Skip to main content

Load, Alignment, and Wear

  • Chapter
  • First Online:
Osteotomy About the Knee

Abstract

The knee is the largest and one of the most biomechanically demanded joints in the human body, as it is located between the two longest lever arms of the body and its most powerful muscles. Knee stability through the range of motion is ensured by both static and dynamic structures that work in concert to prevent excessive movement or instability, which may occur across multiple planes of motion. While offering a wide range of motions, these structures have to meticulously balance the compressive forces across the knee joint. Orientation, shape, and material properties of the bony structure and dynamic stabilizers, including ligaments, the capsule, and musculotendinous soft tissues, are essential for knee stability. Even small changes to any of these parameters will alter the inherently complex interactions between these structures and ultimately distort overall movement patterns of the knee, consequently impacting alignment, load distribution, and wear of the components forming the knee joint.

Medical intervention is imperative in numerous cases to prevent permanent damages to the knee joint. Both for planning surgical interventions and for satisfactory clinical outcomes, detailed knowledge on physiological load distribution and alignment is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinskerova V, et al. Does the femur roll-back with flexion? J Bone Joint Surg Br. 2004;86(6):925–31.

    Article  CAS  PubMed  Google Scholar 

  2. Zheng N, et al. An analytical model of the knee for estimation of internal forces during exercise. J Biomech. 1998;31(10):963–7.

    Article  CAS  PubMed  Google Scholar 

  3. D’Lima DD, et al. Tibial forces measured in vivo after total knee arthroplasty. J Arthroplast. 2006;21(2):255–62.

    Article  Google Scholar 

  4. Taylor WR, et al. Tibio-femoral loading during human gait and stair climbing. J Orthop Res. 2004;22(3):625–32.

    Article  PubMed  Google Scholar 

  5. Kuster MS, et al. Joint load considerations in total knee replacement. J Bone Joint Surg Br. 1997;79(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  6. Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech. 1970;3(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  7. Mikosz RP, Andriacchi TP, Andersson GB. Model analysis of factors influencing the prediction of muscle forces at the knee. J Orthop Res. 1988;6(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  8. Seireg A, Arvikar RJ. The prediction of muscular load sharing and joint forces in the lower extremities during walking. J Biomech. 1975;8(2):89–102.

    Article  CAS  PubMed  Google Scholar 

  9. Mundermann A, et al. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res. 2008;26(9):1167–72.

    Article  PubMed  Google Scholar 

  10. Wilson W, et al. Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. J Biomech. 2003;36(6):845–51.

    Article  CAS  PubMed  Google Scholar 

  11. Houston CS, Swischuk LE. Occasional notes. Varus and valgus—no wonder they are confused. N Engl J Med. 1980;302(8):471–2.

    Article  CAS  PubMed  Google Scholar 

  12. Bellemans J, et al. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res. 2012;470(1):45–53.

    Article  PubMed  Google Scholar 

  13. Hsu RW, et al. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop Relat Res. 1990;255:215–27.

    Google Scholar 

  14. Hungerford DS, Krackow KA. Total joint arthroplasty of the knee. Clin Orthop Relat Res. 1985;192:23–33.

    Google Scholar 

  15. Cooke TD, Li J, Scudamore RA. Radiographic assessment of bony contributions to knee deformity. Orthop Clin North Am. 1994;25(3):387–93.

    CAS  PubMed  Google Scholar 

  16. Thomas RH, et al. Compartmental evaluation of osteoarthritis of the knee. A comparative study of available diagnostic modalities. Radiology. 1975;116(3):585–94.

    Article  CAS  PubMed  Google Scholar 

  17. Moser LB, et al. Native non-osteoarthritic knees have a highly variable coronal alignment: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2019;27(5):1359–67.

    Article  PubMed  Google Scholar 

  18. Koh YG, et al. Gender differences exist in rotational anatomy of the distal femur in osteoarthritic knees using MRI. Knee Surg Sports Traumatol Arthrosc. 2019; https://doi.org/10.1007/s00167-019-05730-w.

  19. Gao F, et al. The influence of knee malalignment on the ankle alignment in varus and valgus gonarthrosis based on radiographic measurement. Eur J Radiol. 2016;85(1):228–32.

    Article  PubMed  Google Scholar 

  20. Brouwer RW, et al. Braces and orthoses for treating osteoarthritis of the knee. Cochrane Database Syst Rev. 2005;(1):CD004020.

    Google Scholar 

  21. Singer JC, Lamontagne M. The effect of functional knee brace design and hinge misalignment on lower limb joint mechanics. Clin Biomech (Bristol, Avon). 2008;23(1):52–9.

    Article  Google Scholar 

  22. Niemeyer P, et al. Two-year results of open-wedge high tibial osteotomy with fixation by medial plate fixator for medial compartment arthritis with varus malalignment of the knee. Arthroscopy. 2008;24(7):796–804.

    Article  PubMed  Google Scholar 

  23. Schatka I, et al. High tibial slope correlates with increased posterior tibial translation in healthy knees. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2697–703.

    Article  PubMed  Google Scholar 

  24. Feucht MJ, et al. The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 2013;21(1):134–45.

    Article  PubMed  Google Scholar 

  25. Agneskirchner JD, et al. Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg. 2004;124(9):575–84.

    Article  CAS  PubMed  Google Scholar 

  26. Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br. 1994;76(5):745–9.

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, et al. Are failures of anterior cruciate ligament reconstruction associated with steep posterior tibial slopes? A case control study. Chin Med J. 2014;127(14):2649–53.

    PubMed  Google Scholar 

  28. Webb JM, et al. Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med. 2013;41(12):2800–4.

    Article  PubMed  Google Scholar 

  29. Wordeman SC, et al. In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med. 2012;40(7):1673–81.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bernhardson AS, et al. Posterior tibial slope and risk of posterior cruciate ligament injury. Am J Sports Med. 2019;47(2):312–7.

    Article  PubMed  Google Scholar 

  31. Gwinner C, et al. Tibial slope strongly influences knee stability after posterior cruciate ligament reconstruction: a prospective 5- to 15-year follow-up. Am J Sports Med. 2017;45(2):355–61.

    Article  PubMed  Google Scholar 

  32. Gwinner C, et al. Posterior laxity increases over time after PCL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(2):389–96.

    Article  PubMed  Google Scholar 

  33. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bagge E, et al. Osteoarthritis in the elderly: clinical and radiological findings in 79 and 85 year olds. Ann Rheum Dis. 1991;50(8):535–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflicts of interest in the authorship and publication of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten F. Perka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kienzle, A., Perka, C.F., Duda, G.N., Gwinner, C. (2020). Load, Alignment, and Wear. In: Oussedik, S., Lustig, S. (eds) Osteotomy About the Knee . Springer, Cham. https://doi.org/10.1007/978-3-030-49055-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49055-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49054-6

  • Online ISBN: 978-3-030-49055-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics