior symptoms a randomized, controlled, open 14-month study. Eur Neurol 49:13–19

    Google Scholar 

  28. Deakin JB, Rahman S, Nestor PJ et al (2004) Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology (Berl) 172:400–408

    Google Scholar 

  29. Prodan CI, Monnot M, Ross ED (2009) Behavioural abnormalities associated with rapid deterioration of language functions in semantic dementia respond to sertraline. J Neurol Neurosurg Psychiatry 80(12):1416–1417

    Article  CAS  PubMed  Google Scholar 

  30. Herrmann N, Black SE, Chow T et al (2012) Serotonergic function and treatment of behavioral and psychological symptoms of frontotemporal dementia. Am J Geriatr Psychiatry 20(9):789–797

    Google Scholar 

  31. The American Psychiatric Publishing Textbook of Psychopharmacology – Alan F. Schatzberg, Charles B. Nemeroff – Google Books. Accessed 2 Feb 2020

    Google Scholar 

  32. Lebert F, Stekke W, Hasenbroekx C et al (2004) Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement Geriatr Cogn Disord 17:355–359

    Google Scholar 

  33. Rinne JO, Laine M, Kaasinen V et al (2002) Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology 58(10):1489–1493

    Google Scholar 

  34. Frisoni GB, Pizzolato G, Bianchetti A et al (1994) Single photon emission computed tomography with [99Tc]-HM-PAO and [123I]-IBZM in Alzheimer’s disease and dementia of frontal type: preliminary results. Acta Neurol Scand 89(3):199–203

    Article  CAS  PubMed  Google Scholar 

  35. Kerrsens CJ, Pijnenburg YAL (2008) Vulnerability to neuroleptic side effects in frontotemporal dementia. Eur J Neurol 15(2):111–112

    Article  PubMed  Google Scholar 

  36. Steinberg M, Lyketsos CG (2012) Atypical antipsychotic use in patients with dementia: managing safety concerns. Am J Psychiatry 169(9):900–906

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kurlan R, Cummings J, Raman R et al (2007) Quetiapine for agitation or psychosis in patients with dementia and parkinsonism. Neurology 68(17):1356–1363

    Google Scholar 

  38. Komossa K, Rummel-Kluge C, Schmid F et al (2010) Quetiapine versus other atypical antipsychotics for schizophrenia. In: Cochrane database of systematic reviews. John Wiley & Sons

    Google Scholar 

  39. Kales HC, Kim HM, Zivin K et al (2012) Risk of mortality among individual antipsychotics in patients with dementia. Am J Psychiatry 169(1):71–79

    Article  PubMed  Google Scholar 

  40. Weiden PJ (2007) EPS profiles: the atypical antipsychotics – are not all the same. J Psychiatr Pract 13(1):13–24

    Article  PubMed  Google Scholar 

  41. Moretti R, Torre P, Antonello RM et al (2003) Olanzapine as a treatment of neuropsychiatric disorders of Alzheimer’s disease and other dementias: a 24-month follow-up of 68 patients. Am J Alzheimers Dis Other Dement 18(4):205–214

    Google Scholar 

  42. Reeves RR, Perry CL (2013) Aripiprazole for sexually inappropriate vocalizations in frontotemporal dementia. J Clin Psychopharmacol 33(1):145–146

    Article  PubMed  Google Scholar 

  43. Curtis RC, Resch DS (2000) Case of pick’s central lobar atrophy with apparent stabilization of cognitive decline after treatment with risperidone. J Clin Psychopharmacol 20(3):384–385

    Article  CAS  PubMed  Google Scholar 

  44. Hu B, Ross L, Neuhaus J et al (2010) Off-label medication use in frontotemporal dementia. Am J Alzheimers Dis Other Dement 25(2):128–133

    Article  Google Scholar 

  45. Kerchner GA, Tartaglia MC, Boxer AL (2011) Abhorring the vacuum: use of Alzheimer’s disease medications in frontotemporal dementia. Expert Rev Neurother 11(5):709–717

    Google Scholar 

  46. Lampl Y, Sadeh M, Lorberboym M (2004) Efficacy of acetylcholinesterase inhibitors in frontotemporal dementia. Ann Pharmacother 38(11):1967–1968

    Article  PubMed  Google Scholar 

  47. Kertesz A, Morlog D, Light M et al (2008) Galantamine in frontotemporal dementia and primary progressive aphasia. Dement Geriatr Cogn Disord 25(2):178–185

    Article  CAS  PubMed  Google Scholar 

  48. Moretti R, Torre P, Antonello RM et al (2004) Rivastigmine in frontotemporal dementia: an open-label study. Drugs Aging 21(14):931–937

    Google Scholar 

  49. Kimura T, Takamatsu J (2013) Pilot study of pharmacological treatment for frontotemporal dementia: risk of donepezil treatment for behavioral and psychological symptoms. Geriatr Gerontol Int 13(2):506–507

    Google Scholar 

  50. Mendez MF, Shapira JS, McMurtray A et al (2007) Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry 15(1):84–87

    Google Scholar 

  51. Boxer AL, Knopman DS, Kaufer DI et al (2013) Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 12(2):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goforth HW, Konopka L, Primeau M et al (2004) Quantitative electroencephalography in frontotemporal dementia with methylphenidate response: a case study. Clin EEG Neurosci 35(2):108–111

    Article  PubMed  Google Scholar 

  53. Rahman S, Robbins TW, Hodges JR et al, Methylphenidate (‘Ritalin’) can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology 31:651–658

    Google Scholar 

  54. Huey ED, Garcia C, Wassermann EM et al (2008) Stimulant treatment of frontotemporal dementia in 8 patients HHS public access. J Clin Psychiatry 69(12):1981–1982

    Google Scholar 

  55. Rupasinghe J, Jasinarachchi M (2011) Progressive encephalopathy with cerebral oedema and infarctions associated with valproate and diazepam overdose. J Clin Neurosci 18(5):710–711

    Article  CAS  PubMed  Google Scholar 

  56. Gram L, Bentsen KD (2009) Valproate: an updated review. Acta Neurol Scand 72(2):129–139

    Article  Google Scholar 

  57. Coulter DL, Allen RJ (1980) Secondary hyperammonæmia: a possible mechanism for valproate encephalopathy. Lancet 315(8181):1310–1311

    Article  Google Scholar 

  58. Silver M, Factor SA (2013) Valproic acid-induced parkinsonism: levodopa responsiveness with dyskinesia. Parkinsonism Relat Disord 19(8):758–760

    Article  PubMed  Google Scholar 

  59. Gálvez-Andres A, Blasco-Fontecilla H, González-Parra S et al (2007) Secondary bipolar disorder and diogenes syndrome in frontotemporal dementia: behavioral improvement with quetiapine and sodium valproate. J Clin Psychopharmacol 27(6):722–723

    Google Scholar 

  60. Poetter CE, Stewart JT (2012) Treatment of indiscriminate, inappropriate sexual behavior in frontotemporal dementia with carbamazepine. J Clin Psychopharmacol 32(1):137–138

    Article  PubMed  Google Scholar 

  61. Cruz M, Marinho V, Fontenelle LF et al (2008) Topiramate may modulate alcohol abuse but not other compulsive behaviors in frontotemporal dementia: case report. Cogn Behav Neurol 21(2):104–106

    Google Scholar 

  62. Nestor PJ (2012) Reversal of abnormal eating and drinking behaviour in a frontotemporal lobar degeneration patient using low-dose topiramate. J Neurol Neurosurg Psychiatry 83(3):349–350

    Article  PubMed  Google Scholar 

  63. Singam C, Walterfang M, Mocellin R et al (2013) Topiramate for abnormal eating behaviour in frontotemporal dementia. Behav Neurol 27(3):285–286

    Google Scholar 

  64. Shinagawa S, Tsuno N, Nakayama K (2013) Managing abnormal eating behaviours in frontotemporal lobar degeneration patients with topiramate. Psychogeriatrics 13(1):58–61

    Article  PubMed  Google Scholar 

  65. Litvan I, Grimes DA, Lang AE et al (1999) Clinical features differentiating patients with postmortem confirmed progressive supranuclear palsy and corticobasal degeneration. J Neurol 246(Suppl):1–5

    Google Scholar 

  66. van Balken I, Litvan I (2006) Current and future treatments in progressive supranuclear palsy. Curr Treat Options Neurol 8(3):211–223

    Article  PubMed  Google Scholar 

  67. O’Sullivan SS, Evans AH, Lees AJ (2009) Dopamine dysregulation syndrome: an overview of its epidemiology, mechanisms and management. CNS Drugs 23(2):157–170

    Article  PubMed  Google Scholar 

  68. Moretti R, Torre P, Antonello RM et al (2002) Effects of selegiline on fronto-temporal dementia: a neuropsychological evaluation. Int J Geriatr Psychiatry 17(4):391–392

    Google Scholar 

  69. Weingarten MD, Lockwood AH, Hwo SY et al (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862

    Google Scholar 

  70. Jadhav S, Avila J, Schöll M et al (2019) A walk through tau therapeutic strategies. Acta Neuropathol Commun 7(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  71. Buée L, Bussière T, Buée-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130

    Google Scholar 

  72. Sanders DW, Kaufman SK, DeVos SL et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82(6):1271–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yanamandra K, Kfoury N, Jiang H et al (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80(2):402–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Castillo-Carranza DL, Sengupta U, Guerrero-Muñoz MJ et al (2014) Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34(12):4260–4272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhou Y, Shi J, Chu D et al (2018) Relevance of phosphorylation and truncation of tau to the etiopathogenesis of Alzheimer’s disease. Front Aging Neurosci 10

    Google Scholar 

  76. Novak P, Schmidt R, Kontsekova E et al (2018) Fundamant: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther 10(1):108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hung S-Y, Fu W-M (2017) Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci 24(1):47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. DeVos SL, Miller TM (2013) Antisense oligonucleotides: treating neurodegeneration at the level of RNA. Neurotherapeutics 10(3):486–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoy SM (2017) Nusinersen: first global approval. Drugs 77(4):473–479

    Article  CAS  PubMed  Google Scholar 

  80. Lim KRQ, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mignon L, Kordasiewicz H, Lane R et al (2018) Design of the first-in-human study of IONIS-MAPTRx, a tau-lowering antisense oligonucleotide, in patients with Alzheimer disease (S2.006). Neurology 90(15 Supplement)

    Google Scholar 

  82. Rodriguez-Martin T, Anthony K, Garcia-Blanco MA et al (2009) Correction of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing. Hum Mol Genet 18(17):3266–3273

    Google Scholar 

  83. Min SW, Chen X, Tracy TE et al (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21(10):1154–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tolosa E, Litvan I, Höglinger GU et al (2014) A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 29(4):470–478

    Article  CAS  PubMed  Google Scholar 

  85. Hastings NB, Wang X, Song L et al (2017) Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol Neurodegener 12(1):1–16

    Article  CAS  Google Scholar 

  86. Wischik CM, Edwards PC, Lai RYK et al (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A 93(20):11213–11218

    Google Scholar 

  87. Gauthier S, Feldman HH, Schneider LS et al (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388(10062):2873–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science (80-) 344(6184):630–634

    Article  CAS  Google Scholar 

  89. Villeda SA, Plambeck KE, Middeldorp J et al (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20(6):659–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Greaves CV, Rohrer JD (2019) An update on genetic frontotemporal dementia. J Neurol 266(8):2075–2086

    Article  PubMed  PubMed Central  Google Scholar 

  91. Todd TW, Petrucelli L (2016) Insights into the pathogenic mechanisms of chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem 138:145–162

    Article  CAS  PubMed  Google Scholar 

  92. Jiang J, Zhu Q, Gendron TF et al (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90(3):535–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Finch N, Baker M, Crook R et al (2009) Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132(3):583–591

    Article  PubMed  PubMed Central  Google Scholar 

  94. Meeter LHH, Patzke H, Loewen G et al (2016) Progranulin levels in plasma and cerebrospinal fluid in granulin mutation carriers. Dement Geriatr Cogn Dis Extra 6(2):330–340

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sha SJ, Miller ZA, won Min S et al (2017) An 8-week, open-label, dose-finding study of nimodipine for the treatment of progranulin insufficiency from GRN gene mutations. Alzheimer’s Dement Transl Res Clin Interv 3(4):507–512

    Article  Google Scholar 

  96. Cenik B, Sephton CF, Dewey CM et al (2011) Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapeutic approach to frontotemporal dementia. J Biol Chem 286(18):16101–16108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee WC, Almeida S, Prudencio M et al (2014) Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet 23(6):1467–1478

    Article  CAS  PubMed  Google Scholar 

  98. Alector Showcases Progress in Immuno-Neurology Clinical Programs and Research Portfolio at R&D Day Nasdaq:ALEC. Accessed 17 Feb 2020

    Google Scholar 

  99. Our Programs • Prevail. Accessed 17 Feb 2020

    Google Scholar 

  100. Finger EC, MacKinley J, Blair M et al (2015) Oxytocin for frontotemporal dementia: a randomized dose-finding study of safety and tolerability. Neurology 84(2):174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Boxer AL, Lang AE, Grossman M et al (2014) Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 13(7):676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tsai RM, Miller Z, Koestler M et al (2019) Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Boxer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ljubenkov, P.A., Boxer, A.L. (2021). FTLD Treatment: Current Practice and Future Possibilities. In: Ghetti, B., Buratti, E., Boeve, B., Rademakers, R. (eds) Frontotemporal Dementias . Advances in Experimental Medicine and Biology, vol 1281. Springer, Cham. https://doi.org/10.1007/978-3-030-51140-1_18

Download citation

Publish with us

Policies and ethics