Skip to main content
Log in

Identification and Characterization of a Novel Bovine Stearoyl-CoA Desaturase Isoform with Homology to Human SCD5

  • Original Article
  • Published:
Lipids

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Stearoyl-CoA desaturase (SCD) is an enzyme responsible for the production of cis-9, trans-11 conjugated linoleic acid in ruminant fats, and for the synthesis of palmitoleoyl-CoA and oleoyl-CoA. To date, only one SCD isoform has been described in ruminant species, although multiple isoforms have been found in many other mammalian species. In this paper, we describe for the first time a second SCD isoform in cattle, which appears to be an ortholog of human SCD5 rather than a homolog of bovine SCD1 or any of the described murine SCD isoforms. As described in other SCD proteins, the predicted amino acid sequence of bovine SCD5 includes four transmembrane domains and three conserved histidine motifs. The amino-terminus of the predicted protein sequence of SCD5 lacks the PEST sequences typically found in SCD1 homologs, which are thought to target proteins for rapid degradation. Similar to human SCD5, the bovine SCD5 gene is organized into five exons and four introns, and is highly expressed in the brain. In other tissues examined, mRNA expression of SCD5 was minimal. Furthermore, the expression levels of SCD5 between brain gray and white matter are not different. This is the first description of a homolog of human SCD5 in a non-primate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

bp:

Base pair(s)

cDNA:

DNA complementary to RNA

CLA:

Conjugated linoleic acid

kb:

Kilobase(s) or 1000 bp

PCR:

Polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

RT:

Reverse transcription

SCD:

Stearoyl-CoA desaturase

UTR:

Untranslated region

References

  1. Ip MM, Masso-Welch PA, Ip C (2003) Prevention of mammary cancer with conjugated linoleic acid: role of the stroma and the epithelium. J Mammary Gland Biol Neoplasia 8:103–118

    Article  PubMed  Google Scholar 

  2. Brown JM, McIntosh MK (2003) Conjugated linoleic acid in humans: regulation of adiposity and insulin sensitivity. J Nutr 133:3041–3046

    PubMed  CAS  Google Scholar 

  3. Corl BA, Barbano DM, Bauman DE, Ip C (2003) cis-9, trans-11 CLA derived endogenously from trans-11 18:1 reduces cancer risk in rats. J Nutr 133:2893–2900

    PubMed  CAS  Google Scholar 

  4. Lock AL, Corl BA, Barbano DM, Bauman DE, Ip C (2004) The anticarcinogenic effect of trans-11 18:1 is dependent on its conversion to cis-9, trans-11 CLA by delta9-desaturase in rats. J Nutr 134:2698–2704

    PubMed  CAS  Google Scholar 

  5. Lock AL, Horne CA, Bauman DE, Salter AM (2005) Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters. J Nutr 135:1934–1939

    PubMed  CAS  Google Scholar 

  6. Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS, Bauman DE (2001) The role of delta(9)-desaturase in the production of cis-9, trans-11 CLA. J Nutr Biochem 12:622–630

    Article  PubMed  CAS  Google Scholar 

  7. Kay JK, Mackle TR, Auldist MJ, Thomson NA, Bauman DE (2004) Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. J Dairy Sci 87:369–378

    PubMed  CAS  Google Scholar 

  8. Mosley EE, McGuire MK, Williams JE, McGuire MA (2006) cis-9, trans-11 conjugated linoleic acid is synthesized from vaccenic acid in lactating women. J Nutr 136:2297–2301

    PubMed  CAS  Google Scholar 

  9. Santora JE, Palmquist DL, Roehrig KL (2000) trans-Vaccenic acid is desaturated to conjugated linoleic acid in mice. J Nutr 130:208–215

    PubMed  CAS  Google Scholar 

  10. Enoch HG, Catala A, Strittmatter P (1976) Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme–substrate interactions, and the function of lipid. J Biol Chem 251:5095–5103

    PubMed  CAS  Google Scholar 

  11. Kaestner KH, Ntambi JM, Kelly TJ Jr, Lane MD (1989) Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 264:14755–14761

    PubMed  CAS  Google Scholar 

  12. Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM, Ntambi JM (2003) Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem 278:33904–33911

    Article  PubMed  CAS  Google Scholar 

  13. Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sibley E, Kelly TJ Jr, Lane MD (1988) Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 263:17291–17300

    PubMed  CAS  Google Scholar 

  14. Zheng Y, Prouty SM, Harmon A, Sundberg JP, Stenn KS, Parimoo S (2001) Scd3––a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. Genomics 71:182–191

    Article  PubMed  CAS  Google Scholar 

  15. Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K, Cao G (2005) Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun 332:735–742

    Article  PubMed  CAS  Google Scholar 

  16. Zhang L, Ge L, Parimoo S, Stenn K, Prouty SM (1999) Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J 340(Pt 1):255–264

    Article  PubMed  CAS  Google Scholar 

  17. Miyazaki M, Bruggink SM, Ntambi JM (2006) Identification of mouse palmitoyl-coenzyme A Delta9-desaturase. J Lipid Res 47:700–704

    Article  PubMed  CAS  Google Scholar 

  18. Bernard L, Leroux C, Hayes H, Gautier M, Chilliard Y, Martin P (2001) Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3′-UTR sequence arising from a single exon. Gene 281:53–61

    Article  PubMed  CAS  Google Scholar 

  19. Ward RJ, Travers MT, Richards SE, Vernon RG, Salter AM, Buttery PJ, Barber MC (1998) Stearoyl-CoA desaturase mRNA is transcribed from a single gene in the ovine genome. Biochim Biophys Acta 1391:145–156

    PubMed  CAS  Google Scholar 

  20. Chung M, Ha S, Jeong S, Bok J, Cho K, Baik M, Choi Y (2000) Cloning and characterization of bovine stearoyl CoA desaturasel cDNA from adipose tissues. Biosci Biotechnol Biochem 64:1526–1530

    Article  PubMed  CAS  Google Scholar 

  21. Campbell EM, Gallagher DS, Davis SK, Taylor JF, Smith SB (2001) Rapid communication: mapping of the bovine stearoyl-coenzyme A desaturase (SCD) gene to BTA26. J Anim Sci 79:1954–1955

    PubMed  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  23. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  PubMed  CAS  Google Scholar 

  24. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  25. Man WC, Miyazaki M, Chu K, Ntambi JM (2006) Membrane topology of mouse stearoyl-CoA desaturase 1. J Biol Chem 281:1251–1260

    Article  PubMed  CAS  Google Scholar 

  26. Zhang S, Yang Y, Shi Y (2005) Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochem J 388:135–142

    Article  PubMed  CAS  Google Scholar 

  27. Ren J, Knorr C, Huang L, Brenig B (2004) Isolation and molecular characterization of the porcine stearoyl-CoA desaturase gene. Gene 340:19–30

    Article  PubMed  CAS  Google Scholar 

  28. Svennerholm L (1968) Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res 9:570–579

    PubMed  CAS  Google Scholar 

  29. Oshino N, Sato R (1972) The dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver. Arch Biochem Biophys 149:369–377

    Article  PubMed  CAS  Google Scholar 

  30. Heinemann FS, Ozols J (1998) Degradation of stearoyl-coenzyme A desaturase: endoproteolytic cleavage by an integral membrane protease. Mol Biol Cell 9:3445–3453

    PubMed  CAS  Google Scholar 

  31. Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    Article  PubMed  CAS  Google Scholar 

  32. Mziaut H, Korza G, Ozols J (2000) The N terminus of microsomal delta 9 stearoyl-CoA desaturase contains the sequence determinant for its rapid degradation. Proc Natl Acad Sci USA 97:8883–8888

    Article  PubMed  CAS  Google Scholar 

  33. Kato H, Sakaki K, Mihara K (2006) Ubiquitin-proteasome-dependent degradation of mammalian ER stearoyl-CoA desaturase. J Cell Sci 119:2342–2353

    Article  PubMed  CAS  Google Scholar 

  34. Mziaut H, Korza G, Benraiss A, Ozols J (2002) Selective mutagenesis of lysyl residues leads to a stable and active form of delta 9 stearoyl-CoA desaturase. Biochim Biophys Acta 1583:45–52

    PubMed  CAS  Google Scholar 

  35. Jones BH, Maher MA, Banz WJ, Zemel MB, Whelan J, Smith PJ, Moustaid N (1996) Adipose tissue stearoyl-CoA desaturase mRNA is increased by obesity and decreased by polyunsaturated fatty acids. Am J Physiol 271:E44–49

    PubMed  CAS  Google Scholar 

  36. Heinemann FS, Ozols J (2003) Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins Leukot Essent Fatty Acids 68:123–133

    Article  PubMed  CAS  Google Scholar 

  37. Peterson DG, Kelsey JA, Bauman DE (2002) Analysis of variation in cis-9, trans-11 conjugated linoleic acid (CLA) in milk fat of dairy cows. J Dairy Sci 85:2164–2172

    PubMed  CAS  Google Scholar 

  38. Kelsey JA, Corl BA, Collier RJ, Bauman DE (2003) The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J Dairy Sci 86:2588–2597

    Article  PubMed  CAS  Google Scholar 

  39. McDonald TM, Kinsella JE (1973) Stearyl-CoA desaturase of bovine mammary microsomes. Arch Biochem Biophys 156:223–231

    Article  PubMed  CAS  Google Scholar 

  40. Bourre JM, Dumont OL, Clement ME, Durand GA (1997) Endogenous synthesis cannot compensate for absence of dietary oleic acid in rats. J Nutr 127:488–493

    PubMed  CAS  Google Scholar 

  41. Edmond J, Higa TA, Korsak RA, Bergner EA, Lee WN (1998) Fatty acid transport and utilization for the developing brain. J Neurochem 70:1227–1234

    Article  PubMed  CAS  Google Scholar 

  42. Garbay B, Boiron-Sargueil F, Shy M, Chbihi T, Jiang H, Kamholz J, Cassagne C (1998) Regulation of oleoyl-CoA synthesis in the peripheral nervous system: demonstration of a link with myelin synthesis. J Neurochem 71:1719–1726

    Article  PubMed  CAS  Google Scholar 

  43. Granda B, Tabernero A, Tello V, Medina JM (2003) Oleic acid induces GAP-43 expression through a protein kinase C-mediated mechanism that is independent of NGF but synergistic with NT-3 and NT-4/5. Brain Res 988:1–8

    Article  PubMed  CAS  Google Scholar 

  44. Velasco A, Tabernero A, Medina JM (2003) Role of oleic acid as a neurotrophic factor is supported in vivo by the expression of GAP-43 subsequent to the activation of SREBP-1 and the up-regulation of stearoyl-CoA desaturase during postnatal development of the brain. Brain Res 977:103–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hengjian Wang and Kim Waterman of the Department of Food Science and Technology at Virginia Tech and Smith Valley Meats for tissue samples, and the Virginia Bioinformatics Institute for sequencing work. This research was supported by the Virginia Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Corl.

About this article

Cite this article

Lengi, A.J., Corl, B.A. Identification and Characterization of a Novel Bovine Stearoyl-CoA Desaturase Isoform with Homology to Human SCD5. Lipids 42, 499–508 (2007). https://doi.org/10.1007/s11745-007-3056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3056-2

Keywords

Navigation