Skip to main content
Log in

Antisense Oligonucleotides: Treating Neurodegeneration at the Level of RNA

  • Review
  • Published:
Neurotherapeutics

Abstract

Adequate therapies are lacking for Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. The ability to use antisense oligonucleotides (ASOs) to target disease-associated genes by means of RNA may offer a potent approach for the treatment of these, and other, neurodegenerative disorders. In modifying the basic backbone chemistry, chemical groups, and target sequence, ASOs can act through numerous mechanisms to decrease or increase total protein levels, preferentially shift splicing patterns, and inhibit microRNAs, all at the level of the RNA molecule. Here, we discuss many of the more commonly used ASO chemistries, as well as the different mechanisms of action that can result from these specific chemical modifications. When applied to multiple neurodegenerative mouse models, ASOs that specifically target the detrimental transgenes have been shown to rescue disease associated phenotypes in vivo. These supporting mouse model data have moved the ASOs from the bench to the clinic, with two neuro-focused human clinical trials now underway and several more being proposed. Although still early in development, translating ASOs into human patients for neurodegeneration appears promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev 2000;10:117–121.

    PubMed  CAS  Google Scholar 

  2. Stein CA, Subasinghe C, Shinozuka K, Cohen JS. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 1988;16:3209–3221.

    PubMed  CAS  Google Scholar 

  3. Cerritelli SM, Crouch RJ. Ribonuclease H: the enzymes in eukaryotes. FEBS J 2009;276:1494–1505.

    PubMed  CAS  Google Scholar 

  4. Brown D, Kang S, Gryaznov S, DeDionisio L, Heidenreich O, Sullivan S, et al. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem 1994;269:26801–26805.

    PubMed  CAS  Google Scholar 

  5. Gryaznov S, Skorski T, Cucco C, Nieborowska-Skorska M, Chiu CY, Lloyd D, et al. Oligonucleotide N3’-- > P5’ phosphoramidates as antisense agents. Nucleic Acids Res 1996;24:1508–1514.

    PubMed  CAS  Google Scholar 

  6. Sazani P, Gemignani F, Kang S-H, Maier MA, Manoharan M, Persmark M, et al. Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat Biotechnol 2002;20:1228–1233.

    PubMed  CAS  Google Scholar 

  7. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 2006;12:175–177.

    PubMed  CAS  Google Scholar 

  8. Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1999;1489:141–158.

    PubMed  CAS  Google Scholar 

  9. Wu B, Moulton HM, Iversen PL, Jiang J, Li J, Li J, et al. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci U S A 2008;105:14814–14819.

    PubMed  CAS  Google Scholar 

  10. Teplova M, Minasov G, Tereshko V, Inamati GB, Cook PD, Manoharan M, et al. Crystal structure and improved antisense properties of 2’-O-(2-methoxyethyl)-RNA. Nat Struct Biol 1999;6:535–539.

    PubMed  CAS  Google Scholar 

  11. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, et al. LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998;54:3607–3630.

    CAS  Google Scholar 

  12. Wengel J. Synthesis of 3’-C- And 4’-C- branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc Chem Res 1999;32:301–310.

    CAS  Google Scholar 

  13. Swayze EE, Siwkowski AM, Wancewicz E V, Migawa MT, Wyrzykiewicz TK, Hung G, et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 2007;35:687–700.

    PubMed  CAS  Google Scholar 

  14. Seth PP, Siwkowski A, Allerson CR, Vasquez G, Lee S, Prakash TP, et al. Short antisense oligonucleotides with novel 2’-4’ conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J Med Chem 2009;52:10–13.

    PubMed  CAS  Google Scholar 

  15. Koizumi M. ENA oligonucleotides as therapeutics. Curr Opin Mol Ther 2006;8:144–149.

    PubMed  CAS  Google Scholar 

  16. Kawasaki AM, Casper MD, Freier SM, Lesnik EA, Zounes MC, Cummins LL, et al. Uniformly modified 2’-deoxy-2’-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem 1993;36:831–841.

    PubMed  CAS  Google Scholar 

  17. Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003;270:1628–1644.

    PubMed  CAS  Google Scholar 

  18. Smith RA, Miller TM. Targeting neurological disorders with antisense oligonucleotides. In: Crooke ST (ed) Antisense drug technology: principles, strategies, and applications. 2nd ed. CRC Press, Boca Raton, FL, USA; 2008, pp. 721–745.

    Google Scholar 

  19. Chan JHP, Lim S, Wong WSF. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 2006;33:533–540.

    PubMed  CAS  Google Scholar 

  20. Jason TLH, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 2004;201:66–83.

    PubMed  CAS  Google Scholar 

  21. Senn JJ, Burel S, Henry SP. Non-CpG-containing antisense 2’-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88. J Pharmacol Exp Ther 2005;314:972–979.

    PubMed  CAS  Google Scholar 

  22. Miller TM, Smith RA, Kordasiewicz H, Kaspar BK. Gene-targeted therapies for the central nervous system. Arch Neurol 2008;65:447–451.

    PubMed  Google Scholar 

  23. Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 2013;12:435–442.

    PubMed  CAS  Google Scholar 

  24. Lorenz P, Baker BF, Bennett CF, Spector DL. Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies. Mol Biol Cell 1998;9:1007–1023.

    PubMed  CAS  Google Scholar 

  25. Suzuki Y, Holmes JB, Cerritelli SM, Sakhuja K, Minczuk M, Holt IJ, et al. An upstream open reading frame and the context of the two AUG codons affect the abundance of mitochondrial and nuclear RNase H1. Mol Cell Biol 2010;30:5123–5134.

    PubMed  CAS  Google Scholar 

  26. Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 2004;279:17181–17189.

    PubMed  CAS  Google Scholar 

  27. Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther 2011;19:2178–2185.

    PubMed  CAS  Google Scholar 

  28. Basilion JP, Schievella AR, Burns E, Rioux P, Olson JC, Monia BP, et al. Selective killing of cancer cells based on loss of heterozygosity and normal variation in the human genome: a new paradigm for anticancer drug therapy. Mol Pharmacol 1999;56:359–369.

    PubMed  CAS  Google Scholar 

  29. Lima WF, Rose JB, Nichols JG, Wu H, Migawa MT, Wyrzykiewicz TK, et al. Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol Pharmacol 2007;71:83–91.

    PubMed  CAS  Google Scholar 

  30. Monia BP, Johnston JF, Ecker DJ, Zounes MA, Lima WF, Freier SM. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J Biol Chem 1992;267:19954–19962.

    PubMed  CAS  Google Scholar 

  31. Sharp PA. The centrality of RNA. Cell 2009;136:577–580.

    PubMed  CAS  Google Scholar 

  32. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008;456:470–476.

    PubMed  CAS  Google Scholar 

  33. Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell 2009;136:777–793.

    PubMed  CAS  Google Scholar 

  34. Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A 1993;90:8673–8677.

    PubMed  CAS  Google Scholar 

  35. Roberts J, Palma E, Sazani P, Ørum H, Cho M, Kole R. Efficient and persistent splice switching by systemically delivered LNA oligonucleotides in mice. Mol Ther 2006;14:471–475.

    PubMed  CAS  Google Scholar 

  36. Vickers TA, Zhang H, Graham MJ, Lemonidis KM, Zhao C, Dean NM. Modification of MyD88 mRNA splicing and inhibition of IL-1beta signaling in cell culture and in mice with a 2’-O-methoxyethyl-modified oligonucleotide. J Immunol 2006;176:3652–3661.

    PubMed  CAS  Google Scholar 

  37. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 2008;82:834–848.

    PubMed  CAS  Google Scholar 

  38. Jearawiriyapaisarn N, Moulton HM, Buckley B, Roberts J, Sazani P, Fucharoen S, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 2008;16:1624–1629.

    PubMed  CAS  Google Scholar 

  39. Peacey E, Rodriguez L, Liu Y, Wolfe MS. Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicing. Nucleic Acids Res 2012;40:9836–9849.

    PubMed  CAS  Google Scholar 

  40. Vickers TA, Wyatt JR, Burckin T, Bennett CF, Freier SM. Fully modified 2’ MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res 2001;29:1293–1299.

    PubMed  CAS  Google Scholar 

  41. Morris K V, Chan SW-L, Jacobsen SE, Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004;305:1289–1292.

    PubMed  CAS  Google Scholar 

  42. Janowski BA, Kaihatsu K, Huffman KE, Schwartz JC, Ram R, Hardy D, et al. Inhibiting transcription of chromosomal DNA with antigene peptide nucleic acids. Nat Chem Biol 2005;1:210–215.

    PubMed  CAS  Google Scholar 

  43. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 2007;3:166–173.

    PubMed  CAS  Google Scholar 

  44. Davis S, Propp S, Freier SM, Jones LE, Serra MJ, Kinberger G, et al. Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res 2009;37:70–77.

    PubMed  CAS  Google Scholar 

  45. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004;279:52361–52365.

    PubMed  CAS  Google Scholar 

  46. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005;438:685–689.

    PubMed  Google Scholar 

  47. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3:87–98.

    PubMed  CAS  Google Scholar 

  48. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008;452:896–899.

    PubMed  Google Scholar 

  49. Junn E, Mouradian MM. MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 2012;133:142–150.

    PubMed  CAS  Google Scholar 

  50. Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett CF, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011;478:123–126.

    PubMed  CAS  Google Scholar 

  51. Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iverson P, et al. Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 2008;17:3909–3918.

    PubMed  CAS  Google Scholar 

  52. Srinivasan SK, Tewary HK, Iversen PL. Characterization of binding sites, extent of binding, and drug interactions of oligonucleotides with albumin. Antisense Res Dev 1995;5:131–139.

    PubMed  CAS  Google Scholar 

  53. Watanabe TA, Geary RS, Levin AA. Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302). Oligonucleotides 2006;16:169–180.

    PubMed  CAS  Google Scholar 

  54. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 2006;116:2290–2296.

    PubMed  CAS  Google Scholar 

  55. Kordasiewicz HB, Stanek LM, Wancewicz E V, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 2012;74:1031–1044.

    PubMed  CAS  Google Scholar 

  56. Iversen PL, Zhu S, Meyer A, Zon G. Cellular uptake and subcellular distribution of phosphorothioate oligonucleotides into cultured cells. Antisense Res Dev 1992;2:211–222.

    PubMed  CAS  Google Scholar 

  57. Arora V, Devi GR, Iversen PL. Neutrally charged phosphorodiamidate morpholino antisense oligomers: uptake, efficacy and pharmacokinetics. Curr Pharm Biotechnol 2004;5:431–439.

    PubMed  CAS  Google Scholar 

  58. Koller E, Vincent TM, Chappell A, De S, Manoharan M, Bennett CF. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 2011;39:4795–4807.

    PubMed  CAS  Google Scholar 

  59. Geary RS, Wancewicz E, Matson J, Pearce M, Siwkowski A, Swayze E, et al. Effect of dose and plasma concentration on liver uptake and pharmacologic activity of a 2’-methoxyethyl modified chimeric antisense oligonucleotide targeting PTEN. Biochem Pharmacol 2009;78:284–291.

    PubMed  CAS  Google Scholar 

  60. Lorenz P, Misteli T, Baker BF, Bennett CF, Spector DL. Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 2000;28:582–592.

    PubMed  CAS  Google Scholar 

  61. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 2010;24:1634–1644.

    PubMed  CAS  Google Scholar 

  62. DeVos SL, Miller TM. Direct intraventricular delivery of drugs to the rodent central nervous system. JoVE 2013;e50326.

  63. Southwell AL, Skotte NH, Bennett CF, Hayden MR. Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends Mol Med 2012;18:634–643.

    PubMed  CAS  Google Scholar 

  64. Benoist M, Boulu P, Hayem G. Epidural steroid injections in the management of low-back pain with radiculopathy: an update of their efficacy and safety. Eur Spine J 2012;21:204–213.

    PubMed  Google Scholar 

  65. Freise H, Van Aken HK. Risks and benefits of thoracic epidural anaesthesia. Br J Anaesth 2011;107:859–868.

    PubMed  CAS  Google Scholar 

  66. Hayek SM, Deer TR, Pope JE, Panchal SJ, Patel VB. Intrathecal therapy for cancer and non-cancer pain. Pain Physician 2011;14:219–248.

    PubMed  Google Scholar 

  67. Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 2008;195:21–27.

    PubMed  CAS  Google Scholar 

  68. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release 2012;161:264–273.

    PubMed  CAS  Google Scholar 

  69. Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K, et al. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 2009;27:478–484.

    PubMed  CAS  Google Scholar 

  70. Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J, et al. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 1995;81:811–823.

    PubMed  CAS  Google Scholar 

  71. Dragatsis I, Levine MS, Zeitlin S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 2000;26:300–306.

    PubMed  CAS  Google Scholar 

  72. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003;60:1119–1122.

    PubMed  Google Scholar 

  73. Kumar VB, Farr SA, Flood JF, Kamlesh V, Franko M, Banks WA, et al. Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides 2000;21:1769–1775.

    PubMed  CAS  Google Scholar 

  74. Banks WA, Farr SA, Butt W, Kumar VB, Franko MW, Morley JE. Delivery across the blood–brain barrier of antisense directed against amyloid beta: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J Pharmacol Exp Ther 2001;297:1113–1121.

    PubMed  CAS  Google Scholar 

  75. Erickson MA, Niehoff ML, Farr SA, Morley JE, Dillman LA, Lynch KM, et al. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain. J Alzheimer Dis 2012;28:951–960.

    CAS  Google Scholar 

  76. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 2007;316:750–753.

    PubMed  CAS  Google Scholar 

  77. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, Van Eersel J, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 2010;142:387–397.

    PubMed  CAS  Google Scholar 

  78. Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, et al. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 2011;31:700–711.

    PubMed  CAS  Google Scholar 

  79. Leroy K, Ando K, Laporte V, Dedecker R, Suain V, Authelet M, et al. Lack of Tau Proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. Am J Pathol 2012;181:1940–1928.

    Google Scholar 

  80. Andrews-Zwilling Y, Bien-Ly N, Xu Q, Li G, Bernardo A, Yoon SY, et al. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci 2010;30:13707–13717.

    PubMed  CAS  Google Scholar 

  81. Tucker KL, Meyer M, Barde Y. Neurotrophins are required for nerve growth during development. Nat Neurosci 2001;4:29–37.

    PubMed  CAS  Google Scholar 

  82. Dawson HN, Ferreira A, Eyster M V, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 2001;114:1179–1187.

    PubMed  CAS  Google Scholar 

  83. Morris M, Hamto P, Adame A, Devidze N, Masliah E, Mucke L. Age-appropriate cognition and subtle dopamine-independent motor deficits in aged Tau knockout mice. Neurobiol Aging 2013;34:1523–1529.

    PubMed  CAS  Google Scholar 

  84. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 2012;18:291–295.

    PubMed  CAS  Google Scholar 

  85. Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 2012;30:453–459.

    PubMed  CAS  Google Scholar 

  86. Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 1999;96:6307–6311.

    PubMed  CAS  Google Scholar 

  87. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 2011;3:72ra18.

    PubMed  Google Scholar 

  88. Williams JH, Schray RC, Patterson CA, Ayitey SO, Tallent MK, Lutz GJ. Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy. J Neurosci 2009;29:7633–7638.

    PubMed  CAS  Google Scholar 

  89. Zhou H, Janghra N, Mitrpant C, Dickinson RL, Anthony K, Price L, et al. A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum Gene Ther 2013;24:331–342.

    PubMed  CAS  Google Scholar 

  90. Porensky PN, Mitrpant C, McGovern VL, Bevan AK, Foust KD, Kaspar BK, et al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 2012;21:1625–1638.

    PubMed  CAS  Google Scholar 

  91. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989;3:519–526.

    PubMed  CAS  Google Scholar 

  92. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 1989;8:393–399.

    PubMed  CAS  Google Scholar 

  93. Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry 1992;31:10626–10633.

    PubMed  CAS  Google Scholar 

  94. Goedert M, Jakes R. Expression of separate isoforms of human tau protein: correlation with the tau protein pattern in brain and effects on tubulin polymerization. EMBO J 1990;9:4225–4230.

    PubMed  CAS  Google Scholar 

  95. Kosik KS, Orecchio LD, Bakalis S, Neve RL. Developmentally regulated expression of specific tau sequences. Neuron 1989;2:1389–1397.

    PubMed  CAS  Google Scholar 

  96. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 1998;282:1914–1917.

    PubMed  CAS  Google Scholar 

  97. D’Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM, Bird TD, et al. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci U S A 1999;96:5598–5603.

    PubMed  Google Scholar 

  98. Buee L, Delacourte A. Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 1999;693:681–693.

    Google Scholar 

  99. Yagishita S, Beach T, Rogers J, Schwab C, Mcgeer PL. Distinct isoforms of tau aggregated in neurons and glial cells in brains of patients with Pick’s disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol 2001;101:167–173.

    PubMed  Google Scholar 

  100. Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, Faltraco F, et al. The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease. J Neurochem 2006;96:635–644.

    PubMed  CAS  Google Scholar 

  101. Conrad C, Zhu J, Conrad C, Schoenfeld D, Fang Z, Ingelsson M, et al. Single molecule profiling of tau gene expression in Alzheimer’s disease. J Neurochem 2007;103:1228–1236.

    PubMed  CAS  Google Scholar 

  102. Ingelsson M, Ramasamy K, Cantuti-Castelvetri I, Skoglund L, Matsui T, Orne J, et al. No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer’s disease brain. Acta Neuropathol 2006;112:439–449.

    PubMed  CAS  Google Scholar 

  103. Phelps SF, Hauser MA, Cole NM, Rafael JA, Hinkle RT, Faulkner JA, et al. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 1995;4:1251–1258.

    PubMed  CAS  Google Scholar 

  104. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J, et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 2005;102:198–203.

    PubMed  CAS  Google Scholar 

  105. Yokota T, Lu Q-L, Partridge T, Kobayashi M, Nakamura A, Takeda S, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 2009;65:667–676.

    PubMed  Google Scholar 

  106. Van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007;357:2677–2686.

    PubMed  Google Scholar 

  107. Goemans NM, Tulinius M, Van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 2011;364:1513–1522.

    PubMed  CAS  Google Scholar 

  108. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009;8:918–928.

    PubMed  CAS  Google Scholar 

  109. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011;378:595–605.

    PubMed  CAS  Google Scholar 

  110. Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 2010;363:1429–1437.

    PubMed  CAS  Google Scholar 

  111. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010;11:597–610.

    PubMed  CAS  Google Scholar 

  112. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011;12:99–110.

    PubMed  CAS  Google Scholar 

  113. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15–20.

    PubMed  CAS  Google Scholar 

  114. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabol 2006;3:87–98.

    CAS  Google Scholar 

  115. Fabani MM, Gait MJ. miR-122 targeting with LNA/2’-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 2008;14:336–346.

    PubMed  CAS  Google Scholar 

  116. Janssen HL, Reesink HW, Zeuzem S, Lawitz E, Rodriguez-Torres M, Chen A, et al. A randomized, double-blind, placebo (plb) controlled safety and anti-viral proof of concept study of miravirsen (MIR), an oligonucleotide targeting miR-122, in treatment naïve patients with genotype 1 (gt1) chronic HCV infection. Hepatology 2011;54:LB-6.

    Google Scholar 

  117. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327:198–201.

    PubMed  CAS  Google Scholar 

  118. Hildebrandt-Eriksen ES, Aarup V, Persson R, Hansen HF, Munk ME, Ørum H. A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Ther 2012;22:152–161.

    PubMed  CAS  Google Scholar 

  119. Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV Infection by Targeting MicroRNA. N Engl J Med 2013;368:1685–1694.

    PubMed  CAS  Google Scholar 

  120. Lee S-T, Chu K, Jung K-H, Kim JH, Huh J-Y, Yoon H, et al. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 2012;72:269–277.

    PubMed  CAS  Google Scholar 

  121. Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P, et al. microRNA-34c is a novel target to treat dementias. EMBO J 2011;30:4299–4308.

    PubMed  CAS  Google Scholar 

  122. Freier SM, Watt AT. Basic principles of antisense drug discovery. In: Crooke ST (ed.) Antisense drug technology: principles, strategies, and applications. CRC Press: Boca Raton, FL, USA; 2008, pp. 117–141.

    Google Scholar 

  123. Ho SP, Bao Y, Leshner T, Malhotra R, Ma LY, Fluharty SJ, Sakai RR. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol 1999;16:59–83

    Google Scholar 

  124. Ding Y, Lawrence CE. Statistical prediction of single-stranded regions in RNA secondary structures and application to predicting effective target sites and beyond. Nucleic Acids Res 2001;29:1034–1046.

    PubMed  CAS  Google Scholar 

  125. Far RK, Nedbal W, Sczakiel G. Concepts to automate the theoretical design of effective antisense oligonucleotides. Bioinformatics 2001;17:1058–1061.

    PubMed  CAS  Google Scholar 

  126. Yang SP, Song ST, Tang ZM, Song HF. Optimization of antisense drug design against conservative local motif in simulant secondary structures of HER-2 mRNA and QSAR analysis. Acta Pharmacol 2003;24:897–902.

    CAS  Google Scholar 

  127. Vickers TA, Koo S, Bennett CF, Crooke ST, Dean NM, Baker BF. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 2003;278:7108–7118.

    PubMed  CAS  Google Scholar 

  128. Bennett CF, Condon TP, Grimm S, Chan H, Chiang MY. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J Immunol 1994;152:3530–3540.

    PubMed  CAS  Google Scholar 

  129. Matveeva OV, Tsodikov AD, Giddings M, Freier SM, Wyatt JR, Spiridonov AN. Identification of sequence motifs in oligonucleotides whose presence is correlated with antisense activity. Nucleic Acids Res 2000;28:2862–2865.

    PubMed  CAS  Google Scholar 

  130. Ho SP, Britton DH, Stone BA, Behrens DL, Leffet LM, Hobbs FW. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res 1996;24:1901–1907.

    PubMed  CAS  Google Scholar 

  131. Johnson E, Srivastava R. Volatility in mRNA secondary structure as a design principle for antisense. Nucleic Acids Res 2013;41:e43.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

TMM is supported by NIH/NINDS K08NS074194 and NIH/NINDS R01NS078398. Isis Pharmaceuticals has supplied antisense oligonucleotides for studies conducted by the authors. Other than those mentioned, we declare no real or perceived conflicts of interest.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Miller.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeVos, S.L., Miller, T.M. Antisense Oligonucleotides: Treating Neurodegeneration at the Level of RNA. Neurotherapeutics 10, 486–497 (2013). https://doi.org/10.1007/s13311-013-0194-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0194-5

Keywords

Navigation