Skip to main content

A Discrete Approach for Decomposing Noisy Digital Contours into Arcs and Segments

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

Abstract

In the paper, we present a method for decomposing a discrete noisy curve into arcs and segments which are the frequent primitives in digital images. This method is based on two tools: dominant point detection using adaptive tangential cover and tangent space representation of the polygon issued from detected dominant points. The experiments demonstrate the robustness of the method w.r.t. noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The points are said quasi collinear if they belong to a small width strip bounded by two real parallel lines.

References

  1. Nguyen, T.P., Debled-Rennesson, I.: Decomposition of a curve into arcs and line segments based on dominant point detection. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 794–805. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21227-7_74

    Chapter  Google Scholar 

  2. Akinlar, C., Topal, C.: EDCircles: a real-time circle detector with a false detection control. Pattern Recogn. 46, 725–740 (2013)

    Article  Google Scholar 

  3. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 129–137 (1990)

    Google Scholar 

  4. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1185–1190 (2000)

    Article  Google Scholar 

  5. Ngo, P., Nasser, H., Debled-Rennesson, I., Kerautret, B.: Adaptive tangential cover for noisy digital contours. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 439–451. Springer, Cham (2016). doi:10.1007/978-3-319-32360-2_34

    Chapter  Google Scholar 

  6. Nguyen, T.P., Debled-Rennesson, I.: Arc segmentation in linear time. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6854, pp. 84–92. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23672-3_11

    Chapter  Google Scholar 

  7. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30, 30–36 (2006)

    Article  MATH  Google Scholar 

  8. Reveillès, J.P.: Géométrie discrète, calculs en nombre entiersgorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg (1991)

    Google Scholar 

  9. Lachaud, J.-O.: Digital shape analysis with maximal segments. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 14–27. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32313-3_2

    Chapter  Google Scholar 

  10. Faure, A., Buzer, L., Feschet, F.: Tangential cover for thick digital curves. Pattern Recogn. 42, 2279–2287 (2009)

    Article  MATH  Google Scholar 

  11. Kerautret, B., Lachaud, J.O.: Meaningful scales detection: an unsupervised noise detection algorithm for digital contours. Image Proc. Line 4, 98–115 (2014)

    Article  Google Scholar 

  12. Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recogn. 44, 32–44 (2011)

    Article  MATH  Google Scholar 

  13. Ngo, P., Nasser, H., Debled-Rennesson, I.: Efficient dominant point detection based on discrete curve structure. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 143–156. Springer, Cham (2015). doi:10.1007/978-3-319-26145-4_11

    Chapter  Google Scholar 

  14. Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999). doi:10.1007/3-540-49126-0_3

    Chapter  Google Scholar 

  15. Rosin, P.L., Wesst, G.A.W.: Segmentation of edges into lines and arcs. Image Vis. Comput. 7, 109–114 (1989)

    Article  Google Scholar 

  16. Kanungo, T., Haralick, R.M., Stuezle, W., Baird, H.S., Madigan, D.: A statistical, nonparametric methodology for document degradation model validation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1209–1223 (2000)

    Article  Google Scholar 

  17. DGtal: Digital Geometry tools and algorithms library. http://libdgtal.org

  18. Imagene, generic digital image library. http://gforge.liris.cnrs.frs/projects/imagene

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ngo, P., Nasser, H., Debled-Rennesson, I. (2017). A Discrete Approach for Decomposing Noisy Digital Contours into Arcs and Segments. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics