Skip to main content

Lipid metabolism in the rumen

  • Chapter
The Rumen Microbial Ecosystem

Abstract

Ruminants supply humans with a readily available source of fat in the form of both tissue and milk lipids. It has been known for over 50 years that the compositions of ruminant tissue and milk lipids differ markedly from those of non-ruminant herbivores (Banks and Hilditch, 1931), and much research has been done on ruminant lipids and on the microbial transformations in the rumen which are responsible for the distinctive lipid composition. Early reviews on lipid metabolism in the rumen are by Viviani (1970), in which there is much information on microbial lipid composition, and by Harfoot (1978), which takes a wider view. Much of the older work has been referred to in detail in these reviews. More general accounts are those of Hungate (1966), Prins (1977) and Hobson and Wallace (1982a, b). Since the first edition (1988) of the present book, two further reviews have been published; one by Jenkins (1993) on general lipid metabolism in the rumen, and a shorter review (Jenkins, 1994) dealing with factors regulating lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, M. J., Bryant, M. P., Keeney, M. and Katz, I. (1961). The metabolic fate of isovalerate in Ruminococcus flavefaciens. J. Dairy Sci., 44, 1203.

    Google Scholar 

  • Allison, M. J., Bryant, M. P., Katz, I. and Keeney, M. (1962). Metabolic function of branched-chain volatile fatty acids; growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J. Bacteriol., 83, 1084–93.

    PubMed  CAS  Google Scholar 

  • Bailey, R. W. and Howard, B. H. (1963). Carbohydrases of the rumen ciliate Epidinium ecaudatum (Crawley). 2. α-Galactosidase and isomaltase. Biochem. J., 87, 146–51.

    PubMed  CAS  Google Scholar 

  • Banks, A. and Hilditch, T. P. (1931). The glyceride structure of beef tallows. Biochem. J., 25, 1168–82.

    PubMed  CAS  Google Scholar 

  • Bauchart, D. and Legay-Carmier, F. (1988). Effects of meal ingestion and diet lipid-content on the amount of free and solid-adherent bacteria in the rumen of dairy cows. Reprod. Nutr. Dev., 28, 139–40.

    Google Scholar 

  • Bauchart, D., Legay-Carmier, F., Doreau, M. and Gaillard, B. (1990). Lipid metabolism of liquid-associated and solid-adherent bacteria in rumen contents of dairy cows offered lipid-supplemented diets. Br. J. Nutr., 63, 563–78.

    PubMed  CAS  Google Scholar 

  • Body, D. R. (1976). The occurrence of cis-octadec-15-enoic acid as a major biohydrogenation product from methyl linolenate in bovine rumen liquor. Biochem. J., 157, 741–4.

    PubMed  CAS  Google Scholar 

  • Body, D. R. and Bauchop, T. (1985). Lipid composition of an obligately anaerobic fungus, Neocallimastix frontalis, isolated from a bovine rumen. Can. J. Microbiol., 31, 463–6.

    CAS  Google Scholar 

  • Boggs, D. L., Bergen, W. D. and Hawkins, D. R. (1987). Effects of tallow supplementation and protein withdrawal on ruminal fermentation, microbial synthesis and site of digestion. J. Anim. Sci., 64, 907–14.

    PubMed  CAS  Google Scholar 

  • Broad, T. E. and Dawson, R. M. C. (1973). Formation of ceramide phosphorylethanolamine from phosphatidylethanolamine in the rumen protozoon Entodinium caudatum. Biochem. J., 134, 659–62.

    CAS  Google Scholar 

  • Broad, T. E. and Dawson, R. M. C. (1975). Phospholipid biosynthesis in the anaerobic protozoon Entodinium caudatum. Biochem. J., 146, 317–28.

    CAS  Google Scholar 

  • Broad, T. E. and Dawson, R. M. C. (1976). Role of choline in the nutrition of the rumen protozoon Entodinium caudatum. J. Gen. Microbiol., 92, 391–7.

    CAS  Google Scholar 

  • Bygrave, F. L. and Dawson, R. M. C. (1976). Phosphatidylcholine biosynthesis and choline transport in the anaerobic protozoon Entodinium caudatum. Biochem. J., 160, 481–90.

    CAS  Google Scholar 

  • Clarke, N. G., Hazlewood, G. P. and Dawson, R. M. C. (1976). Novel lipids of Butyrivibrio spp.Chem. Phys. Lipids, 17, 222–32.

    PubMed  CAS  Google Scholar 

  • Clarke, N. G., Hazlewood, G. P. and Dawson, R. M. C. (1980). Structure of diabolic acid-containing phospholipids isolated from Butyrivibrio sp. Biochem. J., 191, 561–9.

    PubMed  CAS  Google Scholar 

  • Coleman, G. S. (1964). The metabolism of Escherichia coli and other bacteria by Entodinium caudatum. J. Gen. Microbiol., 37, 209–23.

    CAS  Google Scholar 

  • Coleman, G. S. (1969). The metabolism of starch, maltose, glucose and some other sugars by the rumen ciliate Entodinium caudatum. J. Gen. Microbiol., 57, 303–32.

    CAS  Google Scholar 

  • Coleman, G. S. (1980). Rumen ciliate protozoa. In Advances in Parasitology, Vol. 18, ed. W. H. R. Lumsden, R. Muller and J. R. Baker. Academic Press, London and New York, pp. 121–73.

    Google Scholar 

  • Coleman, G. S. and Hall, F. J. (1969). Electron microscopy of the rumen ciliate Entodinium caudatum, with special reference to the engulfment of bacteria and other particulate matter. Tissue Cell, 1, 607–18.

    PubMed  CAS  Google Scholar 

  • Coleman, G. S., Kemp, P. and Dawson, R. M. C. (1971). The catabolism of phospha-tidylethanolamine by the rumen protozoon Entodinium caudatum and its conversion into the N-(l-carboxyethyl) derivative. Biochem. J., 123, 97–104.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C. (1959). Hydrolysis of lecithin and lysolecithin by rumen microorganisms of the sheep. Nature, 183, 1822–3.

    CAS  Google Scholar 

  • Dawson, R. M. C. and Hemington, N. (1974). Digestion of grass lipids and pigments in the sheep rumen. Br. J. Nutr., 32, 327–40.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C. and Kemp, P. (1967). The aminoethylphosphonate-containing lipids of rumen protozoa. Biochem. J., 105, 837–42.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C. and Kemp, P. (1969). The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem. J., 115, 351–2.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C. and Kemp, P. (1970). Biohydrogenation of dietary fats in ruminants. In Physiology of Digestion and Metabolism in the Ruminant, ed. A. T. Phillipson, Oriel Press, Newcastle-upon-Tyne, pp. 504–18.

    Google Scholar 

  • Dawson, R. M. C., Hemington, N., Grime, D. et al. (1974). Lipolysis and hydrogenation of galactolipids and the accumulation of phytanic acid in the rumen. Biochem. J., 144, 169–71.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Hemington, N. and Hazlewood, G. P. (1977). On the role of higher plant and microbial lipases in the ruminal hydrolysis of grass lipids. Br. J. Nutr., 38, 225–32.

    PubMed  CAS  Google Scholar 

  • Demeyer, D. I., Henderson, C. and Prins, R. A. (1978). Relative significance of exogenous and de novo synthesised fatty acids in the formation of rumen microbial lipids in vitro. Appl. Environ. Microbiol., 35, 24–31.

    CAS  Google Scholar 

  • Emmanuel, B. (1974). On the origin of rumen protozoan fatty acids. Biochim. Biophys. Acta, 337, 404–13.

    PubMed  CAS  Google Scholar 

  • Emmanuel, B., Milligan, L. P. and Turner, B. V. (1974). The metabolism of acetate by rumen microorganisms. Can. J. Microbiol., 26, 183–5.

    Google Scholar 

  • Eyssen, H. and Verhulst, A. (1984). Biotransformation of linoleic acid and bile acids by Eubacterium lentum. Appl. Environ. Microbiol., 47, 39–3.

    PubMed  CAS  Google Scholar 

  • Faruque, A. J. M. O., Jarvis, B. D. W. and Hawke, J. C. (1974). Studies on rumen metabolism. IX. Contribution of plant lipases to the release of free fatty acids in the rumen. J. Sci. Food Agric., 25, 1313–28.

    PubMed  CAS  Google Scholar 

  • Fotouhi, N. and Jenkins, T. C. (1992). Ruminal biohydrogenation of linoleyl methionione and calcium linoleate in sheep. J. Anim. Sci., 70, 2574–80.

    Google Scholar 

  • Fulco, A. J., Levy, R. and Bloch, K. (1964). The biosynthesis of Δ9-and Δ5 monounsaturated fatty acids by bacteria. J. Biol. Chem., 239, 998–1003.

    PubMed  CAS  Google Scholar 

  • Garcia, P. T., Christie, W. W., Jenkins, H. M. et al. (1976). The isomerization of 2,5-and 9,12-octadecadienoic acids by an extract of Butyrivibrio fibrisolvens. Biochim. Biophys. Acta, 424, 296–302.

    PubMed  CAS  Google Scholar 

  • Garton, G. A. (1959). Lipids in relation to rumen function. Proc. Nutr. Soc., 18, 112–17.

    PubMed  CAS  Google Scholar 

  • Garton, G. A. (1960). Fatty acid composition of the lipids of pasture grasses. Nature (Lond.), 187, 511.

    CAS  Google Scholar 

  • Garton, G. A. (1977). Fatty acid metabolism in ruminants. In Biochemistry of Lipids II, Vol. 14, ed. T. W. Goodwin. University Park Press, Baltimore, pp. 337–70.

    Google Scholar 

  • Garton, G. A. and Oxford, A. E. (1955). The nature of bacterial lipids in the rumen of hay-fed sheep. J. Sci. Food Agric., 3, 142–8.

    Google Scholar 

  • Garton, G. A., Hobson, P. N. and Lough, A. K. (1958). Lipolysis in the rumen. Nature, 182, 1511–12.

    PubMed  CAS  Google Scholar 

  • Garton, G. A., Lough, A. K. and Vioque, E. (1959). The effect of sheep rumen contents on triglycerides in vitro. Biochem. J., 73, 46P.

    Google Scholar 

  • Garton, G. A., Lough, A. K. and Vioque, E. (1961). Glyceride hydrolysis and glycerol fermentation by sheep rumen contents. J. Gen. Microbiol., 25, 215–25.

    PubMed  CAS  Google Scholar 

  • Gerson, T., John, A., Shelton, L D. and Sinclair, B. R. (1982). Effects of dietary N on lipids of rumen digesta, plasma, liver, muscle and perirenal fat in sheep. J. Agric. Sic. (Camb.), 99, 71–8.

    CAS  Google Scholar 

  • Gerson, T., John, A. and Sinclair, B. R. (1983). The effect of dietary N on in vitro lipolysis and fatty acid hydrogenation in rumen digesta from sheep fed diets high in starch. J. Agric. Sci. (Camb.), 101, 97–101.

    CAS  Google Scholar 

  • Gerson, T., John, A. and King, A. S. D. (1985). The effects of dietary starch and fibre on the in vitro rates of lipolysis and hydrogenation by sheep rumen digesta. J. Agric. Sci. (Camb.), 105, 27–30.

    CAS  Google Scholar 

  • Girard, V. and Hawke, J. C. (1978). The role of holotrichs in the metabolism of dietary linoleic acid in the rumen. Biochim. Biophys. Acta, 528, 17–27.

    PubMed  CAS  Google Scholar 

  • Goldfine, H. (1982). Lipids of prokaryotes: structure and distribution. In Current Topics in Membranes and Transport, Vol. 17, ed. F. Bronner and A. Kleinzeller. Academic Press, New York and London, pp. 1–43.

    Google Scholar 

  • Gurr, M. I. (1974). Biosynthesis of fatty acids. In The Biochemistry of Lipids, Vol. 4, ed. T. W. Goodwin (MTP International Reviews in Science, Biochemistry Ser. I). Butterworths, London.

    Google Scholar 

  • Hall, F. J., West, J. and Coleman, G. S. (1974). Fine structural studies on the digestion of chloroplasts in the rumen ciliate Entodinium caudatum. Tissue Cell, 6, 243–53.

    PubMed  CAS  Google Scholar 

  • Harfoot, C. G. (1978). Lipid metabolism in the rumen. Progr. Lipid Res., 17, 21–54.

    CAS  Google Scholar 

  • Harfoot, C. G., Noble, R. C. and Moore, J. H. (1973a). Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen. Biochem. J., 132, 829–32.

    PubMed  CAS  Google Scholar 

  • Harfoot, C. G., Noble, R. C. and Moore, J. H. (1973b). Factors influencing the extent of biohydrogenation of linoleic acid by rumen microorganisms in vitro. J. Sci. Food Agric., 24, 961–70.

    PubMed  CAS  Google Scholar 

  • Harfoot, C. G., Crouchman, M. L., Noble, R. C. and Moore, J. H.(1974).Competition between food particles and rumen bacteria in the uptake of long chain fattyacids and triglycerides. J.Appl. Bacteriol., 37, 633–41.

    PubMed  CAS  Google Scholar 

  • Harfoot, C. G., Noble, R. C. and Moore, J. H. (1975). The role of plant particles, bacteria and cell-free supernatant fractions of rumen contents in the hydrolysis of trilinolein and the subsequent hydrogenation of linoleic acid. Ant. van Leeuwenhoek J. Microbiol. Serol., 41, 533–42.

    CAS  Google Scholar 

  • Hauser, H., Hazlewood, G. P. and Dawson, R. M. C. (1979). Membrane fluidity of a fatty acid auxotroph grown with palmitic acid. Nature (Lond.), 279, 536–8.

    CAS  Google Scholar 

  • Hauser, H., Hazlewood, G. P. and Dawson, R. M. C. (1985). Characterization of membrane lipids of a general fatty acid auxotrophic bacterium by electron spin resonance spectroscopy and differential scanning calorimetry. Biochemistry, 24, 5247–53.

    PubMed  CAS  Google Scholar 

  • Hawke, J. C. (1971). The incorporation of long-chain fatty acids into lipids by rumen bacteria and the effect on biohydrogenation. Biochim. Biophys. Acta, 248, 167–70.

    PubMed  CAS  Google Scholar 

  • Hawke, J. C. and Silcock, W. R. (1970). In vitro rate of lipolysis and biohydrogenation in rumen contents. Biochim. Biophys. Acta, 218, 201–12.

    CAS  Google Scholar 

  • Hazlewood, G. P. (1974). Metabolism of phospholipids and fatty acids by a rumen bacterium. PhD thesis, University of Cambridge.

    Google Scholar 

  • Hazlewood, G. P. and Dawson, R. M. C. (1975a). Isolation and properties of a phospholipid-hydrolysing bacterium from ovine rumen fluid. J. Gen. Microbiol., 89, 163–74.

    Google Scholar 

  • Hazlewood, G. P. and Dawson, R. M. C. (1975b). Intermolecular transacylation of phosphatidylethanolamine by a Butyrivibrio sp. Biochem. J., 150, 521–5.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P. and Dawson, R. M. C. (1976). A phospholipid-deacylating system of bacteria active in a frozen medium. Biochem. J., 153, 49–53.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. and Dawson, R. M. C. (1977). Acylgalactosylglycerols as a source of long-chain fatty acids for a naturally occurring rumen auxotroph. Biochem. Soc. Trans., 5, 1721–3.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. and Dawson, R. M. C. (1979). Characteristics of a lipolytic and fatty acid-requiring Butyrivibrio sp. isolated from the ovine rumen. J. Gen. Microbiol., 112, 15–27.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P., Kemp, P., Lander, D. and Dawson, R. M. C. (1976). C18 unsaturated fatty acid hydrogenation patterns of some rumen bacteria and their ability to hydrolyse exogenous phospholipid. Br. J. Nutr., 35, 293–7.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P., Reynolds, M. J., Dawson, R. M. C. and Gunstone, F. D. (1979). An automatic colorimeter and its use in evaluating the growth response of an anaerobic general fatty acid auxotroph to cis-and trans-octadecenoic acids. J. Appl. Bacteriol., 47, 321–5.

    CAS  Google Scholar 

  • Hazlewood, G. P., Dawson, R. M. C. and Hauser, H. (1980a). The question of membrane fluidity in an anaerobic general fatty acid auxotroph. In Membrane Fluidity: Biophysical Techniques and Cellular Regulation, ed. M. Kates and A. Kuksis. Humana Press, Clifton, New Jersey, pp. 191–201.

    Google Scholar 

  • Hazlewood, G. P., Clarke, N. G. and Dawson, R. M. C. (1980b). Complex lipids of lipolytic and general fatty acid-requiring Butyrivibrio sp. isolated from the ovine rumen. Biochem. J., 191, 555–60.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P., Cho, K. Y., Dawson, R. M. C. and Munn, E. A. (1983). Subcellular fractionation of the Gram negative rumen bacterium Butyrivibrio S2 by protoplast formation, and localisation of lipolytic enzymes in the plasma membrane. J. Appl Bacteriol, 55, 337–47.

    CAS  Google Scholar 

  • Henderson, C. (1971). A study of the lipase produced by Anaerovibrio lipolytica, a rumen bacterium. J. Gen. Microbiol, 65, 81–9.

    PubMed  CAS  Google Scholar 

  • Henderson, C. (1973a). An improved method for enumerating and isolating lipolytic rumen bacteria. J. Appl Bacteriol, 36, 187–8.

    Google Scholar 

  • Henderson, C. (1973b). The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. (Camb.), 81, 107.

    CAS  Google Scholar 

  • Henderson, C. (1975). The isolation and characterisation of strains of lipolytic bacteria from the ovine rumen. J. Appl Bacteriol, 39, 101–9.

    PubMed  CAS  Google Scholar 

  • Henderson, C. and Hodgkiss, W. (1973). An electron microscopic study of Anaerovibrio lipolytica (strain 5S) and its lipolytic enzyme. J. Gen. Microbiol, 76, 389–93.

    PubMed  CAS  Google Scholar 

  • Henderson, C., Hobson, P. N. and Summers, R. (1969). The production of amylase, protease and lipolytic enzymes by two species of anaerobic rumen bacteria. In Proceedings of the Fourth Symposium on Continuous Cultivation of Micro-organisms, Prague, ed. I. Malek et al. Academic Press, London, pp. 189–204.

    Google Scholar 

  • Hino, T. and Nagatake, Y. (1993). The effects of grass lipids on fibre digestion by mixed rumen microorganisms in vitro. Anim. Sci. Technol., 64, 121–8.

    CAS  Google Scholar 

  • Hino, T., Andoh, N. and Ohgi, H. (1993). Effects of beta-carotene and α-tocopherol on rumen bacteria in the utilization of long-chain fatty-acids and cellulose. J. Dairy Sci., 76, 600–5.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. (1965). Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. J. Gen. Microbiol, 38, 167–80.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Mann, S. O. (1961). The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. J. Gen. Microbiol, 25, 227–40.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Mann, S. O. (1971). Isolation of cellulolytic and lipolytic organisms from the rumen. In Isolation of Anaerobes (SAB Technical Series No. 5), ed. D. A. Shapton and R. G. Board. Academic Press, London, pp. 149–58.

    Google Scholar 

  • Hobson, P. N. and Summers, R. (1966). Effect of growth rate on the lipase activity of a rumen bacterium. Nature, 209, 736–7.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Summers, R. (1967). The continuous culture of anaerobic bacteria. J. Gen. Microbiol, 47, 53–65.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Wallace, R. J. (1982a). Crit. Rev. Microbiol, 9, 165–225.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Wallace, R. J. (1982b). Microbial ecology and activities in the rumen. Part CRC Crit. Rev. Microbiol, 9, 253–320.

    PubMed  CAS  Google Scholar 

  • Horiguchi, M. and Kandatsu, M. (1959). Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature (Lond.), 184, 901–2.

    CAS  Google Scholar 

  • Hudson, J. A., MacKenzie, C. A. M. and Joblin, K. N. (1995). Conversion of oleic acid to 10-hydroxystearic acid by 2 species of ruminal bacteria. Appl Microbiol Biotechnol., 44, 1–6.

    PubMed  CAS  Google Scholar 

  • Hughes, P. E. and Tove, S. B. (1980a). Identification of an endogenous electron donor for biohydrogenation as α-tocopherolquinol. J. Biol Chem., 255, 4447–52.

    PubMed  CAS  Google Scholar 

  • Hughes, P. E. and Tove, S. B. (1980b). Identification of deoxy-α-tocopherolquinol as another endogenous electron donor for biohydrogenation. J. Biol Chem., 255, 11802–6.

    PubMed  CAS  Google Scholar 

  • Hughes, P. E. and Tove, S. B. (1982). Occurrence of α-tocopherolquinone and α-tocopherolquinol in micro-organisms. J. Bacteriol, 151, 1397–1402.

    PubMed  CAS  Google Scholar 

  • Hughes, P. E., Hunter, W. J. and Tove, S. B. (1982). Biohydrogenation of unsaturated fatty acids: purification and properties of cis-9, trans-11 octadecadienoate reductase. J. Biol. Chem., 257, 3643–9.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1966). The Rumen and Its Microbes. Academic Press, New York and London, pp. 8–90.

    Google Scholar 

  • Hunter, W. J., Baker, F. C., Rosenfeld, I. S. et al. (1976). Biohydrogenation of unsaturated fatty acids. VII. Hydrogenation by a cell-free preparation of Butyrivibrio fibrisolvens. J. Biol. Chem., 251, 2241–7.

    Google Scholar 

  • Ifkovits, R. W. and Ragheb, H. S. (1968). Cellular fatty acid composition and identification of rumen bacteria. Appl. Microbiol., 16, 1406–13.

    PubMed  CAS  Google Scholar 

  • Ikwuegbu, O. A. and Sutton, J. D. (1982). The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr., 48, 365–75.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. (1993). Lipid metabolism in the rumen. J. Dairy Sci., 76, 3851–63.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. (1994). Regulation of lipid metabolism in the rumen. J. Nutr., 124, S1372–6.

    Google Scholar 

  • Jenkins, T. C. (1995). Butylsoyamide protects soybean oil from ruminal biohydrogenation — effects of butylsoyamide on plasma fatty acids and nutrient digestion in sheep. J. Anim. Sci., 73, 818–23.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. and Palmquist, D. L. (1982). Effect of added fat and calcium on in vitro and cell wall digestibility. J. Anim. Sci., 55, 957–63.

    CAS  Google Scholar 

  • Jenkins, T. C. and Palmquist, D. L. (1984). Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci., 67, 978–84.

    PubMed  CAS  Google Scholar 

  • Joyner, A. E., Winter, W. T. and Godbout, D. M. (1977). Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria. Can. J. Microbiol 23, 346–53.

    PubMed  CAS  Google Scholar 

  • Kamio, Y. and Takahashi, H. (1980). Isolation and characterisation of outer and inner membranes of Selenomonas ruminantium: lipid composition. J. Bacteriol., 141, 888–98.

    PubMed  CAS  Google Scholar 

  • Kamio, Y., Kanegasaki, S. and Takahashi, H. (1969). Occurrence of plasmalogens in anaerobic bacteria. J. Gen. Appl. Microbiol., 15, 439–51.

    CAS  Google Scholar 

  • Kamio, Y., Kanegasaki, S. and Takahashi, H. (1970a). Fatty acid and aldehyde compositions in phospholipids of Selenomonas ruminantium with reference to growth conditions. J. Gen. Appl. Microbiol., 15, 439–51.

    Google Scholar 

  • Kamio, Y., Inagaki, H. and Takahashi, H. (1970b). Possible occurrence of α-oxidation in phospholipid biosynthesis in Selenomonas ruminantium. J. Gen. Appl. Microbiol., 16, 463–78.

    CAS  Google Scholar 

  • Kamio, Y., Kim, K. C. and Takahashi, H. (1970c). Glyceryl ether phospholipids in Selenomonas ruminantium. J. Gen. Appl. Microbiol., 16, 291–300.

    CAS  Google Scholar 

  • Kanegasaki, S. and Numa, S. (1970). Medium-chain fatty acyl-CoA requirement for long-chain fatty acid synthesis in some anaerobic bacteria. Biochim. Biophys. Acta, 202, 436–46.

    PubMed  CAS  Google Scholar 

  • Kanegasaki, S. K. and Takahashi, H. (1967). Function of growth factors for rumen microorganisms. I. Nutritional characteristics of Selenomonas ruminantium. J. Bacteriol., 93, 456–63.

    PubMed  CAS  Google Scholar 

  • Kanegasaki, S. and Takahashi, H. (1968). Function of growth factors for rumen microorganisms. II. Metabolic fate of incorporated fatty acids in Selenomonas ruminantium. Biochim. Biophys. Acta, 152, 40–9.

    PubMed  CAS  Google Scholar 

  • Katz, I. and Keeney, M. (1964). The isolation of fatty aldehydes from rumen-microbial lipid. Biochim. Biophys. Acta, 84, 128–32.

    PubMed  CAS  Google Scholar 

  • Katz, I. and Keeney, M. (1966). Characterization of the octadecenoic acids in rumen digesta and rumen bacteria. J. Dairy Sci., 49, 962–6.

    PubMed  CAS  Google Scholar 

  • Katz, I. and Keeney, M. (1967). The lipids of some rumen holotrich protozoa. Biochim. Biophys. Acta, 144, 102–12.

    PubMed  CAS  Google Scholar 

  • Keeney, M. (1970). Lipid metabolism in the rumen. In Physiology of Digestion and Metabolism in the Ruminant, ed. A. T. Phillipson. Oriel Press, Newcastle-upon-Tyne, pp. 489–503.

    Google Scholar 

  • Keeney, M., Katz, I. and Allison, M. J. (1962). On the probable origin of some milk fat acids in rumen microbial lipids. J. Am. Oil Chem. Soc., 39, 198–201.

    CAS  Google Scholar 

  • Kellens, M. J., Goderis, H. L. and Tobback, P. P. (1986). Biohydrogenation of unsaturated fatty acids by a mixed culture of rumen microorganisms. Biotechnol. Bioeng., 28, 1268–78.

    PubMed  CAS  Google Scholar 

  • Kemp, P. and Dawson, R. M. C. (1969a). Characterisation of N-(2-hydroxyethyl)alanine as a component of a new phospholipid isolated from rumen protozoa. Biochim. Biophys. Acta, 176, 678–9.

    PubMed  CAS  Google Scholar 

  • Kemp, P. and Dawson, R. M. C. (1969b). Isolation of a new phospholipid, phosphatidyl-N-(2-hydroxyethyl)alanine from rumen protozoa. Biochem. J., 113, 555–8.

    PubMed  CAS  Google Scholar 

  • Kemp, P. and Lander, D. J. (1983). The hydrogenation of γ-linolenic acid by pure cultures of two rumen bacteria. Biochem. J., 216, 519–22.

    PubMed  CAS  Google Scholar 

  • Kemp, P. and Lander, D. J. (1984). Hydrogenation in vitro of α-linolenic acid to stearic acid by mixed cultures of pure strains of rumen bacteria. J. Gen. Microbiol., 130, 527–33.

    CAS  Google Scholar 

  • Kemp, P., Dawson, R. M. C. and Klein, R. A. (1972). A new bacterial sphingophospholipid containing 3-aminopropane-l,2-diol. Biochem. J., 130, 221–7.

    PubMed  CAS  Google Scholar 

  • Kemp, P., White, R. W. and Lander, D. J. (1975). The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol., 90, 100–14.

    PubMed  CAS  Google Scholar 

  • Kemp, P., Lander, D. J. and Holman, R. T. (1984a). The hydrogenation of the series of methylene-interrupted cis, cis octadecadienoic acids by pure cultures of rumen bacteria. Br. J. Nutr., 52, 171–7.

    PubMed  CAS  Google Scholar 

  • Kemp, P., Lander, D. J. and Gunstone, F. D. (1984b). Hydrogenation of some cis and trans octadecenoic acids to stearic acid by a rumen Fusocillus sp. Br. J. Nutr., 52, 165–70.

    PubMed  CAS  Google Scholar 

  • Kemp, P., Lander, D. J. and Orpin, C. G. (1984c). The lipids of the rumen fungus Piromonas communis. J. Gen. Microbiol., 130, 27–37.

    PubMed  CAS  Google Scholar 

  • Kepler, C. R. and Tove, S. B. (1967). Biohydrogenation of unsaturated fatty acids. III. Purification and properties of a linoleate Δ12-cis, Δ11-trans isomerase from Butyrivibrio fibrisolvens. J. Biol. Chem., 242, 5686–92.

    PubMed  CAS  Google Scholar 

  • Kepler, C. R., Hirons, K. P., McNeill, J. J. and Tove, S. B. (1966). Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem., 241, 1350–4.

    PubMed  CAS  Google Scholar 

  • Kepler, C. R., Tucker, W. P. and Tove, S. B. (1970). Biohydrogenation of unsaturated fatty acids. IV. Substrate specificity and inhibition of linoleate Δ12-cis, Δ11-trans isomerase from Butyrivibrio fibrisolvens. J. Biol. Chem., 245, 3612–20.

    PubMed  CAS  Google Scholar 

  • Kepler, C. R., Tucker, W. P. and Tove, S. B. (1971). Biohydrogenation of unsaturated fatty acids. V. Stereospecificity of proton addition and mechanism of action of linoleic acid Δ12-cis, Δ11-trans isomerase from Butyrivibrio fibrisolvens. J. Biol. Chem., 246, 2765–71.

    PubMed  CAS  Google Scholar 

  • Klein, R. A., Hazlewood, G. P., Kemp, P. and Dawson, R. M. C. (1979). A new series of long-chain dicarboxylic acids with vicinal dimethyl branching found as major components of the lipids of Butyrivibrio spp. Biochem. J., 183, 691–700.

    PubMed  CAS  Google Scholar 

  • Koga, Y. and Goldfine, H. (1984). Biosynthesis of phospholipids in Clostridium butyricum: kinetics of synthesis of plasmalogens and the glycerol acetal of ethanolamine plasmalogen. J. Bacteriol., 159, 597–604.

    PubMed  CAS  Google Scholar 

  • Kruk, J. and Strzalka, K. (1991). Charge-transfer complexes of plastoquinone and α-tocopherol in unsaturated fatty acids and temperature dependencies of their absorption spectra. Chem. Phys. Lipids, 58, 27–33.

    CAS  Google Scholar 

  • Kruk, J. and Strzalka, K. (1995). Occurrence and function of α-tocopherolquinone in plants. J. Plant Physiol., 145, 405–9.

    CAS  Google Scholar 

  • Kruk, J., Strzalka, K. and Leblanc, R. M. (1992). Monolayer study of plastoquinones, α-tocopherolquinone, their hydroquinone forms and their interaction with monogalactosyl-diglyceride-charge transfer complexes in a mixed monolayer. Biochim. Biophys Acta, 1112, 19–26.

    PubMed  CAS  Google Scholar 

  • Kunsman, J. E. (1973). Characterisation of the lipids of six strains of Bacteroides ruminicola. J. Bacteriol., 113, 1121–6.

    PubMed  CAS  Google Scholar 

  • Latham, M. J., Storry, J. E. and Sharpe, M. E. (1972). Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl. Microbiol., 24, 871–7.

    PubMed  CAS  Google Scholar 

  • Leat, W. M. F. (1977). Depot fatty acids of Aberdeen Angus and Friesian cattle reared on hay and barley diets. J. Agrie. Sci. (Camb.), 89, 575–82.

    CAS  Google Scholar 

  • Legay-Carmier, F., Bauchart, D. and Doreau, M. (1989). Distribution of bacteria in the rumen contents of dairy cows given a diet supplemented with soyabean oil. Br. J. Nutr., 61, 725–40.

    PubMed  CAS  Google Scholar 

  • Lennarz, W. J. (1966). Lipid metabolism in the bacteria. Adv. Lipid Res., 4, 175–225.

    PubMed  CAS  Google Scholar 

  • Miles, S. C., Scott, T. W., Russell, G. R. and Smith, R. M. (1970). Hydrogenation of C18 unsaturated fatty acids by pure cultures of a rumen micrococcus. Aust. J. Biol. Sci., 23, 1109–13.

    Google Scholar 

  • Miyagawa, E. (1982). Cellular fatty acid and fatty aldehyde composition of rumen bacterium. J. Gen. Appl. Microbiol., 28, 389–408.

    CAS  Google Scholar 

  • Nieman, C. (1954). Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol Rev., 18, 147–67.

    PubMed  CAS  Google Scholar 

  • Noble, R. C. (1978). Digestion, absorption and transport of lipids in ruminant animals. Prog. Lipid Res., 17, 55–91.

    PubMed  CAS  Google Scholar 

  • Noble, R. C., Steele, W. and Moore, J. H. (1969). The incorporation of linoleic acid into the plasma lipids of sheep given intraruminal infusion of maize oil or free linoleic acid. Br. J. Nutr., 23, 709–14.

    PubMed  CAS  Google Scholar 

  • O’Kelly, J. C. and Spiers, W. G. (1991). Influence of host diet on the concentrations of fatty acids in rumen bacteria from cattle. Aus. J. Agrie. Res., 42, 243–52.

    Google Scholar 

  • Patton, R. A., McCarthy, R. D. and Griel, L. C. (1970). Lipid synthesis by rumen microorganisms. II. Further characterization of the effects of methionine. J. Dairy Sci., 53, 460–5.

    PubMed  CAS  Google Scholar 

  • Payne, E. (1974). Hydrogenation of unsaturated fatty acids by ruminal fluid in vitro. Proc. NZ Soc. Anim. Prod., 34, 65.

    Google Scholar 

  • Polan, C. E., McNeill, J. J. and Tove, S. B. (1964). Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol., 88, 1056–64.

    PubMed  CAS  Google Scholar 

  • Prins, R. A. (1977). Biochemical activities of gut microorganisms. In Microbial Ecology of the Gut, ed. R. T. J. Clarke and T. Bauchop. Academic Press, London and New York, pp. 73–183.

    Google Scholar 

  • Prins, R. A., Van Nevel, C. J. and Demeyer, D. I. (1972). Pure culture studies on inhibitors for methanogenic bacteria. Ant. van Leeuwenhoek J. Microbiol. Serol., 38, 281–7.

    CAS  Google Scholar 

  • Prins, R. A., Akkermans-Kruyswijk, J., Franklin-Klein, W. et al. (1974). Metabolism of serine and ethanolamine plasmalogens in Megasphaera elsdenii. Biochim. Biophys. Acta, 348, 361–9.

    PubMed  CAS  Google Scholar 

  • Prins, R. A., Lankhorst, A., Van der Meer, P. and Van Nevel, C. J. (1975). Some characteristics of Anaerovibrio lipolytica, a rumen lipolytic organism. Ant. van Leeuwenhoek J. Microbiol. Serol., 41, 1–11.

    CAS  Google Scholar 

  • Raetz, C. R. H. (1978). Enzymology, genetics and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol. Rev., 42, 614–59.

    PubMed  CAS  Google Scholar 

  • Reiser, R. (1951). Hydrogenation of polyunsaturated fatty acids by the ruminant. Fed. Proc., 10, 236.

    Google Scholar 

  • Rosenfeld, I. S. and Tove, S. B. (1971). Biohydrogenation of unsaturated fatty acids. IV.Source of hydrogen and stereospecificity of reduction. J. Biol. Chem., 246, 5025–30.

    PubMed  CAS  Google Scholar 

  • Roughan, P. G. and Batt, R. D. (1969). Glycerolipid composition of leaves. Phytochemistry, 8, 363–9.

    CAS  Google Scholar 

  • Sachan, D. S. and Davis, C. L. (1969). Hydrogenation of linoleic acid by a rumen spirochaete. J. Bacteriol., 98, 300–1.

    PubMed  CAS  Google Scholar 

  • Shorland, F. B. (1963). The distribution of fatty acids in plant lipids. In Chemical Plant Taxonomy, ed. T. W. Swain. Academic Press, New York, pp. 253–311.

    Google Scholar 

  • Shorland, F. B., Weenink, R. O. and Johns, A. T. (1955). Effect of the rumen on dietary fat.Nature (Lond.), 175, 1129.

    CAS  Google Scholar 

  • Silber, P., Borie, R. P., Mikowski, E. J. and Goldfine, H. (1981). Phospholipid biosynthesis in some anaerobic bacteria. J. Bacteriol., 147, 57–61.

    PubMed  CAS  Google Scholar 

  • Singh, S. and Hawke, J. C. (1979). The in vitro lipolysis and biohydrogenation of monogalactosyldiglyceride by whole rumen contents and its fractions. J. Sci. Food Agric., 30, 603–12.

    PubMed  CAS  Google Scholar 

  • Thomas, P. J. (1972). Identification of some enteric bacteria which convert oleic acid to hydroxystearic acid in vitro. Gastroenterology, 62, 430–5.

    PubMed  CAS  Google Scholar 

  • Trémolières, A. (1970). Les lipides des tissus photosynthetiques. Ann. Biol., 3–4, 113–56.

    Google Scholar 

  • Tweedie, J. W., Rumsby, M. G. and Hawke, J. C.(1966). Studies on rumen metabolism. V. Formation of branched long-chain fatty acids in cultures of rumen bacteria. J. Sci. Food Agric., 17, 241–4.

    CAS  Google Scholar 

  • Van Golde, L. M. G., Prins, R. A., Franklin-Klein, W. and Akkermans-Kruyswijk, J. (1973). Phosphatidylserine and its plasmalogen analogue as major lipid constituents in Megasphaera elsdenii. Biochim. Biophys. Acta, 326, 314–23.

    PubMed  Google Scholar 

  • Verhulst, A., Semjen, G., Meerts, U. et al. (1985). Biohydrogenation of linoleic acid by Clostridium sporogenes, Clostridium bifermentans, Clostridium sordellii and Bacteroides sp. FEMS Microbiol. Ecol., 31, 255–9.

    CAS  Google Scholar 

  • Viviani, R. (1970). Metabolism of long-chain fatty acids in the rumen. Adv. Lipid Res., 8, 267–346.

    PubMed  CAS  Google Scholar 

  • Viviani, R. and Borgatti, A. R. (1967). Micro-organismi del rumine e bioidrogenazione degli acidi grassi poliinsaturi. Atti Soc. Ital. Sci. Vet., 21, 254–9.

    CAS  Google Scholar 

  • Viviani, R., Borgatti, A. R., Cortesi, P. and Crisetig, G. (1968). Consituenti lipidici dei batteri e dei protozoi del rumine di ovino. Nuova Vet., 44, 279–83.

    CAS  Google Scholar 

  • Ward, P. F. V., Scott, T. W. and Dawson, R. M. C. (1964). The hydrogenation of unsaturated fatty acids in the ovine digestive tract. Biochem. J., 92, 60–8.

    PubMed  CAS  Google Scholar 

  • Watanabe, T., Okuda, S. and Takahashi, H. (1982). Physiological importance of even-numbred fatty acids and aldehydes in plasmalogen phospholipids of Selenomonas ruminantium. J. Gen. Appl. Microbiol., 28, 22–33.

    Google Scholar 

  • Watanabe, T., Okuda, S. and Takahashi, H. (1984). Turn-over of phospholipids in Selenomonas ruminantium. J. Biochem., 95, 521–7.

    PubMed  CAS  Google Scholar 

  • Wegner, G. H. and Foster, E. M. (1963). Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes J. Bacteriol., 85, 53–61.

    PubMed  CAS  Google Scholar 

  • White, R. W., Kemp, P. and Dawson, R. M. C. (1970). Isolation of a rumen bacterium that hydrogenates oleic acid as well as linoleic acid and linolenic acid. Biochem. J., 116, 767–8.

    PubMed  CAS  Google Scholar 

  • Wilde, P. F. and Dawson, R. M. C. (1966). The biohydrogenation of α-linolenic and oleic acid by rumen micro-organisms. Biochem. J., 98, 469–75.

    PubMed  CAS  Google Scholar 

  • Williams, P. P. and Dinusson, W. E. (1973). Amino acid and fatty acid composition of bovine ruminai bacteria and protozoa. J. Anim. Sci., 36, 151–3.

    PubMed  CAS  Google Scholar 

  • Williams, P. P., Gutierrez, J. and Davis, R. E. (1963). Lipid metabolism of rumen ciliates and bacteria. II. Uptake of fatty acids and lipid analysis of Isotricha intestinalis and rumen bacteria with further information on Entodinium simplex. Appl. Microbiol., 11, 260–4.

    PubMed  CAS  Google Scholar 

  • Wood, R. D., Bell, M. C., Grainger, R. B. and Teekel, R. A. (1963). Metabolism of labelled linoleic-l-14C acid in the sheep rumen. J. Nutr., 79, 62–8.

    PubMed  CAS  Google Scholar 

  • Wright, D. E. (1959). Hydrogénation of lipids by rumen protozoa. Nature (Lond.), 184, 875–6.

    CAS  Google Scholar 

  • Wright, D. E. (1960). Hydrogenation of chloroplast lipids by rumen bacteria. Nature (Lond.), 185, 546–7.

    CAS  Google Scholar 

  • Wright, D. E. (1961). Bloat in cattle. XX. Lipase activity of rumen microorganisms. NZ J. Agric. Res., 4, 216–23.

    CAS  Google Scholar 

  • Wu, Z., Ohajuruka, O. A. and Palmquist, D. L. (1991). Ruminai synthesis, biohydrogenation and digestibility of fatty acids by dairy cows. J. Dairy Sci., 74, 3025–34.

    PubMed  CAS  Google Scholar 

  • Yamazaki, S. and Tove, S. B. (1979). Biohydrogenation of unsaturated fatty acids. 8. Presence of dithionite and an endogenous electron donor in Butyrivibrio fibrisolvens. J. Biol. Chem., 254, 3812–17.

    PubMed  CAS  Google Scholar 

  • Yokoyama, M. T. and Davis, C. L. (1971). Hydrogenation of unsaturated fatty acids by Treponema (Borrelia) strain B25, a rumen spirochaete. J. Bacteriol., 107, 519–27.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Harfoot, C.G., Hazlewood, G.P. (1997). Lipid metabolism in the rumen. In: Hobson, P.N., Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1453-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1453-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7149-9

  • Online ISBN: 978-94-009-1453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics