Skip to main content

Digital Hyperplane Fitting

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12148))

Included in the following conference series:

  • 253 Accesses

Abstract

This paper addresses the hyperplane fitting problem of discrete points in any dimension (i.e. in \(\mathbb {Z}^d\)). For that purpose, we consider a digital model of hyperplane, namely digital hyperplane, and present a combinatorial approach to find the optimal solution of the fitting problem. This method consists in computing all possible digital hyperplanes from a set \(\mathbf {S}\) of n points, then an exhaustive search enables us to find the optimal hyperplane that best fits \(\mathbf {S}\). The method has, however, a high complexity of \(O(n^d)\), and thus can not be applied for big datasets. To overcome this limitation, we propose another method relying on the Delaunay triangulation of \(\mathbf {S}\). By not generating and verifying all possible digital hyperplanes but only those from the elements of the triangulation, this leads to a lower complexity of \(O(n^{\lceil \frac{d}{2} \rceil + 1})\). Experiments in 2D, 3D and 4D are shown to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Supposing it needs 1 \(\upmu \)s for generating and testing one hyperplane, then it takes about \(3*10^{7}\) years to find the optimal solution.

References

  1. Aiger, D., Kenmochi, Y., Talbot, H., Buzer, L.: Efficient robust digital hyperplane fitting with bounded error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 223–234. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19867-0_19

    Chapter  Google Scholar 

  2. Amenta, N., Attali, D., Devillers, O.: A tight bound for the delaunay triangulation of points on a polyhedron. Discrete Comput. Geom. 48, 19–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 2(01n02), 213–222 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Arlinghaus, S.L.: Practical Handbook of Curve Fitting. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  5. Barber, C.B., Dobkin, D.P., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Lecture Notes Series on Computing. Computing in Euclidean Geometry, pp. 47–123 (1995)

    Google Scholar 

  7. Boissonnat, J.D., Devillers, O., Hornus, S.: Incremental construction of the Delaunay graph in medium dimension. In: Annual Symposium on Computational Geometry, pp. 208–216 (2009)

    Google Scholar 

  8. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  9. Cevikalp, H.: Best fitting hyperplanes for classification. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1076–1088 (2016)

    Article  Google Scholar 

  10. CGAL-Team: CGAL: the computational geometry algorithms library (2019). http://www.cgal.org

  11. Chernov, N.: Circular and Linear Regression: Fitting Circles and Lines by Least Squares. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  12. Chum, O.: Two-view geometry estimation by random sample and consensus. PhD thesis, Czech Technical University, Prague, Czech Republic (2005)

    Google Scholar 

  13. Delaunay, B.: Sur la sphère vide. Bulletin de l’Académie des Sciences de l’URSS, Classe des Sciences Mathématiques et Naturelles (1934)

    Google Scholar 

  14. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  15. Duda, R., Hart, P.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972)

    Article  MATH  Google Scholar 

  16. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  17. Gajic, Z.: Linear Dynamic Systems and Signals. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  18. Hough, P.V.C.: Machine analysis of bubble chamber pictures. In: International Conference on High Energy Accelerators and Instrumentation, pp. 554–556 (1959)

    Google Scholar 

  19. Kenmochi, Y., Buzer, L., Sugimoto, A., Shimizu, I.: Discrete plane segmentation and estimation from a point cloud using local geometric patterns. J. Autom. Comput. 5(3), 246–256 (2008)

    Article  Google Scholar 

  20. Kenmochi, Y., Talbot, H., Buzer, L.: Efficiently computing optimal consensus of digital line fitting. In: Proceedings of ICPR, pp. 1064–1067 (2010)

    Google Scholar 

  21. Köster, K., Spann, M.: An approach to robust clustering - application to range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 430–444 (2000)

    Article  Google Scholar 

  22. Musin, O.R.: Properties of the delaunay triangulation. In: Proceedings of the Thirteenth Annual Symposium on Computational Geometry (1997)

    Google Scholar 

  23. Ngo, P., Nasser, H., Debled-Rennesson, I.: A discrete approach for decomposing noisy digital contours into arcs and segments. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10117, pp. 493–505. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54427-4_36

    Chapter  Google Scholar 

  24. NIST/SEMATECH: e-Handbook of statistical methods (2012). http://www.itl.nist.gov/div898/handbook/

  25. Phan, M.S., Kenmochi, Y., Sugimoto, A., Talbot, H., Andres, E., Zrour, R.: Efficient robust digital annulus fitting with bounded error. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 253–264. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37067-0_22

    Chapter  Google Scholar 

  26. Raimund, S.: The upper bound theorem for polytopes: an easy proof of its asymptotic version. Comput. Geom. 5, 115–116 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rajan, V.T.: Optimality of the delaunay triangulation in \({R}^d\). Discrete Comput. Geom. 12(1), 189–202 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Reveillès, J.P.: Géométrie discrète, calculs en nombre entiers et algorithmique. Thèse d’état. Université Louis Pasteur, Strasbourg (1991)

    Google Scholar 

  29. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388), 871–880 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Searle, S.R., Gruber, M.H.: Linear Models, 2nd edn. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  31. Shum, H., Ikeuchi, K., Reddy, R.: Principal component analysis with missing data and its application to polyhedral object modeling. IEEE Trans. Pattern Anal. Mach. Intell. 17(9), 854–867 (1995)

    Article  Google Scholar 

  32. Sivignon, I., Dupont, F., Chassery, J.M.: Decomposition of a three-dimensional discrete object surface into discrete plane pieces. Algorithmica 38(1), 25–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  34. Zrour, R., et al.: Optimal consensus set for digital line and plane fitting. Int. J. Imaging Syst. Technol. 21(1), 45–57 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ngo, P. (2020). Digital Hyperplane Fitting. In: Lukić, T., Barneva, R., Brimkov, V., Čomić, L., Sladoje, N. (eds) Combinatorial Image Analysis. IWCIA 2020. Lecture Notes in Computer Science(), vol 12148. Springer, Cham. https://doi.org/10.1007/978-3-030-51002-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51002-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51001-5

  • Online ISBN: 978-3-030-51002-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics