Skip to main content
Log in

High tibial slope correlates with increased posterior tibial translation in healthy knees

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Notwithstanding the importance of the tibial slope (TS) for anterior tibial translation, little information is available regarding the implications on posterior laxity, particularly in healthy subjects. It was hypothesized that increased TS is associated with decreased posterior tibial translation (PTT) in healthy knees.

Methods

A total of 124 stress radiographs of healthy knees were enrolled in this study. Tibial slope and the posterior tibial translation were evaluated using a Telos device with a 150-N force at 90° of knee flexion. Two blinded observers reviewed independently on two different occasions.

Results

One hundred and twenty-four patients [35 females and 89 males; 41 (range 18–75) years] were enrolled in this study, with a mean PTT of 2.8 mm (±1.9 mm; range 0–8 mm) and a mean TS of 8.6° (±2.6°; range 1°–14°). Pearson correlation showed a significant correlation between the PTT and TS in the overall patient cohort (P < 0.0001) with r = 0.76 and R 2 = 0.58. There was no statistical difference between female and male patients regarding the PTT or the TS. Subgrouping of the patient cohort (four groups with n = 31) according to their TS (groups I < 7°; II = 7°–8.5°; III = 9°–10.5°; IV ≥ 11°) revealed significant differences between each subgroup, respectively. Furthermore, there was a weak but significant correlation between age and PTT (P = 0.004, r = 0.26).

Conclusion

In addition to the substantial variance in tibial slope and posterior laxity among healthy knees, high tibial slope significantly correlates with increased posterior tibial translation. Increasing age is further associated with a greater magnitude of posterior tibial translation. Consequently, knowledge of the tibial slope facilitates simple estimation of posterior knee laxity, which is mandatory for PCL reconstruction and knee arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad R, Patel A et al (2016) Posterior tibial slope: effect on, and interaction with, knee kinematics. JBJS Rev 4:31–36

    Article  Google Scholar 

  2. Arima J, Whiteside LA et al (1998) Effect of partial release of the posterior cruciate ligament in total knee arthroplasty. Clin Orthop Relat Res 353:194–202

    Article  Google Scholar 

  3. Barrett GR, Savoie FH (1991) Operative management of acute PCL injuries with associated pathology: long-term results. Orthopedics 14:687–692

    PubMed  CAS  Google Scholar 

  4. Bellemans J, Robijns F et al (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13:193–196

    Article  PubMed  CAS  Google Scholar 

  5. Beynnon BD, Fleming BC et al (2002) Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J Orthop Res 20:332–337

    Article  PubMed  Google Scholar 

  6. Cantin O, Magnusson RA et al (2015) The role of high tibial osteotomy in the treatment of knee laxity: a comprehensive review. Knee Surg Sports Traumatol Arthrosc 23:3026–3037

    Article  PubMed  CAS  Google Scholar 

  7. Chatellard R, Sauleau V et al (2013) Medial unicompartmental knee arthroplasty: does tibial component position influence clinical outcomes and arthroplasty survival? Orthop Traumatol Surg Res 99:S219–S225

    Article  PubMed  CAS  Google Scholar 

  8. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745–749

    Article  PubMed  CAS  Google Scholar 

  9. D’Lima DD, Patil S et al (2007) An ABJS best paper: dynamic intraoperative ligament balancing for total knee arthroplasty. Clin Orthop Relat Res 463:208–212

    PubMed  Google Scholar 

  10. Faschingbauer M, Sgroi M et al (2014) Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc 22:3163–3167

    Article  PubMed  CAS  Google Scholar 

  11. Gwinner C, Weiler A et al (2017) Tibial slope strongly influences knee stability after posterior cruciate ligament reconstruction: a prospective 5- to 15-year follow-up. Am J Sports Med 2:355–361

    Article  Google Scholar 

  12. Hernigou P, Deschamps G (2004) Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg Am 86-A:506–511

    Article  PubMed  Google Scholar 

  13. Hoffman AA, Bachus KN et al (1991) Effect of the tibial cut on subsidence following total knee arthroplasty. Clin Orthop Relat Res 269:63–69

    Google Scholar 

  14. Hudek R, Schmutz S et al (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467:2066–2072

    Article  PubMed  PubMed Central  Google Scholar 

  15. Iversen BF, Stürup J et al (1989) Implications of muscular defense in testing for the anterior drawer sign in the knee. Am J Sports Med 17:409–413

    Article  PubMed  CAS  Google Scholar 

  16. Jacobsen K (1976) Stress radiographical measurement of the anteroposterior, medial and lateral stability of the knee joint. Acta Orthop Scand 47:335–344

    Article  PubMed  CAS  Google Scholar 

  17. Jojima H, Whiteside LA, Ogata K (2004) Effect of tibial slope or posterior cruciate ligament release on knee kinematics. Clin Orthop Relat Res 426:194–198

    Article  Google Scholar 

  18. Jung TM, Reinhardt C et al (2006) Stress radiography to measure posterior cruciate ligament insufficiency: a comparison of five different techniques. Knee Surg Sports Traumatol Arthrosc 14:1116–1121

    Article  PubMed  Google Scholar 

  19. Kessler MA, Burkart A et al (2003) Development of a 3-dimensional method to determine the tibial slope with multislice-CT. Z Orthop Ihre Grenzgeb 141:143–147

    Article  PubMed  CAS  Google Scholar 

  20. Lee DH, Park SC et al (2016) Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 24:3704–3712

    Article  PubMed  Google Scholar 

  21. Lee SY, Lim HC et al (2017) Sagittal osteotomy inclination in medial open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 25:823–831

    Article  PubMed  Google Scholar 

  22. Li Y, Hong L et al (2014) Are failures of anterior cruciate ligament reconstruction associated with steep posterior tibial slopes? A case control study. Chin Med J (Engl) 127:2649–2653

    Google Scholar 

  23. Lu H, Mow CS, Lin J (1999) Total knee arthroplasty in the presence of severe flexion contracture: a report of 37 cases. J Arthroplasty 14:775–780

    Article  PubMed  CAS  Google Scholar 

  24. Moore TM, Harvey JP (1974) Roentgenographic measurement of tibial-plateau depression due to fracture. J Bone Joint Surg Am 56:155–160

    Article  PubMed  CAS  Google Scholar 

  25. Morberg P, Chapman-Sheath P et al (2002) The function of the posterior cruciate ligament in an anteroposterior-gliding rotating platform total knee arthroplasty. J Arthroplasty 17:484–489

    Article  PubMed  CAS  Google Scholar 

  26. Murao T, Ochi M et al (1997) The adverse effects of sectioning the posterior cruciate ligament in rabbits. Changes in the structural and morphological properties of the femur-anterior cruciate ligament-tibia complex. Arch Orthop Trauma Surg 116:1–5

    Article  PubMed  CAS  Google Scholar 

  27. Nunley RM, Nam D et al (2014) Extreme variability in posterior slope of the proximal tibia: measurements on 2395 CT scans of patients undergoing UKA? J Arthroplasty 29:1677–1680

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ochi M, Murao T et al (1999) Isolated posterior cruciate ligament insufficiency induces morphological changes of anterior cruciate ligament collagen fibrils. Arthroscopy 15:292–296

    Article  PubMed  CAS  Google Scholar 

  29. Ozel O, Yucel B et al (2017) Changes in posterior tibial slope angle in patients undergoing open-wedge high tibial osteotomy for varus gonarthrosis. Knee Surg Sports Traumatol Arthrosc 25:314–318

    Article  PubMed  Google Scholar 

  30. Pagnano MW, Cushner FD, Scott NW (1998) Role of the posterior cruciate ligament in total knee arthroplasty. J Am Acad Orthop Surg 6:176–187

    Article  PubMed  CAS  Google Scholar 

  31. Roux W (1905) Die Entwicklungsmechanik; ein neuer Zweig der biologischen Wissenschaft, vols I & II. Ed. Wilhelm Engelmann, Leipzig

  32. Schulz MS, Russe K et al (2005) Reliability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med 33:502–506

    Article  PubMed  Google Scholar 

  33. Schulz MS, Steenlage ES et al (2007) Distribution of posterior tibial displacement in knees with posterior cruciate ligament tears. J Bone Joint Surg Am 89:332–338

    Article  PubMed  Google Scholar 

  34. Scott RD, Chmell MJ (2008) Balancing the posterior cruciate ligament during cruciate-retaining fixed and mobile-bearing total knee arthroplasty: description of the pull-out lift-off and slide-back tests. J Arthroplasty 23:605–608

    Article  PubMed  Google Scholar 

  35. Sekiya JK, West RV et al (2005) Clinical outcomes after isolated arthroscopic single-bundle posterior cruciate ligament reconstruction. Arthroscopy 21:1042–1050

    Article  PubMed  Google Scholar 

  36. Shoemaker SC, Markolf KL (1986) The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am 68:71–79

    Article  PubMed  CAS  Google Scholar 

  37. Sing G, Tan JH et al (2013) Restoring the anatomical tibial slope and limb axis may maximise post-operative flexion in posterior-stabilised total knee replacements. Bone Joint J 10:1354–1358

    Article  Google Scholar 

  38. Song EK, Park HW et al (2014) Transtibial versus tibial inlay techniques for posterior cruciate ligament reconstruction: long-term follow-up study. Am J Sports Med 42:2964–2971

    Article  PubMed  Google Scholar 

  39. Swany MR, Scott RD (1993) Posterior polyethylene wear in posterior cruciate ligament-retaining total knee arthroplasty: a case study. J Arthroplasty 8:439–446

    Article  PubMed  CAS  Google Scholar 

  40. Torzilli PA, Deng X, Warren RF (1994) The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am J Sports Med 22:105–112

    Article  PubMed  CAS  Google Scholar 

  41. Webb JM, Salmon LJ et al (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41:2800–2804

    Article  PubMed  Google Scholar 

  42. Wordeman SC, Quatman CE et al (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 40:1673–1681

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang JH, Yoon JR et al (2012) Second-look arthroscopic assessment of arthroscopic single-bundle posterior cruciate ligament reconstruction: comparison of mixed graft versus achilles tendon allograft. Am J Sports Med 40:2052–2060

    Article  PubMed  Google Scholar 

  44. Yoshida S, Matsui N et al (2005) In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty 20:777–783

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Institute for Radiology and Nuclear Medicine of the Charité-University Medicine Berlin, for their continuous support and image allocation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Gwinner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The authors confirm that no funding was received for this study.

Ethical approval

The ethics committee of Charité-Universitaetsmedizin Berlin (EA1/003/16) approved the current study. A retrospective analysis was conducted on patients, who underwent bilateral posterior stress radiographs, within a 2-year period (May 2014–May 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schatka, I., Weiler, A., Jung, T.M. et al. High tibial slope correlates with increased posterior tibial translation in healthy knees. Knee Surg Sports Traumatol Arthrosc 26, 2697–2703 (2018). https://doi.org/10.1007/s00167-017-4706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4706-4

Keywords

Navigation